STRONG CONVERGENCE THEOREM BY THE HYBRID AND EXTRAGRADIENT METHODS FOR MONOTONE MAPPINGS AND COUNTABLE FAMILIES OF NONEXPANSIVE MAPPINGS

Natalia Nadezhkina and Wataru Takahashi

Received December 2, 2005; revised December 14, 2005

Abstract

In this paper we introduce an iterative process for finding a common element of the set of common fixed points of a countable family of nonexpansive mappings and the set of solutions of the variational inequality problem for a monotone, Lipschitz continuous mapping. The iterative process is based on two known methods hybrid and extragradient. We obtain a strong convergence theorem for three sequences generated by this process. Based on this theorem, we construct an iterative process for solving the generalized lexicographic variational inequality problem.

1 Introduction Let C be a closed convex subset of a real Hilbert space H and let P_{C} be the metric projection of H onto C. A mapping A of C into H is called monotone if

$$
\langle A u-A v, u-v\rangle \geq 0
$$

for all $u, v \in C$. The variational inequality problem is to find a $u \in C$ such that

$$
\langle A u, v-u\rangle \geq 0
$$

for all $v \in C$. The set of solutions of the variational inequality problem is denoted by $V I(C, A)$. A mapping A of C into H is called α-inverse-strongly-monotone if there exists a positive real number α such that

$$
\langle A u-A v, u-v\rangle \geq \alpha\|A u-A v\|^{2}
$$

for all $u, v \in C$; see [1], [6]. It is obvious that any α-inverse-strongly-monotone mapping A is monotone and Lipschitz-continuous. A mapping T of C into itself is called nonexpansive if

$$
\|T u-T v\| \leq\|u-v\|
$$

for all $u, v \in C$; see [15]. We denote by $F(T)$ the set of fixed points of T. For finding an element of $V I(C, A)$ under the assumption that a set $C \subset H$ is closed and convex and a mapping A of C into H is α-inverse-strongly-monotone, Iiduka, Takahashi and Toyoda [3] introduced the following iterative scheme by the hybrid method:

$$
\left\{\begin{array}{l}
x_{1}=x \in C \\
y_{n}=P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right) \\
C_{n}=\left\{z \in C:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x
\end{array}\right.
$$

[^0]for every $n=1,2, \ldots$, where $\lambda_{n} \subset[a, b]$ for some $a, b \in(0,2 \alpha)$. They showed that if $V I(C, A)$ is nonempty, then the sequence $\left\{x_{n}\right\}$, generated by this iterative process, converges strongly to $P_{V I(C, A)} x$. On the other hand, for solving the variational inequality problem in the finite-dimensional Euclidean space \mathbb{R}^{n} under the assumption that a set $C \subset \mathbb{R}^{n}$ is closed and convex and a mapping A of C into \mathbb{R}^{n} is monotone and k-Lipschitz-continuous, Korpelevich [5] introduced the following so-called extragradient method:
\[

\left\{$$
\begin{array}{l}
x_{1}=x \in C \tag{1.1}\\
\bar{x}_{n}=P_{C}\left(x_{n}-\lambda A x_{n}\right) \\
x_{n+1}=P_{C}\left(x_{n}-\lambda A \bar{x}_{n}\right)
\end{array}
$$\right.
\]

for every $n=1,2, \ldots$, where $\lambda \in(0,1 / k)$. He showed that if $V I(C, A)$ is nonempty, then the sequences $\left\{x_{n}\right\}$ and $\left\{\bar{x}_{n}\right\}$, generated by (1.1), converge to the same point $z \in V I(C, A)$.

Let T_{1}, T_{2}, \ldots be a countable family of mappings of C into itself and let $\alpha_{1}, \alpha_{2}, \ldots$ be real numbers such that $0 \leq \alpha_{i} \leq 1$ for all $n=1,2, \ldots$. For any $n \in \mathrm{~N}$, Takahashi [13] defined the mapping W_{n} of C into itself as follows:

$$
\begin{aligned}
U_{n, n+1} & =I \\
U_{n, n} & =\alpha_{n} T_{n} U_{n, n+1}+\left(1-\alpha_{n}\right) I \\
U_{n, n-1} & =\alpha_{n-1} T_{n-1} U_{n, n}+\left(1-\alpha_{n-1}\right) I \\
\vdots & \\
U_{n, k} & =\alpha_{k} T_{k} U_{n, k+1}+\left(1-\alpha_{k}\right) I \\
U_{n, k-1} & =\alpha_{k-1} T_{k-1} U_{n, k}+\left(1-\alpha_{k-1}\right) I \\
\vdots & \\
U_{n, 2} & =\alpha_{2} T_{2} U_{n, 3}+\left(1-\alpha_{2}\right) I \\
W_{n}=U_{n, 1} & =\alpha_{1} T_{1} U_{n, 2}+\left(1-\alpha_{1}\right) I
\end{aligned}
$$

Such mappings W_{n} are called W-mappings generated by $T_{n}, T_{n-1}, \ldots, T_{1}$ and $\alpha_{n}, \alpha_{n-1}, \ldots$, α_{1}. Shimoji and Takahashi [12] also defined mappings $U_{\infty, k}$ and U of C into itself as follows:

$$
\begin{gathered}
U_{\infty, k} x=\lim _{n \rightarrow \infty} U_{n, k} x \\
U x=\lim _{n \rightarrow \infty} W_{n} x=\lim _{n \rightarrow \infty} U_{n, 1} x
\end{gathered}
$$

for every $x \in C$. Such a U is called the W-mapping generated by T_{1}, T_{2}, \ldots and $\alpha_{1}, \alpha_{2}, \ldots$; see [12] for more details.

