A CHARACTERIZATION OF THE HARMONIC OPERATOR MEAN AS AN EXTENSION OF ANDO’S THEOREM

JUN ICHI FUJII* AND MASAHIRO NAKAMURA**

Received December 12, 2005

Abstract. We show that the (weighted) harmonic operator mean is characterized as an operator mean \(m \) satisfying \(F(\text{AmB}) \leq F(A)mF(B) \) for every operator monotone function \(F \) on \((0, \infty)\) based on the numerical means. We also show the non-affine representing function \(f_m(x) = 1/m \cdot x \) of an operator mean \(m \) is an extreme point of the set of representing functions \(F \) with \(F \circ f_m \leq f_m \circ F \).

1 Introduction. Let us consider the arithmetic operator mean \(A\nabla B = (A + B)/2 \) for a pair of positive (invertible) operators \(A \) and \(B \) acting on a Hilbert space \(H \). Then a real function \(F \) is operator concave if

\[F(A \nabla B) \geq F(A) \nabla F(B) \]

holds. It is known that every operator monotone function \(f \) on \((0, \infty)\) satisfying

\[f(A) \leq f(B) \quad \text{whenever} \quad 0 \leq A \leq B \]

is operator concave. The harmonic operator mean \(!\) is defined by

\[A ! B = \left(\frac{A^{-1} + B^{-1}}{2} \right)^{-1} \]

and T. Ando [1, Theorem III.5] showed the contrastive result to the above:

Theorem (Ando)1. If \(F \) is positive operator monotone, then

\[F(A ! B) \leq F(A) ! F(B). \]

In this note, based on this inequality, we discuss when

\[F(\text{AmB}) \leq F(A) m F(B) \]

holds not only for numerical means but also operator means in the sense of Kubo and Ando [5] which can be constructed as

(1) \[A m B = A^{1/2} f(A^{-1/2} B A^{-1/2}) A^{1/2} \]

for a positive operator monotone function \(f \) on \((0, \infty)\) with \(f(1) = 1 \).

2000 Mathematics Subject Classification. 47A64, 47A63, 26A51, 26D07.

Key words and phrases. operator mean, operator monotone function, concave function.
2 Numerical mean. Let $M(a, b)$ be a positive homogeneous mean for positive numbers a and b. According to the Kubo-Ando theory [5], the operations $M^\circ(a, b) = M(b, a)$ and $M^*(a, b) = M(1/a, 1/b)^{-1}$ are called the transpose and adjoint for M respectively.

The symbols $\nabla_w, \#_w$ and $!_w$ denote the arithmetic, geometric and harmonic means respectively for $0 < w < 1$:

$$\nabla_w(a, b) = (1 - w)a + wb, \quad \#_w(a, b) = a^{1-w}b^w \quad \text{and} \quad !_w(a, b) = \frac{ab}{wa + (1 - w)b}.$$

Then

$$\nabla_w^* = !_w, \quad !_w^* = \nabla_w \quad \text{and} \quad \#_w^* = \#_w$$

and these means are all symmetric for $w = 1/2$, i.e., $M^\circ = M$.

These operations * and $^\circ$ are also applied to the representing function $f_M(x) = M(1, x)$ for M:

$$f^*(x) = \frac{1}{f\left(\frac{1}{x}\right)} \quad \text{and} \quad f^\circ(x) = xf\left(\frac{1}{x}\right).$$

Note that the normalized condition $M(a, a) = a$ is equivalent to $f_M(1) = 1$. By homogeneity, such means are reconstructed by the representing functions:

$$M(a, b) = af_M(b/a) = bf^*_M(a/b).$$

Here we assume that f_M is positive, monotone-increasing and concave. Then so is f^*_M. In fact, it is clear that f^*_M is positive and monotone-increasing. The concavity follows from

$$f^*_M((1 - w)x + wy) = ((1 - w)x + wy)f_M\left(\frac{1}{(1 - w)x + wy}\right)$$

$$= ((1 - w)x + wy)f_M\left(\frac{(1 - w)x + wy1}{1 - w}x + wy\right)$$

$$\geq (1 - w)xf_M\left(\frac{1}{x}\right) + wyf_M\left(\frac{1}{y}\right) = (1 - w)f^*_M(x) + wf^*_M(y).$$

