A CHARACTERIZATION OF THE HARMONIC OPERATOR MEAN AS AN EXTENSION OF ANDO'S THEOREM

Jun Ichi Fujir* and Masahiro Nakamura**

Received December 12, 2005

Abstract

We show that the (weighted) harmonic operator mean is characterized as an operator mean m satisfying $F(A m B) \leq F(A) m F(B)$ for every operator monotone function F on $(0, \infty)$ based on the numerical means. We also show the non-affine representing function $f_{m}(x)=1 m x$ of an operator mean m is an extreme point of the set of representing functions F with $F \circ f_{m} \leqq f_{m} \circ F$.

1 Introduction. Let us consider the arithmetic operator mean $A \nabla B=(A+B) / 2$ for a pair of positive (invertible) operators A and B acting on a Hilbert space H. Then a real function F is operator concave if

$$
F(A \nabla B) \geq F(A) \nabla F(B)
$$

holds. It is known that every operator monotone function f on $(0, \infty)$ satisfying

$$
f(A) \leq f(B) \quad \text { whenever } \quad 0 \leq A \leq B
$$

is operator concave. The harmonic operator mean! is defined by

$$
A!B=\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1}
$$

and T.Ando [1, Theorem III.5] showed the contrastive result to the above:
Theorem (Ando)1. If F is positive operator monotone, then

$$
F(A!B) \leq F(A)!F(B)
$$

In this note, based on this inequality, we discuss when

$$
F(A m B) \leq F(A) m F(B)
$$

holds not only for numerical means but also operator means in the sense of Kubo and Ando [5] which can be constructed as

$$
\begin{equation*}
A m B=A^{1 / 2} f\left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2} \tag{1}
\end{equation*}
$$

for a positive operator monotone function f on $(0, \infty)$ with $f(1)=1$.
2000 Mathematics Subject Classification. 47A64, 47A63, 26A51, 26D07.
Key words and phrases. operator mean, operator monotone function, concave function.

2 Numerical mean. Let $M(a, b)$ be a positive homogeneous mean for positive numbers a and b. According to the Kubo-Ando theory [5], the operations $M^{\circ}(a, b)=M(b, a)$ and $M^{*}(a, b)=M(1 / a, 1 / b)^{-1}$ are called the transpose and adjoint for M respectively.

The symbols $\nabla_{w}, \#_{w}$ and $!_{w}$ denote the arithmetic, geometric and harmonic means respectively for $0<w<1$:

$$
\nabla_{w}(a, b)=(1-w) a+w b, \quad \#_{w}(a, b)=a^{1-w} b^{w} \quad \text { and } \quad!_{w}(a, b)=\frac{a b}{w a+(1-w) b}
$$

Then

$$
\nabla_{w}^{*}=!_{w}, \quad!_{w}^{*}=\nabla_{w} \quad \text { and } \quad \#_{w}^{*}=\#_{w}
$$

and these means are all symmetric for $w=1 / 2$, i.e., $M^{\circ}=M$.
These operations * and ${ }^{\circ}$ are also applied to the representing function $f_{M}(x)=M(1, x)$ for M :

$$
f^{*}(x)=\frac{1}{f\left(\frac{1}{x}\right)} \quad \text { and } \quad f^{\circ}(x)=x f\left(\frac{1}{x}\right) .
$$

Note that the normalized condition $M(a, a)=a$ is equivalent to $f_{M}(1)=1$. By homogeneity, such means are reconstructed by the representing functions:

$$
M(a, b)=a f_{M}(b / a)=b f_{M}^{\circ}(a / b)
$$

Here we assume that f_{M} is positive, monotone-increasing and concave. Then so is f_{M}°. In fact, it is clear that f_{M}° is positive and monotone-increasing. The concavity follows from

$$
\begin{aligned}
f_{M}^{\circ}((1-w) x+w y) & =((1-w) x+w y) f_{M}\left(\frac{1}{(1-w) x+w y}\right) \\
& =((1-w) x+w y) f_{M}\left(\frac{(1-w) x \frac{1}{x}+w y \frac{1}{y}}{(1-w) x+w y}\right) \\
& \geqq(1-w) x f_{M}\left(\frac{1}{x}\right)+w y f_{M}\left(\frac{1}{y}\right)=(1-w) f_{M}^{\circ}(x)+w f_{M}^{\circ}(y) .
\end{aligned}
$$

The adjoint f_{M}^{*} is also positive and monotone-increasing, but it is not always concave as in the following example:

Example 1. Put $F(x)=\sqrt{x} \wedge x$. Then $F(1 / x)=(1 / \sqrt{x}) \wedge(1 / x)$ and hence

$$
F^{*}(x)=\sqrt{x} \vee x
$$

which is not concave in a neighborhood of 1 .
Moreover the concavity of F^{*} is equivalent to Ando's type theorem:
Lemma 2.1. Let F be a positive monotone-increasing concave function on $(0, \infty)$. Then F^{*} is concave if and only if

$$
F\left(!_{w}(a, b)\right) \leqq!_{w}(F(a), F(b))
$$

for all $a, b>0$.