This paper is motivated by the idea of combining hybrid and extragradient methods. We introduce an iterative process for finding a common element of the set of common fixed points of a countable family of nonexpansive mappings and the set of solutions of the variational inequality problem for a monotone, Lipschitz continuous mapping in a real Hilbert space. Then we obtain a strong convergence theorem for three sequences generated by this process. We also consider three applications of this theorem. As a corrolary of our theorem we get the theorem proved by Kikkawa and Takahashi for W-mappings [4]. We also construct iterative process for solving the generalized lexicographic variational inequality problem. Furthermore, we obtain a strong convergence theorem for a pseudocontractive mapping and a countable family of nonexpansive mappings in a Hilbert space.

2 Preliminaries Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$ and let C be a closed convex subset of H. We write $x_{n} \rightharpoonup x$ to indicate that the sequence $\left\{x_{n}\right\}$ converges weakly to x and $x_{n} \rightarrow x$ to indicate that $\left\{x_{n}\right\}$ converges strongly to x. For every point $x \in H$ there exists a unique nearest point in C, denoted by $P_{C} x$, such that $\left\|x-P_{C} x\right\| \leq\|x-y\|$ for all $y \in C . P_{C}$ is called the metric projection of H onto C. We know that P_{C} is a nonexpansive mapping of H onto C. It is also known that P_{C} is characterized by the following properties: $P_{C} x \in C$ and

$$
\begin{equation*}
\left\langle x-P_{C} x, P_{C} x-y\right\rangle \geq 0 \tag{2.1}
\end{equation*}
$$

Further, we know that

$$
\begin{equation*}
\|x-y\|^{2} \geq\left\|x-P_{C} x\right\|^{2}+\left\|y-P_{C} x\right\|^{2} \tag{2.2}
\end{equation*}
$$

for all $x \in H$ and $y \in C$; see [15] for more details. Let A be a monotone mapping of C into H. In the context of variational inequality problem this implies

$$
u \in V I(C, A) \Leftrightarrow u=P_{C}(u-\lambda A u), \quad \forall \lambda>0
$$

It is also known that H satisfies Opial's condition [9], i.e., for any sequence $\left\{x_{n}\right\}$ with $x_{n} \rightharpoonup x$ the inequality

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

holds for every $y \in H$ with $y \neq x$.
A set-valued mapping $T: H \rightarrow 2^{H}$ is called monotone if for all $x, y \in H, f \in T x$ and $g \in T y$ imply $\langle x-y, f-g\rangle \geq 0$. A monotone mapping $T: H \rightarrow 2^{H}$ is maximal if its graph $G(T)$ is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping T is maximal if and only if for $(x, f) \in H \times H$, $\langle x-y, f-g\rangle \geq 0$ for every $(y, g) \in G(T)$ implies $f \in T x$. Let A be a monotone, k-Lipschitz-continuous mapping of C into H and $N_{C} v$ be the normal cone to C at $v \in C$, i.e. $N_{C} v=\{w \in H:\langle v-u, w\rangle \geq 0, \forall u \in C\}$. Define

$$
T v= \begin{cases}A v+N_{C} v, & \text { if } v \in C \\ \emptyset, & \text { if } v \notin C\end{cases}
$$

Then T is maximal monotone and $0 \in T v$ if and only if $v \in V I(C, A)$; see [11].
3 Strong Convergence Theorem In this section we prove a strong convergence theorem for a countable family of nonexpansive mappings and a monotone, Lipschitz continuous mapping. To prove it, we need two lemmas which were proved by Shimoji and Takahashi [12] in a strictly convex Banach space.

Lemma 3.1. Let C be a nonempty closed convex subset of a strictly convex Banach space E. Let T_{1}, T_{2}, \ldots be nonexpansive mappings of C into itself such that $\cap_{i=1}^{\infty} F\left(T_{i}\right)$ is nonempty, and let b and $\alpha_{1}, \alpha_{2}, \ldots$ be real numbers such that $0<\alpha_{i} \leq b<1$ for any $i \in \mathrm{~N}$. Then, for every $x \in C$ and $k \in \mathrm{~N}, U_{\infty, k} x=\lim _{n \rightarrow \infty} U_{n, k} x$ exists.

Lemma 3.2. Let C be a nonempty closed convex subset of a strictly convex Banach space E. Let T_{1}, T_{2}, \ldots be nonexpansive mappings of C into itself such that $\cap_{i=1}^{\infty} F\left(T_{i}\right)$ is nonempty, and let b and $\alpha_{1}, \alpha_{2}, \ldots$ be real numbers such that $0<\alpha_{i} \leq b<1$ for any $i \in \mathrm{~N}$. Then $F(U)=\cap_{i=1}^{\infty} F\left(T_{i}\right)$.