The adjoint f^*_M is also positive and monotone-increasing, but it is not always concave as in the following example:

Example 1. Put $F(x) = \sqrt{x} \land x$. Then $F(1/x) = (1/\sqrt{x}) \land (1/x)$ and hence

$$F^*(x) = \sqrt{x} \lor x,$$

which is not concave in a neighborhood of 1.

Moreover the concavity of F^* is equivalent to Ando’s type theorem:

Lemma 2.1. Let F be a positive monotone-increasing concave function on $(0, \infty)$. Then F^* is concave if and only if

$$F(!_w(a, b)) \leq !_w(F(a), F(b))$$

for all $a, b > 0$.

Proof. The concavity of F^* is written by

$$\frac{1}{F\left(\frac{1}{(1-w)x+wy}\right)} = F^*((1-w)x+wy) \geq (1-w)F^*(x) + wF^*(y) = (1-w)\frac{1}{F\left(\frac{1}{x}\right)} + w\frac{1}{F\left(\frac{1}{y}\right)}$$

By putting $a = 1/x$ and $b = 1/y$, it is equivalent to

$$F(1_w(a, b)) = F\left(\frac{1}{1-w}x + wy\right) \leq \frac{F(a)F(b)}{(1-w)F(b) + wF(a)} = 1_w(F(a), F(b)).$$

Thus the equivalence is shown. \(\square\)

Here we restrict ourselves to the homogeneous numerical means M with the representing functions f_M satisfying

(i) f_M, f_M^* and f_M° are positive monotone-increasing concave functions.

(ii) f_M is normalized: $f_M(1) = 1$ (i.e., $M(a, a) = a$).

Note that (i) implies that the above means do not include trivial means: $M_1(a, b) = a$ and $M_\ell(a, b) = b$.

Next we consider when

$$F(M(a, b)) \leq M(F(a), F(b))$$

holds. Note that it is equivalent to

$$(2') \quad F^*(M^*(a, b)) \geq M^*(F^*(a), F^*(b)).$$

In spite of the above situation, it holds for a special pair of a mean $M \neq 1_w$ and a function F. In fact, putting $F(x) = \sqrt{x}$ and $M(a, b) = \sqrt{ab}$, the geometric mean. Then

$$F(M(a, b)) = \sqrt[1+w]{ab} = M(F(a), F(b)).$$

But, considering the case that F^* is affine, we can characterize the harmonic mean in such means, which is an extension of Ando’s theorem:

Theorem 2.2. A homogeneous mean M in the above sense is the harmonic one if and only if

$$F(M(a, b)) \leq M(F(a), F(b))$$

for all positive monotone-increasing concave functions F on $(0, \infty)$ with the concave adjoint F^* and positive numbers a and b.

Proof. It follows from the above lemma that (2) holds for $M = 1_w$. Suppose $M \neq 1_w$ and (2) holds. Then $M^ \neq \nabla_w$, so that there exists x with

$$\frac{M^*(1, 1) + M^*(1, x)}{2} = \frac{1 + f_M(x)}{2} < f_M^*\left(\frac{1 + x}{2}\right) = M^*\left(1, \frac{1 + x}{2}\right).$$

Applying $F^*(x) = (1 + x)/2$ to $(2')$, we have

$$\frac{1 + f_M^*(x)}{2} = F(M^*(1, x)) \geq M\left(1, \frac{1 + x}{2}\right) = f_M\left(\frac{1 + x}{2}\right).$$

