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Abstract. We show that b ∈ BMO(�n) if and only if the commutator [b, Iα] of the
multiplication operator by b and the fractional integral operator Iα is bounded from

generalized Morrey spaces Lp,ϕ(�n) to Lq,ϕq/p (�n), where ϕ is non-decreasing, and
1 < p < ∞, 0 < α < n and 1/q = 1/p − α/n.

1. Introduction

The author [7] proved that b ∈ BMO if and only if the commutator [b, Iα] defined by

[b, Iα]f(x) := b(x)Iαf(x) − Iα(bf)(x),

is bounded from the classical Morrey spaces Lp,λ(Rn) to Lq,µ(Rn) with appropriate indices
p, q, λ and µ, where Iα is the fractional integral operator of order α, that is,

Iαf(x) :=
∫

Rn

f(y)
|x− y|n−α dy, 0 < α < n.

Y. Komori and T. Mizuhara [2], E. Nakai [4], C. Zorko [8] and many authors considered
various generalized Morrey spaces. In particular, Y. Komori and T. Mizuhara [2] proved
by using a factorization theorem for Hardy space H1(Rn) that if the commutator [b, T ]
is bounded on generalized Morrey spaces, then b is in BMO(Rn), where T is a Caldeón-
Zygmund operator.

The purpose of this paper is to show that b ∈ BMO if and only if the commutator [b, Iα]
is bounded from generalized Morrey spaces Lp,ϕ(Rn) to Lq,ϕ

q/p

(Rn). Our proof is direct,
but Y. Komori and T. Mizuhara have used a factorization theorem. Also we can apply our
method to obtain the boundedness of the higher order commutator on generalized Morrey
spaces.

2. Definitions and Notation

Throughout this paper all notation is standard or will be defined as needed. All cubes
are assumed to have their sides parallel to the coordinate axes. Q = Q(x0, r) denotes the
cube centered at x0 with side length r. Given a Lebesgue measurable set E, χE will denote
the characteristic function of E and |E| is the Lebesgue measure of E. The letter C will be
used for various constants, and may change from one occurrence to another.

Definition 1 (generalized Morrey space). Let 1 < p <∞ and let ϕ : (0,∞) → (0,∞) such
that ϕ be non-decreasing and satisfy the following condition:∫ ∞

r

ϕ(s)
s

ds

s
≤ C

ϕ(r)
r

.(2.1)
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We define a generalized Morrey space by

Lp,ϕ(Rn) := {f ∈ Lploc(R
n) : ‖f‖Lp,ϕ <∞},

where

‖f‖Lp,ϕ := sup
x∈R

n

r>0

(
1

ϕ(|Q(x, r)|)
∫
Q(x,r)

|f(y)|p dy
)1/p

.

Note that if ϕ(t) = tλ/n, 0 < λ < n, then Lp,ϕ(Rn) = Lp,λ(Rn). Another typical example
of ϕ satisfying (2.1) is ϕ(t) = tα(log(1 + t))β with 0 < α < 1 and α+ β ≥ 0.

Remark 1. Y. Komori and T. Mizuhara [2] defined a generalized Morrey space Lp,ψ(Rn)
by

Lp,ψ(Rn) =
{
f ∈ Lploc(R

n) :

‖f‖Lp,ψ = sup
x∈R

n

r>0

1
ψ(|Q(x, r)|)

(
1

|Q(x, r)|
∫
Q(x,r)

|f(y)|p dy
)1/p

<∞
}
,

where ψ : (0,∞) → (0,∞) such that ψ(t) is non-increasing and t1/pψ(t) is non-decreasing.
Our definition of a generalized Morrey space is identified with their definition by ϕ1/p ∼
ψ · |Q|1/p.
Definition 2 (John-Nirenberg space). BMO(Rn) is the John-Nirenberg space. That is,
BMO(Rn) is a Banach space, modulo constants, with the norm ‖·‖∗ defined by

‖b‖∗ := sup
x∈R

n

r>0

1
|Q(x, r)|

∫
Q(x,r)

|b(y) − bQ| dy,

where

bQ :=
1

|Q(x, r)|
∫
Q(x,r)

b(y) dy.