We are now ready to prove our main strong convergence theorem.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let A be a monotone and k-Lipschitz-continuous mapping of C into H and T_{1}, T_{2}, \ldots be a countable family of nonexpansive mappings of C into itself such that $\left(\cap_{i=1}^{\infty} F\left(T_{i}\right)\right) \cap V I(C, A) \neq \emptyset$. Let c, d and $\alpha_{1}, \alpha_{2}, \ldots$ be real numbers such that $0<c \leq \alpha_{i} \leq d<1$ for every $i \in \mathrm{~N}$. Let $W_{n}, n=1,2, \ldots$ be the W-mappings of C into itself generated by $T_{n}, T_{n-1}, \ldots, T_{1}$ and $\alpha_{n}, \alpha_{n-1}, \ldots, \alpha_{1}$ and let U be the W-mapping of C into itself generated by T_{1}, T_{2}, \ldots and $\alpha_{1}, \alpha_{2}, \ldots$, i.e. $U x=\lim _{n \rightarrow \infty} W_{n} x=\lim _{n \rightarrow \infty} U_{n, 1} x$ for every $x \in C$. Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences generated by

$$
\left\{\begin{array}{l}
x_{1}=x \in C \\
y_{n}=P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right) \\
z_{n}=W_{n} P_{C}\left(x_{n}-\lambda_{n} A y_{n}\right) \\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x
\end{array}\right.
$$

for every $n=1,2, \ldots$, where $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in(0,1 / k)$. Then the sequences $\left\{x_{n}\right\}$, $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ converge strongly to $P_{F(U) \cap V I(C, A)} x$.

Proof. It is obvious that C_{n} is closed and Q_{n} is closed and convex for every $n=1,2, \ldots$. As $C_{n}=\left\{z \in C:\left\|z_{n}-x_{n}\right\|^{2}+2\left\langle z_{n}-x_{n}, x_{n}-z\right\rangle \leq 0\right\}$, we also have C_{n} is convex for every $n=1,2, \ldots$ Put $t_{n}=P_{C}\left(x_{n}-\lambda_{n} A y_{n}\right)$ for every $n=1,2, \ldots$ Let $u \in F(U) \cap V I(C, A)$. From (2.2), monotonicity of A and $u \in V I(C, A)$, we have

$$
\begin{aligned}
&\left\|t_{n}-u\right\|^{2} \leq\left\|x_{n}-\lambda_{n} A y_{n}-u\right\|^{2}-\left\|x_{n}-\lambda_{n} A y_{n}-t_{n}\right\|^{2} \\
&=\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-t_{n}\right\|^{2}+2 \lambda_{n}\left\langle A y_{n}, u-t_{n}\right\rangle \\
&=\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-t_{n}\right\|^{2} \\
& \quad+2 \lambda_{n}\left(\left\langle A y_{n}-A u, u-y_{n}\right\rangle+\left\langle A u, u-y_{n}\right\rangle+\left\langle A y_{n}, y_{n}-t_{n}\right\rangle\right) \\
& \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-t_{n}\right\|^{2}+2 \lambda_{n}\left\langle A y_{n}, y_{n}-t_{n}\right\rangle \\
&=\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}-2\left\langle x_{n}-y_{n}, y_{n}-t_{n}\right\rangle-\left\|y_{n}-t_{n}\right\|^{2} \\
& \quad+2 \lambda_{n}\left\langle A y_{n}, y_{n}-t_{n}\right\rangle \\
&=\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}-\left\|y_{n}-t_{n}\right\|^{2} \\
& \quad+2\left\langle x_{n}-\lambda_{n} A y_{n}-y_{n}, t_{n}-y_{n}\right\rangle .
\end{aligned}
$$

Further, since $y_{n}=P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right)$ and A is k-Lipschitz-continuous, we have

$$
\begin{aligned}
\left\langle x_{n}-\lambda_{n}\right. & \left.A y_{n}-y_{n}, t_{n}-y_{n}\right\rangle \\
& =\left\langle x_{n}-\lambda_{n} A x_{n}-y_{n}, t_{n}-y_{n}\right\rangle+\left\langle\lambda_{n} A x_{n}-\lambda_{n} A y_{n}, t_{n}-y_{n}\right\rangle \\
& \leq\left\langle\lambda_{n} A x_{n}-\lambda_{n} A y_{n}, t_{n}-y_{n}\right\rangle \\
& \leq \lambda_{n} k\left\|x_{n}-y_{n}\right\|\left\|t_{n}-y_{n}\right\| .
\end{aligned}
$$

So, we have

$$
\begin{align*}
& \left\|t_{n}-u\right\|^{2} \\
& \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}-\left\|y_{n}-t_{n}\right\|^{2}+2 \lambda_{n} k\left\|x_{n}-y_{n}\right\|\left\|t_{n}-y_{n}\right\| \\
& \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}-\left\|y_{n}-t_{n}\right\|^{2}+\lambda_{n}^{2} k^{2}\left\|x_{n}-y_{n}\right\|^{2}+\left\|y_{n}-t_{n}\right\|^{2} \\
& \leq\left\|x_{n}-u\right\|^{2}+\left(\lambda_{n}^{2} k^{2}-1\right)\left\|x_{n}-y_{n}\right\|^{2} \tag{3.1}\\
& \leq\left\|x_{n}-u\right\|^{2}
\end{align*}
$$

Therefore from $z_{n}=W_{n} t_{n}$ and $u=S u$, we have

$$
\begin{equation*}
\left\|z_{n}-u\right\|=\left\|W_{n} t_{n}-W_{n} u\right\| \leq\left\|t_{n}-u\right\| \leq\left\|x_{n}-u\right\| \tag{3.2}
\end{equation*}
$$

for every $n=1,2, \ldots$ and hence $u \in C_{n}$. So, $F(U) \cap V I(C, A) \subset C_{n}$ for every $n=$ $1,2, \ldots$. Next, let us show by mathematical induction that $\left\{x_{n}\right\}$ is well-defined and $F(U) \cap$ $V I(C, A) \subset C_{n} \cap Q_{n}$ for every $n=1,2, \ldots$. For $n=1$ we have $Q_{1}=C$. Hence we obtain $F(U) \cap V I(C, A) \subset C_{1} \cap Q_{1}$. Suppose that x_{k} is given and $F(U) \cap V I(C, A) \subset C_{k} \cap Q_{k}$ for some $k \in N$. Since $F(U) \cap V I(C, A)$ is nonempty, $C_{k} \cap Q_{k}$ is a nonempty closed convex subset of C. So, there exists a unique element $x_{k+1} \in C_{k} \cap Q_{k}$ such that $x_{k+1}=$ $P_{C_{k} \cap Q_{k}} x$. It is also obvious that $\left\langle x_{k+1}-z, x-x_{k+1}\right\rangle \geq 0$ for every $z \in C_{k} \cap Q_{k}$. Since $F(U) \cap V I(C, A) \subset C_{k} \cap Q_{k}$, we have $\left\langle x_{k+1}-z, x-x_{k+1}\right\rangle \geq 0$ for $z \in F(U) \cap V I(C, A)$ and hence $F(U) \cap V I(C, A) \subset Q_{k+1}$. Therefore, we obtain $F(U) \cap V I(C, A) \subset C_{k+1} \cap Q_{k+1}$.

Let $t_{0}=P_{F(U) \cap V I(C, A)} x$. From $x_{n+1}=P_{C_{n} \cap Q_{n}} x$ and $t_{0} \in F(U) \cap V I(C, A) \subset C_{n} \cap Q_{n}$, we have

$$
\begin{equation*}
\left\|x_{n+1}-x\right\| \leq\left\|t_{0}-x\right\| \tag{3.3}
\end{equation*}
$$

for every $n=1,2, \ldots$. Therefore, $\left\{x_{n}\right\}$ is bounded. We also have

$$
\left\|z_{n}-u\right\|=\left\|W_{n} t_{n}-W_{n} u\right\| \leq\left\|t_{n}-u\right\| \leq\left\|x_{n}-u\right\|
$$

for $u \in F(U) \cap V I(C, A)$. So, $\left\{z_{n}\right\}$ and $\left\{t_{n}\right\}$ are bounded. Since $x_{n+1} \in C_{n} \cap Q_{n} \subset Q_{n}$ and $x_{n}=P_{Q_{n}} x$, we have

$$
\left\|x_{n}-x\right\| \leq\left\|x_{n+1}-x\right\|
$$

for every $n=1,2, \ldots$. Therefore, there exists $c=\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|$. Using $x_{n}=P_{Q_{n}} x$ and $x_{n+1} \in Q_{n}$ again, we have also

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\|^{2} & =\left\|x_{n+1}-x\right\|^{2}+\left\|x_{n}-x\right\|^{2}+2\left\langle x_{n+1}-x, x-x_{n}\right\rangle \\
& =\left\|x_{n+1}-x\right\|^{2}-\left\|x_{n}-x\right\|^{2}-2\left\langle x_{n}-x_{n+1}, x-x_{n}\right\rangle \\
& \leq\left\|x_{n+1}-x\right\|^{2}-\left\|x_{n}-x\right\|^{2}
\end{aligned}
$$

for every $n=1,2, \ldots$. This implies that

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0
$$

Since $x_{n+1} \in C_{n}$, we have $\left\|z_{n}-x_{n+1}\right\| \leq\left\|x_{n}-x_{n+1}\right\|$ and hence

$$
\left\|x_{n}-z_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-z_{n}\right\| \leq 2\left\|x_{n+1}-x_{n}\right\|
$$

for every $n=1,2, \ldots$ From $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$, we have $\left\|x_{n}-z_{n}\right\| \rightarrow 0$.
For $u \in F(U) \cap V I(C, A)$, from (3.1) and (3.2) we obtain

$$
\left\|z_{n}-u\right\|^{2} \leq\left\|t_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+\left(\lambda_{n}^{2} k^{2}-1\right)\left\|x_{n}-y_{n}\right\|^{2}
$$

Therefore, we have

$$
\begin{aligned}
\left\|x_{n}-y_{n}\right\|^{2} & \leq \frac{1}{1-\lambda_{n}^{2} k^{2}}\left(\left\|x_{n}-u\right\|^{2}-\left\|z_{n}-u\right\|^{2}\right) \\
& =\frac{1}{1-\lambda_{n}^{2} k^{2}}\left(\left\|x_{n}-u\right\|-\left\|z_{n}-u\right\|\right)\left(\left\|x_{n}-u\right\|+\left\|z_{n}-u\right\|\right) \\
& \leq \frac{1}{1-\lambda_{n}^{2} k^{2}}\left(\left\|x_{n}-u\right\|+\left\|z_{n}-u\right\|\right)\left\|x_{n}-z_{n}\right\|
\end{aligned}
$$

Since $\left\|x_{n}-z_{n}\right\| \rightarrow 0$, we obtain $x_{n}-y_{n} \rightarrow 0$. From (3.1) and (3.2) we also have

$$
\begin{aligned}
\left\|z_{n}-u\right\|^{2} & \leq\left\|t_{n}-u\right\|^{2} \\
& \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}-\left\|y_{n}-t_{n}\right\|^{2}+2 \lambda_{n} k\left\|x_{n}-y_{n}\right\|\left\|t_{n}-y_{n}\right\| \\
& \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}-\left\|y_{n}-t_{n}\right\|^{2}+\left\|x_{n}-y_{n}\right\|^{2} \\
& +\lambda_{n}^{2} k^{2}\left\|y_{n}-t_{n}\right\|^{2} \\
& \leq\left\|x_{n}-u\right\|^{2}+\left(\lambda_{n}^{2} k^{2}-1\right)\left\|y_{n}-t_{n}\right\|^{2} .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
\left\|t_{n}-y_{n}\right\|^{2} & \leq \frac{1}{1-\lambda_{n}^{2} k^{2}}\left(\left\|x_{n}-u\right\|^{2}-\left\|z_{n}-u\right\|^{2}\right) \\
& =\frac{1}{1-\lambda_{n}^{2} k^{2}}\left(\left\|x_{n}-u\right\|-\left\|z_{n}-u\right\|\right)\left(\left\|x_{n}-u\right\|+\left\|z_{n}-u\right\|\right) \\
& \leq \frac{1}{1-\lambda_{n}^{2} k^{2}}\left(\left\|x_{n}-u\right\|+\left\|z_{n}-u\right\|\right)\left\|x_{n}-z_{n}\right\|
\end{aligned}
$$

Since $\left\|x_{n}-z_{n}\right\| \rightarrow 0$, we obtain $t_{n}-y_{n} \rightarrow 0$. Since A is k-Lipschitz-continuous, we have $A y_{n}-A t_{n} \rightarrow 0$.

Using the Eberlein-Smulian theorem on weak compactness (see, e.g., [2], p. 430), as $\left\{x_{n}\right\}$ is bounded, there is a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{i}}\right\}$ converges weakly to some u. We can obtain that $u \in F(S) \cap V I(C, A)$. First, we show $u \in V I(C, A)$. Since $x_{n}-t_{n} \rightarrow 0$ and $x_{n}-y_{n} \rightarrow 0$, we have $\left\{t_{n_{i}}\right\} \rightharpoonup u$ and $\left\{y_{n_{i}}\right\} \rightharpoonup u$. Let

$$
T v= \begin{cases}A v+N_{C} v, & \text { if } v \in C \\ \emptyset, & \text { if } v \notin C\end{cases}
$$

Then T is maximal monotone and $0 \in T v$ if and only if $v \in V I(C, A)$; see [11]. Let $(v, w) \in G(T)$. Then, we have $w \in T v=A v+N_{C} v$ and hence $w-A v \in N_{C} v$. So, we have $\langle v-t, w-A v\rangle \geq 0$ for all $t \in C$. On the other hand, from $t_{n}=P_{C}\left(x_{n}-\lambda_{n} A y_{n}\right)$ and $v \in C$ we have

$$
\left\langle x_{n}-\lambda_{n} A y_{n}-t_{n}, t_{n}-v\right\rangle \geq 0
$$

and hence

$$
\left\langle v-t_{n}, \frac{t_{n}-x_{n}}{\lambda_{n}}+A y_{n}\right\rangle \geq 0
$$

Therefore from $w-A v \in N_{C} v$ and $t_{n_{i}} \in C$, we have

$$
\begin{aligned}
&\left\langle v-t_{n_{i}}, w\right\rangle \geq\left\langle v-t_{n_{i}}, A v\right\rangle \\
& \geq\left\langle v-t_{n_{i}}, A v\right\rangle-\left\langle v-t_{n_{i}}, \frac{t_{n_{i}}-x_{n_{i}}}{\lambda_{n_{i}}}+A y_{n_{i}}\right\rangle \\
&=\left\langle v-t_{n_{i}}, A v-A t_{n_{i}}\right\rangle+\left\langle v-t_{n_{i}}, A t_{n_{i}}-A y_{n_{i}}\right\rangle \\
& \quad-\left\langle v-t_{n_{i}}, \frac{t_{n_{i}}-x_{n_{i}}}{\lambda_{n_{i}}}\right\rangle \\
& \geq\left\langle v-t_{n_{i}}, A t_{n_{i}}-A y_{n_{i}}\right\rangle-\left\langle v-t_{n_{i}}, \frac{t_{n_{i}}-x_{n_{i}}}{\lambda_{n_{i}}}\right\rangle
\end{aligned}
$$

Hence, we obtain $\langle v-u, w\rangle \geq 0$ as $i \rightarrow \infty$. Since T is maximal monotone, we have $u \in T^{-1} 0$ and hence $u \in V I(C, A)$.

Let us show $u \in F(U)$. Assume $u \notin F(U)$. From Opial's condition, we have

$$
\begin{aligned}
\liminf _{i \rightarrow \infty}\left\|t_{n_{i}}-u\right\| & <\liminf _{i \rightarrow \infty}\left\|t_{n_{i}}-U u\right\| \\
& \leq \liminf _{i \rightarrow \infty}\left(\left\|t_{n_{i}}-W_{n_{i}} t_{n_{i}}\right\|+\left\|W_{n_{i}} t_{n_{i}}-W_{n_{i}} u\right\|+\left\|W_{n_{i}} u-U u\right\|\right) \\
& \leq \liminf _{i \rightarrow \infty}\left(\left\|t_{n_{i}}-z_{n_{i}}\right\|+\left\|t_{n_{i}}-u\right\|+\left\|W_{n_{i}} u-U u\right\|\right) \\
& \leq \liminf _{i \rightarrow \infty}\left\|t_{n_{i}}-u\right\|
\end{aligned}
$$

This is a contradiction. So, we obtain $u \in F(U)$. This implies $u \in F(U) \cap V I(C, A)$.
From $t_{0}=P_{F(U) \cap V I(C, A)} x, u \in F(U) \cap V I(C, A)$ and (3.3), we have

$$
\left\|t_{0}-x\right\| \leq\|u-x\| \leq \liminf _{i \rightarrow \infty}\left\|x_{n_{i}}-x\right\| \leq \limsup _{i \rightarrow \infty}\left\|x_{n_{i}}-x\right\| \leq\left\|t_{0}-x\right\|
$$