Proof. The concavity of F^{*} is written by
$\frac{1}{F\left(\frac{1}{(1-w) x+w y}\right)}=F^{*}((1-w) x+w y) \geqq(1-w) F^{*}(x)+w F^{*}(y)=(1-w) \frac{1}{F\left(\frac{1}{x}\right)}+w \frac{1}{F\left(\frac{1}{y}\right)}$.
By putting $a=1 / x$ and $b=1 / y$, it is equivalent to

$$
F\left(!_{w}(a, b)\right)=F\left(\frac{1}{(1-w) x+w y}\right) \leqq \frac{F(a) F(b)}{(1-w) F(b)+w F(a)}=!_{w}(F(a), F(b))
$$

Thus the equivalence is shown.
Here we restrict ourselves to the homogeneous numerical means M with the representing functions f_{M} satisfying
(i) f_{M}, f_{M}^{*} and f_{M}° are positive monotone-increasing concave functions.
(ii) f_{M} is normalized: $f_{M}(1)=1$ (i.e., $\left.M(a, a)=a\right)$.

Note that (i) implies that the above means do not include trivial means: $M_{\ell}(a, b)=a$ and $M_{r}(a, b)=b$.

Next we consider when

$$
\begin{equation*}
F(M(a, b)) \leqq M(F(a), F(b)) \tag{2}
\end{equation*}
$$

holds. Note that it is equivalent to

$$
F^{*}\left(M^{*}(a, b)\right) \geqq M^{*}\left(F^{*}(a), F^{*}(b)\right)
$$

In spite of the above situation, it holds for a special pair of a mean $M \neq!_{w}$ and a function F. In fact, putting $F(x)=\sqrt{x}$ and $M(a, b)=\sqrt{a b}$, the geometric mean. Then

$$
F(M(a, b))=\sqrt[4]{a b}=M(F(a), F(b))
$$

But, considering the case that F^{*} is affine, we can characterize the harmonic mean in such means, which is an extension of Ando's theorem:
Theorem 2.2. A homogeneous mean M in the above sense is the harmonic one if and only if

$$
F(M(a, b)) \leqq M(F(a), F(b))
$$

for all positive monotone-increasing concave functions F on $(0, \infty)$ with the concave adjoint F^{*} and positive numbers a and b.
Proof. It follows from the above lemma that (2) holds for $M=!_{w}$. Suppose $M \neq!_{w}$ and (2) holds. Then $M^{*} \neq \nabla_{w}$, so that there exists x with

$$
\frac{M^{*}(1,1)+M^{*}(1, x)}{2}=\frac{1+f_{M}^{*}(x)}{2}<f_{M}^{*}\left(\frac{1+x}{2}\right)=M^{*}\left(1, \frac{1+x}{2}\right)
$$

Applying $F^{*}(x)=(1+x) / 2$ to $\left(2^{\prime}\right)$, we have

$$
\frac{1+f_{M}^{*}(x)}{2}=F\left(M^{*}(1, x)\right) \geqq M\left(1, \frac{1+x}{2}\right)=f_{M}\left(\frac{1+x}{2}\right)
$$

This contradiction shows $M^{*}=\nabla_{w}$, that is, $M=!_{w}$.

3 Operator mean. Next we discuss the case of operators. The harmonic operator mean with a weight w is defined by

$$
A!_{w} B=\left((1-w) A^{-1}+w B^{-1}\right)^{-1}
$$

and the arithmetic one with w is $A \nabla_{w} B=(1-w) A+w B$ for positive invertible operators A and B on a Hilbert space. In general, operator means here stand for the Kubo-Ando operator means defined by (1). Note that the representing function $f_{m}(x)=1 m x$ of a nontrivial operator mean m is a positive monotone-increasing concave function and so are f_{m}^{*} and f_{m}°. Now we have a characterization of the harmonic operator mean $!_{w}$:
Theorem 3.1. A nontrivial operator mean m is the (weighted) harmonic (resp. arithmetic) one if and only if

$$
\begin{equation*}
F(A m B) \leq F(A) m F(B) \quad(\text { resp. } F(A m B) \geq F(A) m F(B)) \tag{3}
\end{equation*}
$$

for all positive operator monotone functions F and positive operators A and B.
Finally we observe noncommutative examples. As we state above, for commuting operators A and B, we have

$$
\sqrt{A \# B}=\sqrt[4]{A B}=\sqrt{A} \# \sqrt{B}
$$

where $\#$ is the geometric operator mean

$$
A \# B=A^{1 / 2} \sqrt{A^{-1 / 2} B A^{-1 / 2}} A^{1 / 2}
$$

But it does not hold in general and moreover we can give examples:

$$
\sqrt{A \# B} \leq \sqrt{A} \# \sqrt{B} \quad \text { and } \quad \sqrt{C \# B} \geq \sqrt{C} \# \sqrt{B}
$$

Recall the following formula in [2]:

$$
S=\left(\begin{array}{ll}
x & \bar{y} \\
y & z
\end{array}\right), P=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { imply } \quad S \# P=\sqrt{\frac{x z-|y|^{2}}{z}} P .
$$

Put

$$
S_{1}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right), A=S_{1}^{2}=\left(\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right) \quad \text { and } \quad B=P
$$

Then $S_{1} \# B=P$ and $S_{1}^{2} \# P=\frac{1}{\sqrt{2}} P$, and hence

$$
\sqrt{A \# B}=\sqrt{S_{1}^{2} \# B}=\frac{1}{\sqrt[4]{2}} P \leq P=S_{1} \# P=\sqrt{A} \# \sqrt{B}
$$

Next, put

$$
S_{2}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right), C=S_{2}^{2}=\left(\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right) \quad \text { and } \quad B=P
$$

Then we have $S_{2} \# P=\sqrt{\frac{3}{2}} P$ and $S_{2}^{2} \# P=\sqrt{\frac{16}{5}} P$, so that

$$
\sqrt{C \# B}=\sqrt{S_{2}^{2} \# P}=\frac{2}{\sqrt[4]{5}} P \geq \sqrt{\frac{3}{2}} P=S_{2} \# P=\sqrt{C} \# \sqrt{B}
$$

These examples show the difficulty to discuss the class of functions F satisfying (3). So we discuss another related class in the next section.

4 A class of functions. Finally we consider the set $M F$ of all representing functions of operator means, that is, positive operator monotone functions f_{m} on $(0, \infty)$ with $f_{m}(1)=1$. Note that $!_{w}$ and ∇_{w} belong to the boundary of $M F$, which corresponds to [3, Theorem 8] and [5, Theorem 4.5]:
Theorem 4.1. The weighted arithmetic means ∇_{w} (resp. harmonic ones $!_{w}$) are the largest (resp. smallest) operator means whose representing functions satisfy $f_{m}^{\prime}(1)=w$.
Proof. Every representing function f_{m} is concave and differentiable, so we have

$$
f_{m}(x) \leqq f_{m}^{\prime}(1)(x-1)+f_{m}(1)=1-f_{m}^{\prime}(1)+f_{m}^{\prime}(1) x=f_{\nabla_{w}}(x)
$$

for all $x>0$, which shows $m \leq \nabla_{w}$. Therefore $!_{w}=\nabla_{w}^{*}$ are the smallest since $m \leq n$ implies $m^{*} \geq n^{*}$ for all operator means m and n.

Let $S(m)=S\left(f_{m}\right)$ be the set of all $F \in M F$ satisfying

$$
\begin{equation*}
F \circ f_{m} \leq f_{m} \circ F \tag{4}
\end{equation*}
$$

which is derived from the case $A=1$ in (3):

$$
F\left(f_{m}(B)\right)=F(1 m B) \leq F(1) m F(B)=1 m F(B)=f_{m}(F(B))
$$

Then $S(m)$ is a closed convex subset of $M F$ with the maximal extreme points ∇_{w} by the above theorem. Since the equality in (4) holds, we have f_{m} itself belongs to $S(m)$. This suggests that m occupies an extremal position in $S(m)$. The above argument shows that $S\left(!_{w}\right)$ coincides with $M F$ and $S\left(\nabla_{w}\right)=\left\{f_{\nabla_{w}} \mid 0<w<1\right\}$. In other words, by Theorem 4, the smallest class of $S\left(!_{w}\right)$ and $S\left(\nabla_{w}\right)$ is $\left\{f_{!_{w}}\right\}$ and $\left\{f_{\nabla_{w}}\right\}$ respectively. In particular, these means are extreme points of $M F$. Moreover it is valid in general, which is another variation of Ando's theorem:

Theorem 4.2. If f_{m} be the non-affine representing function for an operator mean m, then it is an extreme point of $S(m)$:

$$
f_{m} \in \operatorname{ext} S(m)
$$

Proof. Let $\left(F_{1}+F_{2}\right) / 2=f_{m}$ for $F_{k} \in S(m)$. Then, putting $y=f_{m}(x)$ for each $x>0$, we have

$$
\begin{aligned}
f_{m}(y) & =\frac{F_{1}+F_{2}}{2}(y)=\frac{F_{1}+F_{2}}{2}\left(f_{m}(x)\right)=\frac{F_{1}\left(f_{m}(x)\right)+F_{2}\left(f_{m}(x)\right)}{2} \\
& \leqq \frac{f_{m}\left(F_{1}(x)\right)+f_{m}\left(F_{2}(x)\right)}{2} \leqq f_{m}\left(\frac{F_{1}(x)+F_{2}(x)}{2}\right)=f_{m}\left(f_{m}(x)\right)=f_{m}(y)
\end{aligned}
$$

Therefore, the equality holds and hence $F_{1}(x)=F_{2}(x)$ by the strict concavity of f_{m}. Consequently $F_{1}=F_{2}=f_{m}$, which implies $f_{m} \in \operatorname{ext} S(m)$.

Moreover we conjecture that f_{m} is a minimal function for $S(m)$, that is, for all totally ordered path of representing functions $f_{m_{r}}$ passing through f_{m}, (see [4])

$$
f_{m}=\min \left\{f_{m_{r}} \mid f_{m_{r}} \in S(m)\right\}
$$

Though it is valid for $m=!_{w}$ and ∇_{w}, it is an open problem in general.
Recall that for the power mean $m_{r, w}$ for $|r| \leqq 1$, the representing function

$$
f_{m_{r, w}}(x)=\left(1-w+w x^{r}\right)^{1 / r}
$$

is operator monotone and hence the representing one of an operator mean. For a fixed weight w, it is monotone increasing for r (while the power operator mean $A m_{r, w} B$ is not always monotone increasing in the usual order for operators). For $r \rightarrow 0$, we obtain the geometric operator mean $\#_{w}$ with a weight w :

$$
A \#_{w} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{w} A^{1 / 2}
$$

Now we can verify that the representing function $f_{\# w}(x)=x^{w}$ is the smallest one in the power ones in $S\left(\#_{w}\right)$. In fact, the monotonicity of power means shows
$\left(1-w+w x^{-r}\right)^{-1 / r} \leqq\left(1-w+w x^{-w r}\right)^{-1 /(w r)} \leqq\left(1-w+w x^{w r}\right)^{1 /(w r)} \leqq\left(1-w+w x^{r}\right)^{1 / r}$ for all $0<r \leqq 1$. This is equivalent to

$$
\left(1-w+w x^{-r}\right)^{-w / r} \leqq\left(1-w+w x^{-w r}\right)^{-1 / r} \leqq\left(1-w+w x^{w r}\right)^{1 / r} \leqq\left(1-w+w x^{r}\right)^{w / r}
$$

which shows $f_{\#_{w}}=\min \left\{f_{m_{r, w}} \mid f_{m_{r, w}} \in S\left(\#_{w}\right)\right\}$.

References

[1] T.Ando: "Topics on operator inequalities", Hokkaido Univ. Lecture Note, 1978.
[2] J.I.Fujii: Arithmetico-geometric mean of operators, Math. Japon., 23(1978), 667-669.
[3] J.I.Fujii and M.Fujii: Some remarks on operator means, Math. Japon., 24(1979), 335-339.
[4] J.I.Fujii, M.Nakamura and S.-E.Takahasi: Cooper's approach to chaotic operator means, to appear in Sci. Math. Japon..
[5] F.Kubo and T.Ando: Means of positive linear operators, Math. Ann., 248 (1980) 205-224.

* Department of Arts and Sciences (Information Science), Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan. E-mail address: fujii@cc.osaka-kyoiku.ac.jp
** Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan.

