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Abstract. In this paper we introduce an iterative process for finding a common
element of the set of common fixed points of a countable family of nonexpansive map-
pings and the set of solutions of the variational inequality problem for a monotone,
Lipschitz continuous mapping. The iterative process is based on two known methods -
hybrid and extragradient. We obtain a strong convergence theorem for three sequences
generated by this process. Based on this theorem, we construct an iterative process
for solving the generalized lexicographic variational inequality problem.

1 Introduction Let C be a closed convex subset of a real Hilbert space H and let PC

be the metric projection of H onto C. A mapping A of C into H is called monotone if

〈Au − Av, u − v〉 ≥ 0

for all u, v ∈ C. The variational inequality problem is to find a u ∈ C such that

〈Au, v − u〉 ≥ 0

for all v ∈ C. The set of solutions of the variational inequality problem is denoted by
V I (C,A). A mapping A of C into H is called α-inverse-strongly-monotone if there exists
a positive real number α such that

〈Au − Av, u − v〉 ≥ α ‖Au − Av‖2

for all u, v ∈ C; see [1], [6]. It is obvious that any α-inverse-strongly-monotone mapping A
is monotone and Lipschitz-continuous. A mapping T of C into itself is called nonexpansive
if

‖Tu − Tv‖ ≤ ‖u − v‖
for all u, v ∈ C; see [15]. We denote by F (T ) the set of fixed points of T . For finding an
element of V I (C,A) under the assumption that a set C ⊂ H is closed and convex and a
mapping A of C into H is α-inverse-strongly-monotone, Iiduka, Takahashi and Toyoda [3]
introduced the following iterative scheme by the hybrid method:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 = x ∈ C
yn = PC (xn − λnAxn)
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖}
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0}
xn+1 = PCn∩Qnx
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for every n = 1, 2, ..., where λn ⊂ [a, b] for some a, b ∈ (0, 2α). They showed that if V I (C,A)
is nonempty, then the sequence {xn}, generated by this iterative process, converges strongly
to PV I(C,A)x. On the other hand, for solving the variational inequality problem in the
finite-dimensional Euclidean space R

n under the assumption that a set C ⊂ R
n is closed and

convex and a mapping A of C into R
n is monotone and k-Lipschitz-continuous, Korpelevich

[5] introduced the following so-called extragradient method:

⎧⎨
⎩

x1 = x ∈ C
xn = PC (xn − λAxn)
xn+1 = PC (xn − λAxn)

(1.1)

for every n = 1, 2, ..., where λ ∈ (0, 1/k). He showed that if V I (C,A) is nonempty, then the
sequences {xn} and {xn}, generated by (1.1), converge to the same point z ∈ V I (C,A).

Let T1, T2, ... be a countable family of mappings of C into itself and let α1, α2, ... be real
numbers such that 0 ≤ αi ≤ 1 for all n = 1, 2, .... For any n ∈ N, Takahashi [13] defined
the mapping Wn of C into itself as follows:

Un,n+1 = I,

Un,n = αnTnUn,n+1 + (1 − αn) I,

Un,n−1 = αn−1Tn−1Un,n + (1 − αn−1) I,

...
Un,k = αkTkUn,k+1 + (1 − αk) I,

Un,k−1 = αk−1Tk−1Un,k + (1 − αk−1) I,

...
Un,2 = α2T2Un,3 + (1 − α2) I,

Wn = Un,1 = α1T1Un,2 + (1 − α1) I.

Such mappings Wn are called W–mappings generated by Tn, Tn−1, ..., T1 and αn, αn−1, ...,
α1. Shimoji and Takahashi [12] also defined mappings U∞,k and U of C into itself as follows:

U∞,kx = lim
n→∞Un,kx

Ux = lim
n→∞ Wnx = lim

n→∞ Un,1x

for every x ∈ C. Such a U is called the W -mapping generated by T1, T2, ... and α1, α2, ...;
see [12] for more details.

This paper is motivated by the idea of combining hybrid and extragradient methods.
We introduce an iterative process for finding a common element of the set of common
fixed points of a countable family of nonexpansive mappings and the set of solutions of
the variational inequality problem for a monotone, Lipschitz continuous mapping in a real
Hilbert space. Then we obtain a strong convergence theorem for three sequences generated
by this process. We also consider three applications of this theorem. As a corrolary of our
theorem we get the theorem proved by Kikkawa and Takahashi for W -mappings [4] . We also
construct iterative process for solving the generalized lexicographic variational inequality
problem. Furthermore, we obtain a strong convergence theorem for a pseudocontractive
mapping and a countable family of nonexpansive mappings in a Hilbert space.
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2 Preliminaries Let H be a real Hilbert space with inner product 〈 ·, ·〉 and norm ‖·‖
and let C be a closed convex subset of H . We write xn ⇀ x to indicate that the sequence
{xn} converges weakly to x and xn → x to indicate that {xn} converges strongly to x.
For every point x ∈ H there exists a unique nearest point in C, denoted by PCx, such
that ‖x − PCx‖ ≤ ‖x − y‖ for all y ∈ C. PC is called the metric projection of H onto C.
We know that PC is a nonexpansive mapping of H onto C. It is also known that PC is
characterized by the following properties: PCx ∈ C and

〈x − PCx, PCx − y〉 ≥ 0.(2.1)

Further, we know that

‖x − y‖2 ≥ ‖x − PCx‖2 + ‖y − PCx‖2(2.2)

for all x ∈ H and y ∈ C; see [15] for more details. Let A be a monotone mapping of C into
H . In the context of variational inequality problem this implies

u ∈ V I (C,A) ⇔ u = PC (u − λAu) , ∀λ > 0.

It is also known that H satisfies Opial’s condition [9], i.e., for any sequence {xn} with
xn ⇀ x the inequality

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖

holds for every y ∈ H with y �= x.
A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H , f ∈ Tx

and g ∈ Ty imply 〈x − y, f − g〉 ≥ 0. A monotone mapping T : H → 2H is maximal if
its graph G (T ) is not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping T is maximal if and only if for (x, f) ∈ H × H ,
〈x − y, f − g〉 ≥ 0 for every (y, g) ∈ G (T ) implies f ∈ Tx. Let A be a monotone,
k−Lipschitz-continuous mapping of C into H and NCv be the normal cone to C at v ∈ C,
i.e. NCv = {w ∈ H : 〈v − u, w〉 ≥ 0, ∀u ∈ C}. Define

Tv =

{
Av + NCv, if v ∈ C,

∅, if v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I (C,A); see [11].

3 Strong Convergence Theorem In this section we prove a strong convergence theo-
rem for a countable family of nonexpansive mappings and a monotone, Lipschitz continuous
mapping. To prove it, we need two lemmas which were proved by Shimoji and Takahashi
[12] in a strictly convex Banach space.

Lemma 3.1. Let C be a nonempty closed convex subset of a strictly convex Banach space E.
Let T1, T2, ... be nonexpansive mappings of C into itself such that ∩∞

i=1F (Ti) is nonempty,
and let b and α1, α2, ... be real numbers such that 0 < αi ≤ b < 1 for any i ∈ N. Then, for
every x ∈ C and k ∈ N, U∞,kx = lim

n→∞Un,kx exists.

Lemma 3.2. Let C be a nonempty closed convex subset of a strictly convex Banach space E.
Let T1, T2, ... be nonexpansive mappings of C into itself such that ∩∞

i=1F (Ti) is nonempty,
and let b and α1, α2, ... be real numbers such that 0 < αi ≤ b < 1 for any i ∈ N. Then
F (U) = ∩∞

i=1F (Ti).



104 N. NADEZHKINA AND W. TAKAHASHI

We are now ready to prove our main strong convergence theorem.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let A be a
monotone and k-Lipschitz-continuous mapping of C into H and T1, T2, ... be a countable
family of nonexpansive mappings of C into itself such that ( ∩∞

i=1F (Ti)) ∩ V I (C,A) �= ∅.
Let c, d and α1, α2, ... be real numbers such that 0 < c ≤ αi ≤ d < 1 for every i ∈ N.
Let Wn, n = 1, 2, ... be the W -mappings of C into itself generated by Tn, Tn−1, ..., T1 and
αn, αn−1, ..., α1 and let U be the W -mapping of C into itself generated by T1, T2, ... and
α1, α2, ..., i.e. Ux = lim

n→∞Wnx = lim
n→∞ Un,1x for every x ∈ C. Let {xn}, {yn} and {zn} be

sequences generated by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C
yn = PC (xn − λnAxn)
zn = WnPC (xn − λnAyn)
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖}
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0}
xn+1 = PCn∩Qnx

for every n = 1, 2, ..., where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k). Then the sequences {xn},
{yn} and {zn} converge strongly to PF (U)∩V I(C,A)x.

Proof. It is obvious that Cn is closed and Qn is closed and convex for every n = 1, 2, .... As
Cn =

{
z ∈ C : ‖zn − xn‖2 + 2 〈zn − xn, xn − z〉 ≤ 0

}
, we also have Cn is convex for every

n = 1, 2, .... Put tn = PC (xn − λnAyn) for every n = 1, 2, .... Let u ∈ F (U) ∩ V I (C,A).
From (2.2), monotonicity of A and u ∈ V I (C,A), we have

‖tn − u‖2 ≤ ‖xn − λnAyn − u‖2 − ‖xn − λnAyn − tn‖2

= ‖xn − u‖2 − ‖xn − tn‖2 + 2λn 〈Ayn, u − tn〉
= ‖xn − u‖2 − ‖xn − tn‖2

+ 2λn (〈Ayn − Au, u − yn〉 + 〈Au, u − yn〉 + 〈Ayn, yn − tn〉)
≤ ‖xn − u‖2 − ‖xn − tn‖2 + 2λn 〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − yn‖2 − 2 〈xn − yn, yn − tn〉 − ‖yn − tn‖2

+ 2λn 〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

+ 2 〈xn − λnAyn − yn, tn − yn〉 .

Further, since yn = PC (xn − λnAxn) and A is k-Lipschitz-continuous, we have

〈xn − λnAyn − yn, tn − yn〉
= 〈xn − λnAxn − yn, tn − yn〉 + 〈λnAxn − λnAyn, tn − yn〉
≤ 〈λnAxn − λnAyn, tn − yn〉
≤ λnk ‖xn − yn‖ ‖tn − yn‖ .
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So, we have

‖tn − u‖2

≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + 2λnk ‖xn − yn‖ ‖tn − yn‖
≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + λ2

nk2 ‖xn − yn‖2 + ‖yn − tn‖2

≤ ‖xn − u‖2 +
(
λ2

nk2 − 1
) ‖xn − yn‖2(3.1)

≤ ‖xn − u‖2
.

Therefore from zn = Wntn and u = Su, we have

‖zn − u‖ = ‖Wntn − Wnu‖ ≤ ‖tn − u‖ ≤ ‖xn − u‖(3.2)

for every n = 1, 2, ... and hence u ∈ Cn. So, F (U) ∩ V I (C,A) ⊂ Cn for every n =
1, 2, .... Next, let us show by mathematical induction that {xn} is well-defined and F (U)∩
V I (C,A) ⊂ Cn ∩ Qn for every n = 1, 2, .... For n = 1 we have Q1 = C. Hence we obtain
F (U) ∩ V I (C,A) ⊂ C1 ∩ Q1. Suppose that xk is given and F (U) ∩ V I (C,A) ⊂ Ck ∩ Qk

for some k ∈ N . Since F (U) ∩ V I (C,A) is nonempty, Ck ∩ Qk is a nonempty closed
convex subset of C. So, there exists a unique element xk+1 ∈ Ck ∩ Qk such that xk+1 =
PCk∩Qk

x. It is also obvious that 〈xk+1 − z, x − xk+1〉 ≥ 0 for every z ∈ Ck ∩ Qk. Since
F (U)∩V I (C,A) ⊂ Ck∩Qk, we have 〈xk+1 − z, x − xk+1〉 ≥ 0 for z ∈ F (U)∩V I (C,A) and
hence F (U) ∩ V I (C,A) ⊂ Qk+1. Therefore, we obtain F (U) ∩ V I (C,A) ⊂ Ck+1 ∩ Qk+1.

Let t0 = PF (U)∩V I(C,A)x. From xn+1 = PCn∩Qnx and t0 ∈ F (U)∩V I (C,A) ⊂ Cn∩Qn,
we have

‖xn+1 − x‖ ≤ ‖t0 − x‖(3.3)

for every n = 1, 2, .... Therefore, {xn} is bounded. We also have

‖zn − u‖ = ‖Wntn − Wnu‖ ≤ ‖tn − u‖ ≤ ‖xn − u‖

for u ∈ F (U) ∩ V I (C,A). So, {zn} and {tn} are bounded. Since xn+1 ∈ Cn ∩ Qn ⊂ Qn

and xn = PQnx, we have

‖xn − x‖ ≤ ‖xn+1 − x‖

for every n = 1, 2, .... Therefore, there exists c = lim
n→∞ ‖xn − x‖. Using xn = PQnx and

xn+1 ∈ Qn again, we have also

‖xn+1 − xn‖2 = ‖xn+1 − x‖2 + ‖xn − x‖2 + 2 〈xn+1 − x, x − xn〉
= ‖xn+1 − x‖2 − ‖xn − x‖2 − 2 〈xn − xn+1, x − xn〉
≤ ‖xn+1 − x‖2 − ‖xn − x‖2

for every n = 1, 2, .... This implies that

lim
n→∞ ‖xn+1 − xn‖ = 0.

Since xn+1 ∈ Cn, we have ‖zn − xn+1‖ ≤ ‖xn − xn+1‖ and hence

‖xn − zn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − zn‖ ≤ 2 ‖xn+1 − xn‖
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for every n = 1, 2, .... From ‖xn+1 − xn‖ → 0, we have ‖xn − zn‖ → 0.
For u ∈ F (U) ∩ V I (C,A), from (3.1) and (3.2) we obtain

‖zn − u‖2 ≤ ‖tn − u‖2 ≤ ‖xn − u‖2 +
(
λ2

nk2 − 1
) ‖xn − yn‖2

.

Therefore, we have

‖xn − yn‖2 ≤ 1
1 − λ2

nk2

(
‖xn − u‖2 − ‖zn − u‖2

)

=
1

1 − λ2
nk2

(‖xn − u‖ − ‖zn − u‖) (‖xn − u‖ + ‖zn − u‖)

≤ 1
1 − λ2

nk2
(‖xn − u‖ + ‖zn − u‖) ‖xn − zn‖ .

Since ‖xn − zn‖ → 0, we obtain xn − yn → 0. From (3.1) and (3.2) we also have

‖zn − u‖2 ≤ ‖tn − u‖2

≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + 2λnk ‖xn − yn‖ ‖tn − yn‖
≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + ‖xn − yn‖2

+ λ2
nk2 ‖yn − tn‖2

≤ ‖xn − u‖2 +
(
λ2

nk2 − 1
) ‖yn − tn‖2

.

Therefore we have

‖tn − yn‖2 ≤ 1
1 − λ2

nk2

(
‖xn − u‖2 − ‖zn − u‖2

)

=
1

1 − λ2
nk2

(‖xn − u‖ − ‖zn − u‖) (‖xn − u‖ + ‖zn − u‖)

≤ 1
1 − λ2

nk2
(‖xn − u‖ + ‖zn − u‖) ‖xn − zn‖ .

Since ‖xn − zn‖ → 0, we obtain tn − yn → 0. Since A is k-Lipschitz-continuous, we have
Ayn − Atn → 0.

Using the Eberlein–Smulian theorem on weak compactness (see, e.g., [2], p. 430), as
{xn} is bounded, there is a subsequence {xni} of {xn} such that {xni} converges weakly
to some u. We can obtain that u ∈ F (S) ∩ V I (C,A). First, we show u ∈ V I (C,A). Since
xn − tn → 0 and xn − yn → 0, we have {tni} ⇀ u and {yni} ⇀ u. Let

Tv =

{
Av + NCv, if v ∈ C,
∅, if v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I (C,A); see [11]. Let
(v,w) ∈ G (T ). Then, we have w ∈ Tv = Av + NCv and hence w − Av ∈ NCv. So, we
have 〈v − t, w − Av〉 ≥ 0 for all t ∈ C. On the other hand, from tn = PC (xn − λnAyn) and
v ∈ C we have

〈xn − λnAyn − tn, tn − v〉 ≥ 0

and hence 〈
v − tn,

tn − xn

λn
+ Ayn

〉
≥ 0.
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Therefore from w − Av ∈ NCv and tni ∈ C , we have

〈v − tni , w〉 ≥ 〈v − tni , Av〉

≥ 〈v − tni , Av〉 −
〈

v − tni ,
tni − xni

λni

+ Ayni

〉
= 〈v − tni , Av − Atni〉 + 〈v − tni , Atni − Ayni〉

−
〈

v − tni ,
tni − xni

λni

〉

≥ 〈v − tni , Atni − Ayni〉 −
〈

v − tni ,
tni − xni

λni

〉
.

Hence, we obtain 〈v − u, w〉 ≥ 0 as i → ∞. Since T is maximal monotone, we have u ∈ T−10
and hence u ∈ V I (C,A).

Let us show u ∈ F (U). Assume u /∈ F (U). From Opial’s condition, we have

lim inf
i→∞

‖tni − u‖ < lim inf
i→∞

‖tni − Uu‖
≤ lim inf

i→∞
(‖tni − Wnitni‖ + ‖Wnitni − Wniu‖ + ‖Wniu − Uu‖)

≤ lim inf
i→∞

(‖tni − zni‖ + ‖tni − u‖ + ‖Wniu − Uu‖)
≤ lim inf

i→∞
‖tni − u‖ .

This is a contradiction. So, we obtain u ∈ F (U). This implies u ∈ F (U) ∩ V I (C,A).
From t0 = PF (U)∩V I(C,A)x , u ∈ F (U) ∩ V I (C,A) and (3.3), we have

‖t0 − x‖ ≤ ‖u − x‖ ≤ lim inf
i→∞

‖xni − x‖ ≤ lim sup
i→∞

‖xni − x‖ ≤ ‖t0 − x‖ .

So, we obtain

lim
i→∞

‖xni − x‖ = ‖u − x‖ .

From xni − x ⇀ u − x we have xni − x → u − x and hence xni → u. Since xn = PQnx and
t0 ∈ F (U) ∩ V I (C,A) ⊂ Cn ∩ Qn ⊂ Qn, we have

−‖t0 − xni‖2 = 〈t0 − xni , xni − x〉 + 〈t0 − xni , x − t0〉 ≥ 〈t0 − xni , x − t0〉 .

As i → ∞, we obtain −‖t0 − u‖2 ≥ 〈t0 − u, x − t0〉 ≥ 0 by t0 = PF (U)∩V I(C,A)x and
u ∈ F (U) ∩ V I (C,A). Hence we have u = t0. This implies that xn → t0. It is easy to see
yn → t0, zn → t0.

4 Applications. In this section, we shall apply Theorem 3.1 to construct iterative se-
quences which converge strongly to a common fixed point for various countable families of
mappings. The following result was obtained by Kikkawa and Takahashi [4].

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T1, T2, ... be a countable family of nonexpansive mappings of C into itself such that
∩∞

i=1F (Ti) �= ∅ . Let a, b and α1, α2, ... be real numbers such that 0 < a ≤ αi ≤ b < 1
for every i ∈ N. Let Wn, n = 1, 2, ... be the W -mappings of C into itself generated by
Tn, Tn−1, ..., T1 and αn, αn−1, ..., α1 and let U be the W -mapping of C into itself generated
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by T1, T2, ... and α1, α2, ..., i.e. Ux = lim
n→∞Wnx = lim

n→∞Un,1x for every x ∈ C. Let {xn} be
a sequence generated by ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 = x ∈ C
zn = Wnxn

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖}
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0}
xn+1 = PCn∩Qnx

for every n = 1, 2, .... Then F (U) = ∩∞
i=1F (Ti) and the sequence {xn} converges strongly

to PF (U)x.

Proof. Putting A = 0, by Theorem 3.1, we obtain the desired result.

Lexicografic variational inequality problem in the finite-dimensional Euclidean space Rn

is formulated as follows (see, e.g., [10]). Let C be a closed convex subset of Rn. Let
A0, A1, ..., Am be finite mappings from C into Rn. We are to obtain an element of the set
Cm, where the sets Ci, i = 1, 2, ...,m are given by

C0 = C, Ci = V I (Ci−1, Ai−1) .

The set of solutions of the lexicografic variational inequality problem is denoted by
LV I (C,A0, A1, ..., Am) = Cm = ∩m

i=0Ci.
Motivated by this problem, we formulate the generalized lexicographic variational in-

equality problem in a real Hilbert space. Let C be a closed convex subset of a real Hilbert
space H . Let A0, A1, A2, ... be a countable family of mappings from C into H . We are to
obtain some element x ∈ C such that x ∈ Ci for all i ∈ N, where the sets Ci, i = 1, 2, ... are
given by

C0 = C, Ci = V I (Ci−1, Ai−1) .

We denote the set of solutions of the generalized lexicographic variational inequality problem
by GLV I (C,A0, A1, A2, ...) = ∩∞

i=0Ci.
For solving the lexicographic variational inequality problem for monotone and continu-

ous mappings in the finite-dimensional space Rn we require some additional restrictions of
regularity or compactness type. Let us consider an iterative process for solving the general-
ized variational inequality problem for monotone, Lipschitz continuous and inverse-strongly
monotone mappings in a real Hilbert space without any additional restrictions. To prove
the strong convergence of this iterative process, we need the following lemma. This lemma
was proved by Matsushita and Kuroiwa ([7], Proposition 2.2).

Lemma 4.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let T be a
nonexpansive mapping of C into H. If F (T ) �= ∅, then F (PCT ) = F (T ).

Now we state a strong convergence theorem.

Theorem 4.2. Let C be a closed convex subset of a real Hilbert space H. Let A0 be a
monotone and k-Lipschitz-continuous mapping of C into H and A1, A2, ... be a countable
family of mappings of C into H such that every mapping Ai is γi-inverse-strongly-monotone,
i = 1, 2, .... Suppose that the set of solutions of the generalized lexicographical variational
inequality problem GLV I (C,A0, A1, ...) is not empty. Denote by Wn, n = 1, 2, ... the W -
mappings of C into itself generated by Tn, Tn−1, ..., T1 and αn, αn−1, ..., α1, where Ti =
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PC (I − µiAi), where 0 < µi ≤ 2γi; c, d and α1, α2, ... are real numbers such that 0 < c ≤
αi ≤ d < 1 for every i ∈ N. Let {xn}, {yn} and {zn} be sequences generated by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C
yn = PC (xn − λnA0xn)
zn = WnPC (xn − λnA0yn)
Dn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖}
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0}
xn+1 = PDn∩Qnx

for every n = 1, 2, ..., where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k). Then the sequences {xn},
{yn} and {zn} converge strongly to some x ∈ GLV I (C,A0, A1, ...).

Proof. If a mapping Ai from C into H is γi-inverse-strongly-monotone, then for all u, v ∈ C
and µi > 0, n = 1, 2, ..., we have

‖PC (u − µiAiu) − PC (v − µiAiv)‖2

≤ ‖(I − µiAi)u − (I − µiAi) v‖2 = ‖(u − v) − µi (Aiu − Aiv)‖2

= ‖u − v‖2 − 2µi 〈u − v,Aiu − Aiv〉 + µ2
i ‖Aiu − Aiv‖2

≤ ‖u − v‖2 + µi (µi − 2γi) ‖Aiu − Aiv‖2 .

So, if µi ≤ 2γi, then Ti = PC (I − µiAi), n = 1, 2, ... are nonexpansive mappings from C
into itself. It is obvious that for Ti = PC (I − µiAi) we have F (Ti) = V I (C,Ai). It is
also obvious that the mappings Si = I − µiAi, n = 1, 2, ..., are nonexpansive mappings
from C into H . Then from Lemma 4.1 for any closed convex subset Ci of C we have
F (Ti) ∩ Ci = V I (Ci, Ai). From the definition of Ci in the generalized lexicographical
variational inequality problem we have

Cn = V I (Cn−1, An−1) = F (Tn−1) ∩ Cn−1 = F (Tn−1) ∩ F (Tn−2) ∩ Cn−2

= ... =
( ∩n−1

i=1 F (Ti)
) ∩ V I (C,A0) .

By Theorem 3.1, we obtain the desired result.

A mapping S : C → C is called pseudocontractive if

‖Sx − Sy‖2 ≤ ‖x − y‖2 + ‖(I − S)x − (I − S) y‖2

for all x, y ∈ C, or, equivalently,

〈Sx − Sy, x − y〉 ≤ ‖x − y‖2(4.1)

for all x, y ∈ C.

Theorem 4.3. Let C be a closed convex subset of a real Hilbert space H. Let S be a pseu-
docontractive, m-Lipschitz-continuous mapping of C into itself and T1, T2, ... be a countable
family of nonexpansive mappings of C into itself such that ( ∩∞

i=1F (Ti)) ∩ F (S) �= ∅ .
Let c, d and α1, α2, ... be real numbers such that 0 < c ≤ αi ≤ d < 1 for every i ∈ N.
Let Wn, n = 1, 2, ... be the W -mappings of C into itself generated by Tn, Tn−1, ..., T1 and
αn, αn−1, ..., α1 and let U be the W -mapping of C into itself generated by T1, T2, ... and
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α1, α2, ..., i.e. Ux = lim
n→∞Wnx = lim

n→∞ Un,1x for every x ∈ C. Let {xn}, {yn} and {zn} be
sequences generated by ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C
yn = xn − λn (xn − Sxn)
zn = WnPC (xn − λn (yn − Syn))
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖}
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0}
xn+1 = PCn∩Qnx

for every n = 1, 2, ..., where {αn} ⊂ [a, b] for some a, b with 0 < a < b < 1
m+1 .

Then F (U) = ∩∞
i=1F (Ti) and the sequences {xn}, {yn} and {zn} converge strongly to

PF (U)∩F (S)x.

Proof. Let A = I − S. Let us show the mapping A is monotone and (m + 1)-Lipschitz-
continuous. From the definition of the mapping A and (4.1), we have

〈Ax − Ay, x − y〉 = 〈x − y − Sx + Sy, x − y〉
= ‖x − y‖2 − 〈Sx − Sy, x − y〉 ≥ ‖x − y‖2 − ‖x − y‖2 = 0.

So, A is monotone. We also have

‖Ax − Ay‖2 = ‖(I − S)x − (I − S) y‖2

= ‖x − y‖2 + ‖Sx − Sy‖2 − 2 〈x− y, Sx − Sy〉
≤ ‖x − y‖2 + m2 ‖x − y‖2 + 2 ‖x − y‖ ‖Sx − Sy‖
≤ ‖x − y‖2 + m2 ‖x − y‖2 + 2m ‖x − y‖2 = (m + 1)2 ‖x − y‖2

.

So, we have ‖Ax − Ay‖ ≤ (m + 1) ‖x − y‖ and A is (m + 1)-Lipschitz-continuous. Now let
us show F (S) = V I (C,A). In fact, we have, for λ > 0,

u ∈ V I (C,A) ⇔ 〈y − u, Au〉 ≥ 0 ∀y ∈ C

⇔ 〈u − y, u − λAu − u〉 ≥ 0 ∀y ∈ C

⇔ u = PC (u − λAu)
⇔ u = PC (u − λu + λSu)
⇔ 〈u − λu + λSu − u, u − y〉 ≥ 0 ∀y ∈ C

⇔ 〈u − Su, u − y〉 ≤ 0 ∀y ∈ C

⇔ u = Su.

By Theorem 3.1 we obtain the desired result.
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