So, we obtain

$$
\lim _{i \rightarrow \infty}\left\|x_{n_{i}}-x\right\|=\|u-x\|
$$

From $x_{n_{i}}-x \rightharpoonup u-x$ we have $x_{n_{i}}-x \rightarrow u-x$ and hence $x_{n_{i}} \rightarrow u$. Since $x_{n}=P_{Q_{n}} x$ and $t_{0} \in F(U) \cap V I(C, A) \subset C_{n} \cap Q_{n} \subset Q_{n}$, we have

$$
-\left\|t_{0}-x_{n_{i}}\right\|^{2}=\left\langle t_{0}-x_{n_{i}}, x_{n_{i}}-x\right\rangle+\left\langle t_{0}-x_{n_{i}}, x-t_{0}\right\rangle \geq\left\langle t_{0}-x_{n_{i}}, x-t_{0}\right\rangle
$$

As $i \rightarrow \infty$, we obtain $-\left\|t_{0}-u\right\|^{2} \geq\left\langle t_{0}-u, x-t_{0}\right\rangle \geq 0$ by $t_{0}=P_{F(U) \cap V I(C, A)} x$ and $u \in F(U) \cap V I(C, A)$. Hence we have $u=t_{0}$. This implies that $x_{n} \rightarrow t_{0}$. It is easy to see $y_{n} \rightarrow t_{0}, z_{n} \rightarrow t_{0}$.

4 Applications. In this section, we shall apply Theorem 3.1 to construct iterative sequences which converge strongly to a common fixed point for various countable families of mappings. The following result was obtained by Kikkawa and Takahashi [4].

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T_{1}, T_{2}, \ldots be a countable family of nonexpansive mappings of C into itself such that $\cap_{i=1}^{\infty} F\left(T_{i}\right) \neq \emptyset$. Let a, b and $\alpha_{1}, \alpha_{2}, \ldots$ be real numbers such that $0<a \leq \alpha_{i} \leq b<1$ for every $i \in \mathrm{~N}$. Let $W_{n}, n=1,2, \ldots$ be the W-mappings of C into itself generated by $T_{n}, T_{n-1}, \ldots, T_{1}$ and $\alpha_{n}, \alpha_{n-1}, \ldots, \alpha_{1}$ and let U be the W-mapping of C into itself generated
by T_{1}, T_{2}, \ldots and $\alpha_{1}, \alpha_{2}, \ldots$, i.e. $U x=\lim _{n \rightarrow \infty} W_{n} x=\lim _{n \rightarrow \infty} U_{n, 1} x$ for every $x \in C$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{1}=x \in C \\
z_{n}=W_{n} x_{n} \\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x
\end{array}\right.
$$

for every $n=1,2, \ldots$. Then $F(U)=\cap_{i=1}^{\infty} F\left(T_{i}\right)$ and the sequence $\left\{x_{n}\right\}$ converges strongly to $P_{F(U)} x$.

Proof. Putting $A=0$, by Theorem 3.1, we obtain the desired result.
Lexicografic variational inequality problem in the finite-dimensional Euclidean space R^{n} is formulated as follows (see, e.g., [10]). Let C be a closed convex subset of R^{n}. Let $A_{0}, A_{1}, \ldots, A_{m}$ be finite mappings from C into R^{n}. We are to obtain an element of the set C_{m}, where the sets $C_{i}, i=1,2, \ldots, m$ are given by

$$
C_{0}=C, \quad C_{i}=V I\left(C_{i-1}, A_{i-1}\right)
$$

The set of solutions of the lexicografic variational inequality problem is denoted by $\operatorname{LVI}\left(C, A_{0}, A_{1}, \ldots, A_{m}\right)=C_{m}=\cap_{i=0}^{m} C_{i}$.

Motivated by this problem, we formulate the generalized lexicographic variational inequality problem in a real Hilbert space. Let C be a closed convex subset of a real Hilbert space H. Let $A_{0}, A_{1}, A_{2}, \ldots$ be a countable family of mappings from C into H. We are to obtain some element $x \in C$ such that $x \in C_{i}$ for all $i \in \mathrm{~N}$, where the sets $C_{i}, i=1,2, \ldots$ are given by

$$
C_{0}=C, \quad C_{i}=V I\left(C_{i-1}, A_{i-1}\right) .
$$

We denote the set of solutions of the generalized lexicographic variational inequality problem by $\operatorname{GLVI}\left(C, A_{0}, A_{1}, A_{2}, \ldots\right)=\cap_{i=0}^{\infty} C_{i}$.

For solving the lexicographic variational inequality problem for monotone and continuous mappings in the finite-dimensional space R^{n} we require some additional restrictions of regularity or compactness type. Let us consider an iterative process for solving the generalized variational inequality problem for monotone, Lipschitz continuous and inverse-strongly monotone mappings in a real Hilbert space without any additional restrictions. To prove the strong convergence of this iterative process, we need the following lemma. This lemma was proved by Matsushita and Kuroiwa ([7], Proposition 2.2).

Lemma 4.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let T be a nonexpansive mapping of C into H. If $F(T) \neq \emptyset$, then $F\left(P_{C} T\right)=F(T)$.

Now we state a strong convergence theorem.
Theorem 4.2. Let C be a closed convex subset of a real Hilbert space H. Let A_{0} be a monotone and k-Lipschitz-continuous mapping of C into H and A_{1}, A_{2}, \ldots be a countable family of mappings of C into H such that every mapping A_{i} is γ_{i}-inverse-strongly-monotone, $i=1,2, \ldots$. Suppose that the set of solutions of the generalized lexicographical variational inequality problem $G L V I\left(C, A_{0}, A_{1}, \ldots\right)$ is not empty. Denote by $W_{n}, n=1,2, \ldots$ the W mappings of C into itself generated by $T_{n}, T_{n-1}, \ldots, T_{1}$ and $\alpha_{n}, \alpha_{n-1}, \ldots, \alpha_{1}$, where $T_{i}=$
$P_{C}\left(I-\mu_{i} A_{i}\right)$, where $0<\mu_{i} \leq 2 \gamma_{i} ; c, d$ and $\alpha_{1}, \alpha_{2}, \ldots$ are real numbers such that $0<c \leq$ $\alpha_{i} \leq d<1$ for every $i \in \mathrm{~N}$. Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences generated by

$$
\left\{\begin{array}{l}
x_{1}=x \in C \\
y_{n}=P_{C}\left(x_{n}-\lambda_{n} A_{0} x_{n}\right) \\
z_{n}=W_{n} P_{C}\left(x_{n}-\lambda_{n} A_{0} y_{n}\right) \\
D_{n}=\left\{z \in C:\left\|z_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{D_{n} \cap Q_{n}} x
\end{array}\right.
$$

for every $n=1,2, \ldots$, where $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in(0,1 / k)$. Then the sequences $\left\{x_{n}\right\}$, $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ converge strongly to some $x \in G L V I\left(C, A_{0}, A_{1}, \ldots\right)$.

Proof. If a mapping A_{i} from C into H is γ_{i}-inverse-strongly-monotone, then for all $u, v \in C$ and $\mu_{i}>0, n=1,2, \ldots$, we have

$$
\begin{aligned}
& \left\|P_{C}\left(u-\mu_{i} A_{i} u\right)-P_{C}\left(v-\mu_{i} A_{i} v\right)\right\|^{2} \\
& \quad \leq\left\|\left(I-\mu_{i} A_{i}\right) u-\left(I-\mu_{i} A_{i}\right) v\right\|^{2}=\left\|(u-v)-\mu_{i}\left(A_{i} u-A_{i} v\right)\right\|^{2} \\
& \quad=\|u-v\|^{2}-2 \mu_{i}\left\langle u-v, A_{i} u-A_{i} v\right\rangle+\mu_{i}^{2}\left\|A_{i} u-A_{i} v\right\|^{2} \\
& \quad \leq\|u-v\|^{2}+\mu_{i}\left(\mu_{i}-2 \gamma_{i}\right)\left\|A_{i} u-A_{i} v\right\|^{2} .
\end{aligned}
$$

So, if $\mu_{i} \leq 2 \gamma_{i}$, then $T_{i}=P_{C}\left(I-\mu_{i} A_{i}\right), n=1,2, \ldots$ are nonexpansive mappings from C into itself. It is obvious that for $T_{i}=P_{C}\left(I-\mu_{i} A_{i}\right)$ we have $F\left(T_{i}\right)=V I\left(C, A_{i}\right)$. It is also obvious that the mappings $S_{i}=I-\mu_{i} A_{i}, n=1,2, \ldots$, are nonexpansive mappings from C into H. Then from Lemma 4.1 for any closed convex subset C_{i} of C we have $F\left(T_{i}\right) \cap C_{i}=V I\left(C_{i}, A_{i}\right)$. From the definition of C_{i} in the generalized lexicographical variational inequality problem we have

$$
\begin{aligned}
C_{n}=V I\left(C_{n-1}, A_{n-1}\right) & =F\left(T_{n-1}\right) \cap C_{n-1}=F\left(T_{n-1}\right) \cap F\left(T_{n-2}\right) \cap C_{n-2} \\
& =\ldots=\left(\cap_{i=1}^{n-1} F\left(T_{i}\right)\right) \cap V I\left(C, A_{0}\right) .
\end{aligned}
$$

By Theorem 3.1, we obtain the desired result.

A mapping $S: C \rightarrow C$ is called pseudocontractive if

$$
\|S x-S y\|^{2} \leq\|x-y\|^{2}+\|(I-S) x-(I-S) y\|^{2}
$$

for all $x, y \in C$, or, equivalently,

$$
\begin{equation*}
\langle S x-S y, x-y\rangle \leq\|x-y\|^{2} \tag{4.1}
\end{equation*}
$$

for all $x, y \in C$.
Theorem 4.3. Let C be a closed convex subset of a real Hilbert space H. Let S be a pseudocontractive, m-Lipschitz-continuous mapping of C into itself and T_{1}, T_{2}, \ldots be a countable family of nonexpansive mappings of C into itself such that $\left(\cap_{i=1}^{\infty} F\left(T_{i}\right)\right) \cap F(S) \neq \emptyset$. Let c, d and $\alpha_{1}, \alpha_{2}, \ldots$ be real numbers such that $0<c \leq \alpha_{i} \leq d<1$ for every $i \in \mathrm{~N}$. Let $W_{n}, n=1,2, \ldots$ be the W-mappings of C into itself generated by $T_{n}, T_{n-1}, \ldots, T_{1}$ and $\alpha_{n}, \alpha_{n-1}, \ldots, \alpha_{1}$ and let U be the W-mapping of C into itself generated by T_{1}, T_{2}, \ldots and
$\alpha_{1}, \alpha_{2}, \ldots$, i.e. $U x=\lim _{n \rightarrow \infty} W_{n} x=\lim _{n \rightarrow \infty} U_{n, 1} x$ for every $x \in C$. Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences generated by