This contradiction shows $M^* = \nabla_w$, that is, $M = 1_w$. \(\square\)
3 Operator mean. Next we discuss the case of operators. The harmonic operator mean with a weight w is defined by

$$A \! _w B = ((1 - w)A^{-1} + wB^{-1})^{-1}$$

and the arithmetic one with w is $A \! \Delta_w B = (1 - w)A + wB$ for positive invertible operators A and B on a Hilbert space. In general, operator means here stand for the Kubo-Ando operator means defined by (1). Note that the representing function $f_m(x) = 1 - mx$ of a nontrivial operator mean m is a positive monotone-increasing concave function and so are f_m^* and f_m°. Now we have a characterization of the harmonic operator mean $!_w$:

Theorem 3.1. A nontrivial operator mean m is the (weighted) harmonic (resp. arithmetic) one if and only if

$$(3) \quad F(A \! m B) \leq F(A) m F(B) \quad \text{(resp. } F(A \! m B) \geq F(A) m F(B)\text{)}$$

for all positive operator monotone functions F and positive operators A and B.

Finally we observe noncommutative examples. As we state above, for commuting operators A and B, we have

$$\sqrt{A \# B} = \sqrt{AB} = \sqrt{A \# \sqrt{B}},$$

where $\#$ is the geometric operator mean

$$A \# B = A^{1/2} \sqrt{A^{-1/2}BA^{-1/2}A^{1/2}}.$$

But it does not hold in general and moreover we can give examples:

$$\sqrt{A \# B} \leq \sqrt{A \# \sqrt{B}} \quad \text{and} \quad \sqrt{C \# B} \geq \sqrt{C \# \sqrt{B}}.$$

Recall the following formula in [2]:

$$(x \ y \ z) \quad P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \implies \quad S \# P = \sqrt{\frac{xz - |y|^2}{z}}P.$$

Put

$$S_1 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \quad A = S_1^2 = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix} \quad \text{and} \quad B = P.$$

Then $S_1 \# B = P$ and $S_1^2 \# P = \frac{1}{\sqrt{2}}P$, and hence

$$\sqrt{A \# B} = \sqrt{S_1^2 \# B} = \frac{1}{\sqrt{2}}P \leq P = S_1 \# P = \sqrt{A \# \sqrt{B}}.$$

Next, put

$$S_2 = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad C = S_2^2 = \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix} \quad \text{and} \quad B = P.$$

Then we have $S_2 \# P = \sqrt{\frac{3}{2}}P$ and $S_2^2 \# P = \sqrt{\frac{15}{2}}P$, so that

$$\sqrt{C \# B} = \sqrt{S_2^2 \# P} = \frac{2}{\sqrt{5}}P \geq \sqrt{\frac{3}{2}}P = S_2 \# P = \sqrt{C \# \sqrt{B}}.$$

These examples show the difficulty to discuss the class of functions F satisfying (3). So we discuss another related class in the next section.
4 A class of functions. Finally we consider the set \(MF \) of all representing functions of operator means, that is, positive operator monotone functions \(f_m \) on \((0, \infty)\) with \(f_m(1) = 1 \). Note that \(!_w \) and \(\nabla_w \) belong to the boundary of \(MF \), which corresponds to [3, Theorem 8] and [5, Theorem 4.5]:

Theorem 4.1. The weighted arithmetic means \(\nabla_w \) (resp. harmonic ones \(!_w \)) are the largest (resp. smallest) operator means whose representing functions satisfy \(f_m(1) = w \).

Proof. Every representing function \(f_m \) is concave and differentiable, so we have

\[
f_m(x) \leq f_m'(1)(x - 1) + f_m(1) = 1 - f_m'(1) + f_m'(1)x = f_{\nabla_w}(x)
\]

for all \(x > 0 \), which shows \(m \leq \nabla_w \). Therefore \(!_w = \nabla_w^* \) are the smallest since \(m \leq n \) implies \(m^* \geq n^* \) for all operator means \(m \) and \(n \). \(\square \)