Definition 3 (Lipschitz space). We define the Lipschitz space of order β, 0 < β < 1, by

Λ̇β(Rn) = {f : |f(x) − f(y)| ≤ C |x− y|β}
and the smallest constant C > 0 is the Lipschitz norm ‖·‖Λ̇β

. Then Λ̇β(Rn) is a Banach
space, modulo constants, with the norm ‖·‖Λ̇β

.

Generalized blocks and the spaces generated by generalized blocks were introduced by
Y. Komori and T. Mizuhara [2].

Definition 4. Let 1 < q < ∞ and 1/q + 1/q′ = 1. A function g(x) on R
n is called a

(ϕ, q)-block, if there exists a cube Q(x0, r) such that

supp(g) ⊂ Q(x0, r) and ‖g‖Lq ≤ ϕ(|Q(x0, r)|)−1/q′ .

Remark 2. Let ϕ be non-decreasing. If g is a (ϕ, q)-block and supp(g) ⊂ Q(x0, r), then

‖g‖Lq ≤ ϕ(1)−1/q′ if r > 1 and ‖g‖L1 ≤ ϕ(1)−1/q′ if r ≤ 1.
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Definition 5. Let 1 < q <∞ and ϕ be non-decreasing. We define the space generated by
generalized blocks by

hϕ,q(Rn) :=
{
f =

∞∑
j=1

mjgj +
∞∑
j=1

m̃j g̃j : ‖f‖hϕ,q = inf
∞∑
j=1

(|mj | + |m̃j |) <∞,

gj are (ϕ, q)-blocks and supp (gj) ⊂ Q(xj , rj) where rj > 1,

g̃j are (ϕ, q)-blocks and supp (g̃j) ⊂ Q(xj , rj) where rj ≤ 1
}
,

where the infimum is taken over all possible representations f .

3. Theorems

Theorem 1. Let 0 < α < n, 1 < p < n/α and 1/q = 1/p − α/n. Suppose that ϕ is non-
decreasing and satisfy the condition (2.1). Then the following two conditions are equivalent:
(a) b ∈ BMO(Rn).
(b) [b, Iα] is bounded from Lp,ϕ(Rn) to Lq,ϕ

q/p

(Rn).

Furthermore we get the following results when α < n(1/p− 1/q).

Theorem 2. Let 1 < p < q <∞, 0 < α < n, 0 < β < 1 and 0 < α+β = n(1/p−1/q) < n.
Suppose that ϕ is non-decreasing satisfy the condition (2.1). Then the following conditions
are equivalent:
(a) b ∈ Λ̇β(Rn).
(b) [b, Iα] is bounded from Lp,ϕ(Rn) to Lq,ϕ

q/p

(Rn).

Remark 3. In that definition of Y. Komori and T. Mizuhara [2], both of (b) in our theorems
can be rewrited as follows:
(b)′ [b, Iα] is bounded from Lp,ψ(Rn) to Lq,ψα(Rn), whose norm is defined by

‖f‖Lq,ψα = sup
Q

1
ψ(|Q(x, r)|) · rα

(
1

|Q(x, r)|
∫
Q(x,r)

|f(y)|q dy
)1/q

,

where ψα(|Q|) = ψ(|Q(x, r)|) · rα.

4. Technical Lemmas

We need some lemmas to prove our theorems. Lemmas 1 and 2 are similar to the result
due to Y. Komiri and T. Mizuhara [2]. Since the definition of generalized Morrey spaces
differ from their definition, we give a proof for completeness.

Lemma 1. Let 1 < p < q <∞ and 1/q + 1/q′ = 1. Then we have

‖χQ(x0,r)
‖
Lp,ϕ

≤ ϕ(|Q(x0, r)|)−1/p|Q(x0, r)|1/p,
‖χQ(x0,r)

‖
hϕ
q/p,q′ ≤ ϕ(|Q(x0, r)|)1/p|Q(x0, r)|1/q′ .

Proof. Fix Q(x0, r) = Q. For any cube Q′, we get(
1

ϕ(|Q′|)
∫
Q′
χQ(y)p dy

)1/p

=
( |Q′ ∩Q|
ϕ(|Q′|)

)1/p

≤
( |Q|
ϕ(|Q′|)

)1/p

≤
( |Q|
ϕ(|Q|)

)1/p

.
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Next we estimate the norm of χQ(x0,r)
on hϕ

q/p,q′ . It follows immediately that∥∥∥χQ(x0,r)

∥∥∥
Lq′

= |Q|1/q′ = |Q|1/q′ ϕ(|Q|)− 1
q · qpϕ(|Q|) 1

q · qp .

Therefore |Q|−1/q′
ϕ(|Q|)− 1

q · qpχQ(x) is (ϕq/p, q′)-blocks. Hence we have∥∥∥χQ(x0,r)

∥∥∥
hϕ
q/p,q′

≤ ϕ(|Q(x0, r)|)1/p|Q(x0, r)|1/q′ .

Lemma 2. If g ∈ Lq,ϕ
q/p

(Rn) and b is a (ϕq/p, q′)-blocks, then∣∣∣∣
∫

Rn

g(x)b(x)dx
∣∣∣∣ ≤ ‖g‖

Lq,ϕ
q/p .

Proof. Suppose that supp (b) ⊂ Q. Then we have∣∣∣∣
∫
g(x)b(x)dx

∣∣∣∣ ≤
(∫

Q

|g(x)|q dx
)1/q(∫

Q

|b(x)|q′ dx
)1/q′

=
(

1
ϕ(|Q|)q/p

∫
Q

|g(x)|q dx
)1/q

ϕ(|Q|) 1
q · qp ‖b‖Lq′ ≤ ‖g‖

Lq,ϕ
q/p .

Lemma 3 (cf. Paluszyński [5]). For 0 < β < 1 and 1 ≤ q ≤ ∞, we have

‖f‖Λ̇β
≈ sup

Q

1

|Q|1+β/n
∫
Q

|f − fQ| ≈ sup
Q

1

|Q|β/n
(

1
|Q|

∫
Q

|f − fQ|q
)1/q

,

for q = ∞ the formula should be interpreted appropriately.

5. Proof of theorems

Proof of Theorem 1. (a) ⇒ (b): T. Mizuhara have proved in [3].
(b) ⇒ (a): We use the same argument as Janson [1]. Choose 0 �= z0 ∈ R

n such that
0 /∈ Q(z0, 2). Then for x ∈ Q(z0, 2), |x|n−α ∈ C∞(Q(z0, 2)). Hence, considering a cut
function on the cube Q(z0, 2 + δ) for sufficiently small δ > 0, |x|n−α can be written as the
absolutely convergent Fourier series;

|x|n−α =
∑
m∈Zn

ame
i〈vm,x〉

with
∑
m |am| <∞, where the exact form of the vectors vm is unrelated.

For any x0 ∈ R
n and r > 0, let Q = Q(x0, r) and Qz0 = Q(x0 + z0r, r). Let s(x) =

sgn(
∫
Qz0

(b(x) − b(y)) dy). If x ∈ Q and y ∈ Qz0 , then (y − x)/r ∈ Q(z0, 2). Hence we get

1
|Q|

∫
Q

|b(x) − bQz0 | dx

=
1
|Q|

1
|Qz0 |

∫
Q

∣∣∣∣
∫
Qz0

(b(x) − b(y)) dy
∣∣∣∣ dx

=
1
r2n

∫
Q

s(x)
(∫

Qz0
(b(x) − b(y)) |x− y|α−n |x− y|n−α dy

)
dx

=
rn−α

r2n

∫
Q

s(x)
(∫

Qz0
(b(x) − b(y)) |x− y|α−n

∣∣∣∣x− y

r

∣∣∣∣
n−α

dy

)
dx
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= r−n−α
∑
m∈Zn

am

∫
Q

s(x)

×
(∫

Qz0
(b(x) − b(y)) |x− y|α−n ei〈vm,y/r〉 dy

)
e−i〈vm,x/r〉 dx

≤ r−n−α
∣∣∣∣∣
∑
m∈Zn

am

∫
Rn

s(x)[b, Iα](χQz0 e
i〈vm,·/r〉)(x)χQ(x)e−i〈vm,x/r〉 dx

∣∣∣∣∣
≤ r−n−α

∑
m∈Zn

|am|
∥∥∥[b, Iα](χQz0 e

i〈vm,·/r〉)
∥∥∥
Lq,ϕ

q/p
· ∥∥χQ∥∥hϕq/p,q′

≤ r−n−α
∑
m∈Zn

|am| ‖[b, Iα]‖
Lp,ϕ→Lq,ϕ

q/p · ∥∥χQz0∥∥Lp,ϕ · ∥∥χQ∥∥hϕq/p,q′
≤ r−n−α

∑
m∈Zn

|am| ‖[b, Iα]‖
Lp,ϕ→Lq,ϕ

q/p

× ϕ(|Q(x0 + z0r, r)|)−1/p|Q(x0 + z0r, r)|1/pϕ(|Q(x0, r)|)1/p|Q(x0, r)|1/q′

= C‖[b, Iα]‖
Lp,ϕ→Lq,ϕ

q/p .

The second inequality follows from Lemma 2, the fourth inequality follows from Lemma 1.
Therefore we get

1
|Q|

∫
Q

|b(x) − bQ| dx ≤ 2
|Q|

∫
Q

|b(x) − bQz0 | dx

≤ 2C‖[b, Iα]‖
Lp,ϕ→Lq,ϕ

q/p .

This implies that b ∈ BMO(Rn) and ‖b‖∗ ≤ C‖[b, Iα]‖
Lp,ϕ→Lq,ϕ

q/p , and the proof of the
theorem is completed.

The part of (a) ⇒ (b) in Theorem 2 was proved by T. Mizuhara [3]. By using Lemma 3,
the proof of (b) ⇒ (a) in Theorem 2 is the same argument as the proof of Theorem 1.

6. Generalization to higher order commutator

In this section we will consider a higher order commutator operator defined by

[b, Iα]kf(x) :=
∫

Rn

∆k
hb(x)f(h)
|h|n−α dh,

where

∆1
hb(x) = ∆hb(x) = b(x+ h) − b(x),

∆k+1
h b(x) = ∆k

hb(x+ h) − ∆k
hb(x), k ≥ 1.

Let 0 < β < k ≤ n, k an integer and n be the dimension of the whole space. We now try
to define the Lipschitz space Λ̇β(Rn) again. For β > 0, we say b ∈ Λ̇β(Rn) if

‖b‖Λ̇β
= sup
x,h∈R

n

h�=0

|∆k
hb(x)|
|h|β <∞, k ≥ 1.

Theorem 3. Suppose the same condition as Theorem 2. The following conditions are
equivalent:
(a) b = b1 + P , where b1 ∈ Λ̇β(Rn) and P is a polynomial of degree less than k.
(b) [b, Iα]k is bounded from Lp,ϕ(Rn) to Lq,ϕ

q/p

(Rn).
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If k = [β] + 1, then (a) of theorem says that b ∈ Λ̇β(Rn).
The proof of (a) ⇒ (b) will be omitted since we can prove the same argument as Theo-

rem 2. The part of (b) ⇒ (a) is based on the following results for the Besov spaces.

Remark 4. It is difficult to prove the part of (b) ⇒ (a) by a factorization theorem due to
Y. Komori and T. Mizuhara [2].

Lemma 4 (Paluszyński and Taibleson [6]). Let 0 < β < k, with k an integer. Suppose
f ∈ S′ ∩ L1

loc(R
n). The following conditions are equivalent:

(a) f = f1 +P , where f1 ∈ Ḃβ,∞∞ (Rn)(= Λ̇β(Rn)) and P is a polynomial of degree less than
k.
(b) There exists z0 ∈ R

n such that

sup
r>0

r−β sup
x0∈Rn

1
|Q|

1
|Qz0 |

(∫
Q

∣∣∣∣
∫
Qz0

(∆k
(y−x)/kf(x))dy

∣∣∣∣ dx
)

≤ C <∞,

where Q = Q(x0, r), and Qz0 = Q(x0 + z0r, r).
If these conditions hold then ‖f‖Ḃβ,∞∞

is comparable with the best possible C in (b).
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