$$
\left\{\begin{array}{l}
x_{1}=x \in C \\
y_{n}=x_{n}-\lambda_{n}\left(x_{n}-S x_{n}\right) \\
z_{n}=W_{n} P_{C}\left(x_{n}-\lambda_{n}\left(y_{n}-S y_{n}\right)\right) \\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x
\end{array}\right.
$$

for every $n=1,2, \ldots$, where $\left\{\alpha_{n}\right\} \subset[a, b]$ for some a, b with $0<a<b<\frac{1}{m+1}$.
Then $F(U)=\cap_{i=1}^{\infty} F\left(T_{i}\right)$ and the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ converge strongly to $P_{F(U) \cap F(S)} x$.
Proof. Let $A=I-S$. Let us show the mapping A is monotone and ($m+1$)-Lipschitzcontinuous. From the definition of the mapping A and (4.1), we have

$$
\begin{aligned}
\langle A x-A y, x-y\rangle & =\langle x-y-S x+S y, x-y\rangle \\
& =\|x-y\|^{2}-\langle S x-S y, x-y\rangle \geq\|x-y\|^{2}-\|x-y\|^{2}=0 .
\end{aligned}
$$

So, A is monotone. We also have

$$
\begin{aligned}
\|A x-A y\|^{2} & =\|(I-S) x-(I-S) y\|^{2} \\
& =\|x-y\|^{2}+\|S x-S y\|^{2}-2\langle x-y, S x-S y\rangle \\
& \leq\|x-y\|^{2}+m^{2}\|x-y\|^{2}+2\|x-y\|\|S x-S y\| \\
& \leq\|x-y\|^{2}+m^{2}\|x-y\|^{2}+2 m\|x-y\|^{2}=(m+1)^{2}\|x-y\|^{2}
\end{aligned}
$$

So, we have $\|A x-A y\| \leq(m+1)\|x-y\|$ and A is $(m+1)$-Lipschitz-continuous. Now let us show $F(S)=V I(C, A)$. In fact, we have, for $\lambda>0$,

$$
\begin{aligned}
u \in V I(C, A) & \Leftrightarrow\langle y-u, A u\rangle \geq 0 \quad \forall y \in C \\
& \Leftrightarrow\langle u-y, u-\lambda A u-u\rangle \geq 0 \quad \forall y \in C \\
& \Leftrightarrow u=P_{C}(u-\lambda A u) \\
& \Leftrightarrow u=P_{C}(u-\lambda u+\lambda S u) \\
& \Leftrightarrow\langle u-\lambda u+\lambda S u-u, u-y\rangle \geq 0 \quad \forall y \in C \\
& \Leftrightarrow\langle u-S u, u-y\rangle \leq 0 \quad \forall y \in C \\
& \Leftrightarrow u=S u .
\end{aligned}
$$

By Theorem 3.1 we obtain the desired result.

References

[1] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228.
[2] N. Dunford and J. T. Schwartz, Linear Operators. Part I., John Wiley \& Sons, Inc., New York, 1988.
[3] H. Iiduka, W. Takahashi and M. Toyoda, Approximation of solutions of variational inequalities for monotone mappings, PanAmer. Math. J. 14 (2004), 49-61.
[4] M. Kikkawa and W. Takahashi, Approximating fixed points of infinite nonexpansive mappings by the hybrid method, J. Optim. Theory Appl. 117 (2004), 93-101.
[5] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon 12 (1976), 747-756.
[6] F. Liu and M. Z. Nashed, Regularization of nonlinear ill-posed variational inequalities and convergence rates, Set-Valued Anal. 6 (1998), 313-344.
[7] S. Matsushita and D. Kuroiwa, Approxmation of fixed points of nonexpansive nonselfmappings, Sci. Math. Jpn. 57 (2003), 171-176.
[8] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003), 372-379.
[9] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
[10] L. D. Popov, On a one-stage method for solving lexicographic variational inequalities, Izv. Vyssh. Uchebn. Zaved. Mat. 12 (1998), 71-81.
[11] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75-88.
[12] K. Shimoji and W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math., 5 (2001), 387-404.
[13] W. Takahashi, Weak and strong convergence theorems for families of nonexpansive mappings and their applications, Ann. Univ. Mariae Curie-Sklodowska Sect.A 51 (1997), 277-292.
[14] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, Japan, 2000.
[15] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, Japan, 2000.

N. NADEZHKINA
DEPARTMENT OF MATHEMATICAL AND COMPUTING SCIENCES
GRADUATE SCHOOL OF INFORMATION SCIENCE AND ENGINEERING
TOKYO INSTITUTE OF TECHNOLOGY
TOKYO 152-8552, JAPAN
E-mail address: nadezhkina.natalia@is.titech.ac.jp

W. TAKAHASHI
DEPARTMENT OF MATHEMATICAL AND COMPUTING SCIENCES
GRADUATE SCHOOL OF INFORMATION SCIENCE AND ENGINEERING
TOKYO INSTITUTE OF TECHNOLOGY
TOKYO 152-8552, JAPAN
E-mail address: wataru@is.titech.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 47H09, 47J20.
 Key words and phrases. Extragradient method, fixed points, hybrid method, monotone mappings, nonexpansive mappings, strong convergence, variational inequalities, W-mappings.