Let \(S(m) = S(f_m) \) be the set of all \(F \in MF \) satisfying

\[
(4) \quad F \circ f_m \leq f_m \circ F,
\]

which is derived from the case \(A = 1 \) in (3):

\[
F(f_m(B)) = F(1 \ m B) \leq F(1) \ m F(B) = 1 \ m F(B) = f_m(F(B)).
\]

Then \(S(m) \) is a closed convex subset of \(MF \) with the maximal extreme points \(\nabla_w \) by the above theorem. Since the equality in (4) holds, we have \(f_m \) itself belongs to \(S(m) \). This suggests that \(m \) occupies an extremal position in \(S(m) \). The above argument shows that \(S(\nabla_w) \) coincides with \(MF \) and \(S(\nabla_w) = \{ f_{\nabla_w} : 0 < w < 1 \} \). In other words, by Theorem 4, the smallest class of \(S(\nabla_w) \) and \(S(\nabla_w) \) is \(\{ f_{\nabla_w} \} \) and \(\{ f_{\nabla_w} \} \) respectively. In particular, these means are extreme points of \(MF \). Moreover it is valid in general, which is another variation of Ando’s theorem:

Theorem 4.2. If \(f_m \) be the non-affine representing function for an operator mean \(m \), then it is an extreme point of \(S(m) \):

\[
f_m \in \text{ext} \ S(m).
\]

Proof. Let \((F_1 + F_2)/2 = f_m \) for \(F_k \in S(m) \). Then, putting \(y = f_m(x) \) for each \(x > 0 \), we have

\[
f_m(y) = \frac{F_1 + F_2}{2}(y) = \frac{F_1 + F_2}{2}(f_m(x)) = \frac{F_1(f_m(x)) + F_2(f_m(x))}{2} \leq f_m(F_1(x) + F_2(x)) \leq f_m(F_1(x) + F_2(x)) = f_m(f_m(x)) = f_m(y).
\]

Therefore, the equality holds and hence \(F_1(x) = F_2(x) \) by the strict concavity of \(f_m \). Consequently \(F_1 = F_2 = f_m \), which implies \(f_m \in \text{ext} \ S(m) \). \(\square \)

Moreover we conjecture that \(f_m \) is a minimal function for \(S(m) \), that is, for all totally ordered path of representing functions \(f_m \), passing through \(f_m \), (see [4])

\[
f_m = \min \{ f_m \ : f_m \in S(m) \}.
\]

Though it is valid for \(m = !_w \) and \(\nabla_w \), it is an open problem in general.

Recall that for the power mean \(m_{r,w} \) for \(|r| \leq 1 \), the representing function

\[
f_{m_{r,w}}(x) = (1 - w + wx^r)^{1/r},
\]
is operator monotone and hence the representing one of an operator mean. For a fixed weight w, it is monotone increasing for r (while the power operator mean $A_{mr,w}B$ is not always monotone increasing in the usual order for operators). For $r \to 0$, we obtain the geometric operator mean $A_{#w}$ with a weight w:

$$A_{#w}B = A^{1/2} \left(A^{-1/2}BA^{-1/2} \right)^w A^{1/2}.$$

Now we can verify that the representing function $f_{#w}(x) = x^w$ is the smallest one in the power ones in $S(#w)$. In fact, the monotonicity of power means shows

$$(1 - w + wx^{-r})^{-1/r} \leq (1 - w + wx^{-w})^{-1/(wr)} \leq (1 - w + wx^{wr})^{1/(wr)} \leq (1 - w + wx^r)^{1/r}$$

for all $0 < r \leq 1$. This is equivalent to

$$(1 - w + wx^{-r})^{-w/r} \leq (1 - w + wx^{-w})^{-1/r} \leq (1 - w + wx^{wr})^{1/r} \leq (1 - w + wx^r)^{w/r},$$

which shows $f_{#w} = \min \{ f_{mr,w} | f_{mr,w} \in S(#w) \}$.

REFERENCES

* Department of Arts and Sciences (Information Science), Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan.
E-mail address: fujii@cc.osaka-kyoiku.ac.jp
** Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan.