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ABSTRACT. In this paper we introduce an iterative process for finding a common
element of the set of common fixed points of a countable family of nonexpansive map-
pings and the set of solutions of the variational inequality problem for a monotone,
Lipschitz continuous mapping. The iterative process is based on two known methods -
hybrid and extragradient. We obtain a strong convergence theorem for three sequences
generated by this process. Based on this theorem, we construct an iterative process
for solving the generalized lexicographic variational inequality problem.

1 Introduction Let C be a closed convex subset of a real Hilbert space H and let Po
be the metric projection of H onto C. A mapping A of C into H is called monotone if

(Au — Av,u —v) >0
for all u,v € C. The variational inequality problem is to find a u € C' such that
(Au,v —u) >0

for all v € C. The set of solutions of the variational inequality problem is denoted by
VI(C,A). A mapping A of C into H is called a-inverse-strongly-monotone if there exists
a positive real number « such that

(Au— Av,u —v) > a || Au — Av|?

for all u,v € C; see [1], [6]. It is obvious that any a-inverse-strongly-monotone mapping A
is monotone and Lipschitz-continuous. A mapping T of C' into itself is called nonexpansive
if

[T —To|| < [lu—v]

for all u,v € C; see [15]. We denote by F (T') the set of fixed points of T. For finding an
element of VI (C, A) under the assumption that a set C' C H is closed and convex and a
mapping A of C into H is a-inverse-strongly-monotone, liduka, Takahashi and Toyoda [3]
introduced the following iterative scheme by the hybrid method:

r1=x€C

Yn = PC (xn - )\nAmn)
Cn={2€C:|yn— 2|l < [z — 2|}
Qn={2€C:{(xy—22—x,) >0}
Tp+1 = PC,,mQ,,Lx
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for every n = 1,2, ..., where \,, C [a, b] for some a,b € (0,2«). They showed that if VI (C, A)
is nonempty, then the sequence {z,, }, generated by this iterative process, converges strongly
to Pyrc,ayz. On the other hand, for solving the variational inequality problem in the
finite-dimensional Euclidean space R™ under the assumption that a set C' C R"™ is closed and
convex and a mapping A of C' into R™ is monotone and k-Lipschitz-continuous, Korpelevich
[5] introduced the following so-called extragradient method:

r1=z€C
(1.1) Tn = Po (x, — AMuzy,)
Znt+1 = Po (xn, — ANAT,,)

for every n = 1,2, ..., where A € (0,1/k). He showed that if VI (C, A) is nonempty, then the
sequences {x,} and {Z,}, generated by (1.1), converge to the same point z € VI (C, A).

Let T, T5, ... be a countable family of mappings of C' into itself and let oy, as, ... be real
numbers such that 0 < o; < 1 for all n = 1,2, .... For any n € N, Takahashi [13] defined
the mapping W,, of C' into itself as follows:

Un,nJrl = I;
Un,n = anTnUn,n+1 + (1 - an) I,
Un,n—l = an—lTn—lUn,n + (1 - Oén—l) Iv

Uni = o TiUpy1 + (1 — ag) I,
Unji—1=0p-1Thp-1Uni + (1 —ap_1) 1,

Un2=0aToUp3+ (1 — o),
Wp=Up1=a1TiUpo+ (1 —on)l.

Such mappings W,, are called W—mappings generated by T,,T,_1,...,T1 and oy, ap_1, ...,
a1 Shimoji and Takahashi [12] also defined mappings Us 1, and U of C' into itself as follows:

Usopx = lim U, gz

n—oo

Uz = lim Wyx = lim U, 1z
n—oo n—oo
for every « € C. Such a U is called the W-mapping generated by 11,75, ... and a1, as, ...;
see [12] for more details.

This paper is motivated by the idea of combining hybrid and extragradient methods.
We introduce an iterative process for finding a common element of the set of common
fixed points of a countable family of nonexpansive mappings and the set of solutions of
the variational inequality problem for a monotone, Lipschitz continuous mapping in a real
Hilbert space. Then we obtain a strong convergence theorem for three sequences generated
by this process. We also consider three applications of this theorem. As a corrolary of our
theorem we get the theorem proved by Kikkawa and Takahashi for W-mappings [4] . We also
construct iterative process for solving the generalized lexicographic variational inequality
problem. Furthermore, we obtain a strong convergence theorem for a pseudocontractive
mapping and a countable family of nonexpansive mappings in a Hilbert space.
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2 Preliminaries Let H be a real Hilbert space with inner product ( -,-) and norm |||
and let C be a closed convex subset of H. We write z,, — « to indicate that the sequence
{xn} converges weakly to = and z, — z to indicate that {z,} converges strongly to z.
For every point * € H there exists a unique nearest point in C, denoted by Pgx, such
that || — Pox| < |Jx — y|| for all y € C. Pc is called the metric projection of H onto C.
We know that Pgo is a nonexpansive mapping of H onto C. It is also known that Pg is
characterized by the following properties: Pox € C and

(2.1) (x — Pez, Pcx —y) > 0.
Further, we know that

2 2 2
(2.2) |z = ylI” > [lz — Pex||” + |ly — Poz|

for all x € H and y € C; see [15] for more details. Let A be a monotone mapping of C' into
H. In the context of variational inequality problem this implies

ueVI(C,A) & u=Pc(u—Nu), YA>0.

It is also known that H satisfies Opial’s condition [9], i.e., for any sequence {z,} with
Tn — x the inequality

liminf ||z, — z| < liminf ||z, — y||
n—oo n—oo

holds for every y € H with y # z.

A set-valued mapping T : H — 27 is called monotone if for all x,y € H, f € Tz
and g € Ty imply (z —y, f —g) > 0. A monotone mapping T : H — 2 is mazimal if
its graph G (T') is not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping 7' is maximal if and only if for (x, f) € H x H,
(x—y,f—g) > 0 for every (y,g9) € G(T) implies f € Tx. Let A be a monotone,
k—Lipschitz-continuous mapping of C' into H and Ncwv be the normal cone to C at v € C,
ie. Nov={we€ H : (v—u,w) > 0,Yu € C}. Define

Av+ Nov, ifv e C,
Tv=
0, itvd¢C.

Then T is maximal monotone and 0 € T'v if and only if v € VI (C, A); see [11].

3 Strong Convergence Theorem In this section we prove a strong convergence theo-
rem for a countable family of nonexpansive mappings and a monotone, Lipschitz continuous
mapping. To prove it, we need two lemmas which were proved by Shimoji and Takahashi
[12] in a strictly convex Banach space.

Lemma 3.1. Let C be a nonempty closed convex subset of a strictly convex Banach space E.
Let Th, Ty, ... be nonexpansive mappings of C into itself such that N2, F (T;) is nonempty,
and let b and aq, s, ... be real numbers such that 0 < a; < b < 1 for any i € N. Then, for
everyx € C and k € N, Uy yz = nlirr;o Un px exists.

Lemma 3.2. Let C be a nonempty closed convex subset of a strictly convex Banach space E.
Let Th,Ts, ... be nonexpansive mappings of C into itself such that N2, F (T;) is nonempty,
and let b and aq, s, ... be real numbers such that 0 < a; < b < 1 for any i € N. Then
F(U) =N, F (T)).



104 N. NADEZHKINA AND W. TAKAHASHI

We are now ready to prove our main strong convergence theorem.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let A be a
monotone and k-Lipschitz-continuous mapping of C into H and T1,Ts, ... be a countable
family of nonexpansive mappings of C into itself such that ( N2, F (T;)) NVI(C, A) # 0.
Let ¢,d and aq,aq, ... be real numbers such that 0 < ¢ < a; < d < 1 for every i € N.
Let W,,, n = 1,2,... be the W-mappings of C into itself generated by T,,,Ty—1,...,T1 and
Qpy, Qp—1,-..,1 and let U be the W-mapping of C into itself generated by T1,T>, ... and
1,9, ..., t.e. Ur = lim Wyr = nh—{jgo Unaz for every x € C. Let {z,}, {yn} and {z,} be

n—od
sequences generated by

rn=x€C

Cn={2€C:|zn— 2| <|lwn — 2|}
Qn=A{z€C:{(xy,—2z,z—2x,) >0}
Tni1 = Po,nQ, T

for everyn = 1,2, ..., where {\,} C [a,b] for some a,b € (0,1/k). Then the sequences {z,},
{yn} and {zn} converge strongly to Ppynvi(c,a)x-

Proof. Tt is obvious that C,, is closed and @, is closed and convex for every n = 1,2, .... As
C, = {z eC:|lzn— acn||2 +2(zp — T,y — 2) < 0}, we also have C), is convex for every

n=12 .. Putt, =Po(x,— A\Ay,) for every n = 1,2,.... Let u e F(U)NVI(C,A).
From (2.2), monotonicity of A and u € VI (C, A), we have

e = ull < ll2n = AnAyn = ull* = [l20 — AnAyn — L[
= ||2n — UH2 —lzn — tn||2 + 2 (AYn, u — )
= lzn — ul® = [z — ta]®
+ 2\, ((Ayn — Au,u — yn) + (Au, v — Yn) + (AYn, Yn — tn))
- l|zn — tn||2 + 270 (AYn, Yn — tn)
|27 — yn||2 -2 <xn ~Yn;Yn — tn> - Hyn - tn”
+ 2, (AYn, Yn — tn)
= lzn = ul® = 20 = yal® = llgn — tall®
+ 2(xp — A AYn — Yn, tn — Yn) -

2 2
-

Further, since y,, = Po (z,, — ApAxy,) and A is k-Lipschitz-continuous, we have

= (Tn — MATy — Ynitn — Yn) T (A AT — A AYn, tn — Yn)
< <)\nA(L'n — AnAyn; tn — yn>
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So, we have

[0 — ul|?
2 2 2
< len —ull™ = llzn = yull™ = llyn — tall” + 220k |20 — Yl [[tn — yall
2 2 2 212 2 2
< lon —ull™ = llzn = ynll™ = llyn = tall” + A0k [0 — ynll” + lyn — tnll
2 2
(3.1) < llwn = ull® + A0k = 1) lzn = yal

<z — ull®.
Therefore from z, = Wyt, and u = Su, we have
(3.2) 2n — ull = [Watn — Waul < [[tn — ull < [lzn — ull

for every n = 1,2,... and hence u € C,. So, F(U)NVI(C,A) C C, for every n =
1,2, .... Next, let us show by mathematical induction that {x,} is well-defined and F (U) N
VI(C,A) C C, N Qy, for every n = 1,2, .... For n = 1 we have Q1 = C. Hence we obtain
F{U)NVI(C,A) C C1 NQ;. Suppose that xy is given and F (U)NVI(C,A) C Cr N Qy
for some k € N. Since F(U)NVI(C,A) is nonempty, C; N Qk is a nonempty closed
convex subset of C. So, there exists a unique element zyx11 € Ck N @ such that zi41 =
Po.ng,x. It is also obvious that (zry1 — 2,2 — xp11) > 0 for every z € Cp N Q. Since
FU)NVI(C,A) C CpNQy, we have (41 — 2,2 — xp41) > 0for z € F(U)NVI (C, A) and
hence F(U)NVI(C,A) C Qr+1. Therefore, we obtain F (U)NVI(C,A) C Ci41 N Qpt1-

Let to = Prw)nvi(c,ayz. From z,1 = Pc,ng,x and to € F(U)NVI(C,A) C C,,NQp,
we have

(3.3) 2ny1 — 2l < [lto — |
for every n = 1,2, .... Therefore, {x,} is bounded. We also have
[2n = ull = [Wntn = Waull < [ltn —ul| < [lan —ull

foru e F(UYNVI(C,A). So, {z,} and {t,} are bounded. Since z,+1 € C, N Qy, C Qn,
and z, = Py, =, we have

[ — || < [lznsr — 2|

for every n = 1,2, .... Therefore, there exists ¢ = lim |z, —z||. Using z, = Pg, = and
n—oo

Tn+1 € @y again, we have also

Zn+1 — xn”Q = |[Tnt1 — x||2 + [|n — x||2 +2(Tp1 — T, — xp)
= |[Tnt1 — x||2 — ||z — x||2 —2(Tp = Tn41,T — Tn)

2 2
< Nznss — 2> = llzn — 2]
for every n = 1,2, .... This implies that
lim ||zp41 — 2| =0.
n—oo
Since p41 € Ch, we have ||z, — Zpt1|| < ||@n — Tpy1]| and hence

lzn = 2zull < o0 — Tosall + |Tnt1 = 2l < 2[|Zn1 — 24|
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for every n = 1,2, .... From ||x,1+1 — zy| — 0, we have ||z, — z,|| — 0.
Forw e F(U)NVI(C,A), from (3.1) and (3.2) we obtain

2 2 2 2
20 = ull” < lltn = ull” < llzn = ull® + (NE* = 1) [l = yull”-

Therefore, we have

1
2 2 2
o = 9ol < 7577 (o = ul® = l120 = ul?)

1— AZk2
1
= Tz len —ull = llen = ull) (lzn = ull + [lzn = ul)
n
1
< Toage (en = ull + llen —ull) |2 = 2nll-

Since ||zn, — zn|| — 0, we obtain z,, — y, — 0. From (3.1) and (3.2) we also have
2 = ul® < Iltn — ull®
< N = ull® = 2 = yall* = llyn = tall® + 2Xak 20 = yull 1tw = yul
< llan = ull® = llen = yall* = llyn = tall® + l2n = yall®
+ ALK [l — tall”
< Jlan = ull* + (VR = 1) [lyn — tal*.

Therefore we have

2 1 2 2
Itn = yul® < —5=5 (llxn —lf® = |z — ul] )

1— A2j2
1
= —57z (lzn —ull = llzn — ul)) (lzn — wll + [lzn — ul))
1— A2k?
1

ST (lzn = wll + [lzn = ull) [2n = znll -
Since ||xy, — zn|| — 0, we obtain ¢, — y, — 0. Since A is k-Lipschitz-continuous, we have
Ay, — At, — 0.

Using the Eberlein—Smulian theorem on weak compactness (see, e.g., [2], p. 430), as
{zn} is bounded, there is a subsequence {x,,} of {x,} such that {x,,} converges weakly
to some u. We can obtain that w € F (S)NVI (C, A). First, we show u € VI (C, A). Since
Ty —tn, — 0 and z, — y, — 0, we have {t,,} — v and {yn,} — u. Let

Av+ Now, ifveC,
Tv =
0, ifvégC.

Then T is maximal monotone and 0 € Tw if and only if v € VI (C, A); see [11]. Let
(v,w) € G(T). Then, we have w € Tv = Av + N¢v and hence w — Av € Nev. So, we
have (v —t,w — Av) > 0 for all t € C. On the other hand, from ¢, = Pc (x,, — A\, Ay, ) and
v € C' we have

<mn - )\nAyn —tn,tn — ’U> >0

and hence

t, —



STRONG CONVERGENCE THEOREM 107

Therefore from w — Av € Nov and t,, € C', we have
<U - tn17w> Z <U - thAU>
tn, — Tn,
> (v —tn,, AV) — (U — tp,, )\7 + Ayn,

= (v —tn,, Av — Atp,) + (U — tn,, Atn, — Ayn,)

th, — Tn.
_<U_tn”%>
Uz

tn, — Tp,
2 <U_tnivAtm _Aym> - <’U—tn”%>.
Uz

Hence, we obtain (v — u, w) > 0 as i — oo. Since T is maximal monotone, we have u € T-10
and hence u € VI (C, A).
Let us show u € F(U). Assume u ¢ F'(U). From Opial’s condition, we have

liminf ||t,, — u|| < liminf ||¢,, — Uul|
1— 00 1— 00

i—00

+ lltn; = ull + [Wa,u = Uul])

< liminf (||t,, — 2zn,
1— 00

< liminf ||t,,, — u||.
1— 00

This is a contradiction. So, we obtain v € F (U). This implies u € F (U)NVI (C, A).
From to = Ppwynvi(c,a)r , u € F(U)NVI(C,A) and (3.3), we have

[to — || < [lu — || <liminf ||z, — [ <limsup [z, — 2] <|[{to —z].
1— 00 ;

11— 00

So, we obtain
lim [|lzn, — 2l = [Ju— 2.
11— 00

From z,, — — u — x we have z,,, — * — v — z and hence z,,, — u. Since z,, = Py, and

to e F(U)NVI(C,A) C C,NQp C Qp, we have

- (to — Tnyy Tny — T) + (to — Tn,, @ — to) > (to — Tn,, T — to) -

- HtO — Tn;

As i — o0, we obtain — ||t —u||2 > (to —u,z—tg) > 0 by to = Ppannvi(c,ayr and
u€ F(U)NVI(C,A). Hence we have u = tg. This implies that x,, — to. It is easy to see
yn_)t07 Zn_)tO- D

4 Applications. In this section, we shall apply Theorem 3.1 to construct iterative se-
quences which converge strongly to a common fixed point for various countable families of
mappings. The following result was obtained by Kikkawa and Takahashi [4].

Theorem 4.1. Let C be a nonempty closed convexr subset of a real Hilbert space H. Let
T1,T5,... be a countable family of nonexpansive mappings of C into itself such that
N2, F(T;) # 0 . Let a,b and aq, sz, ... be real numbers such that 0 < a < o; < b < 1
for every i € N. Let W,,, n = 1,2,... be the W-mappings of C into itself generated by
Tn,Tho1,...., 71 and oy, ap_1,...,c1 and let U be the W-mapping of C' into itself generated
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by Ty, Ty, ... and o1, Qg ..., i.e. Uz = lim Wyx = lim U,z for every x € C. Let {zy,} be

n—oo n—o0

a sequence generated by

r1=x€C

zn = Wpay,

Co={2€C: |12 — 2] < |l — 2}
Qn=1{2€C:(xy—2z,x—1z,) >0}
Tp4+1 = PC,,mQ,Lx

for everyn =1,2,.... Then F(U)=NX,F(T;) and the sequence {x,} converges strongly
to PF(U)iL',

Proof. Putting A = 0, by Theorem 3.1, we obtain the desired result. O

Lezicografic variational inequality problem in the finite-dimensional Euclidean space R™
is formulated as follows (see, e.g., [10]). Let C be a closed convex subset of R™. Let
Ag, A1, ..., Ay, be finite mappings from C' into R™. We are to obtain an element of the set
Cn, where the sets C;, i = 1,2, ..., m are given by

Co=0C, Ci=VI(Ci_1,Ai1).

The set of solutions of the lexicografic variational inequality problem is denoted by
LVI(C, Ao, Ay, ... Ap) = Cpy = N2, G

Motivated by this problem, we formulate the generalized lexicographic variational in-
equality problem in a real Hilbert space. Let C be a closed convex subset of a real Hilbert
space H. Let Ag, A1, As, ... be a countable family of mappings from C into H. We are to
obtain some element x € C such that x € C; for all i € N, where the sets C;, i = 1,2, ... are
given by

Co=C, Ci=VI(Ci1,A;1).

We denote the set of solutions of the generalized lexicographic variational inequality problem
by GLVI (C, Ag, A1, A, ...) = N2, Ci.

For solving the lexicographic variational inequality problem for monotone and continu-
ous mappings in the finite-dimensional space R"™ we require some additional restrictions of
regularity or compactness type. Let us consider an iterative process for solving the general-
ized variational inequality problem for monotone, Lipschitz continuous and inverse-strongly
monotone mappings in a real Hilbert space without any additional restrictions. To prove
the strong convergence of this iterative process, we need the following lemma. This lemma,
was proved by Matsushita and Kuroiwa ([7], Proposition 2.2).

Lemma 4.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let T be a
nonexpansive mapping of C into H. If F(T) # 0, then F (PcT) = F (T).

Now we state a strong convergence theorem.

Theorem 4.2. Let C' be a closed conver subset of a real Hilbert space H. Let Ay be a
monotone and k-Lipschitz-continuous mapping of C into H and A, As, ... be a countable
family of mappings of C into H such that every mapping A; is ~;-inverse-strongly-monotone,
1 =1,2,.... Suppose that the set of solutions of the generalized lexicographical variational
inequality problem GLVI (C, Ag, A1, ...) is not empty. Denote by W,,, n = 1,2, ... the W-
mappings of C into itself generated by Ty, Tp-1,...,T1 and an,an_1,...,a1, where T; =
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Po (I — p;A;), where 0 < p; < 2v;; ¢,d and aq, g, ... are real numbers such that 0 < ¢ <
a; <d <1 for everyi € N. Let {x,,}, {yn} and {z,} be sequences generated by

ri=xz€C

Yn = Pc (xn - )\nAOxn)

zn = WpPc (xn - )\nAoyn)
Dp={z€C:|zn—2| <llon -z}
Qn={2€C:{(xy,—2z,2—x,) >0}
ZTnt1 = Pp,nq,T

for everym = 1,2, ..., where {\,} C [a,b] for some a,b € (0,1/k). Then the sequences {x,},
{yn} and {z,} converge strongly to some x € GLVI (C, Ay, Ax, ...).

Proof. If a mapping A; from C into H is ;-inverse-strongly-monotone, then for all u,v € C
and p; >0, n=1,2,..., we have

|Pc (u — piAiu) — Po (v — i Aw) |12

< = paAs)u— (I = piA) o|* = || (w = v) = i (Aju — A)|®

= Jlu—v|® = 2ps (u — v, Aju — A0) + 42 | Asu — Azo|?

< = ol* + s (s — 2) [ A — Ao
So, if p; < 2v;, then T; = Po (I — pu;A;), n = 1,2, ... are nonexpansive mappings from C
into itself. It is obvious that for T; = Po (I — u;A;) we have F(T;) = VI(C,4;). Tt is
also obvious that the mappings S; = I — p;A;, n = 1,2, ..., are nonexpansive mappings
from C' into H. Then from Lemma 4.1 for any closed convex subset C; of C' we have

F(T;)nC; = VI(Cy, A;). From the definition of C; in the generalized lexicographical
variational inequality problem we have

C,=VI (Cnfh Anfl) =F (Tnfl) NCh_1=F (Tnfl) NnF (Tn,Q) NCr_s
= (NI F(TY) NVI(C, Ag).

By Theorem 3.1, we obtain the desired result. [l

A mapping S : C — C is called pseudocontractive if
1Sz — Sy|* < ||z — ylI* + (T = S) & — (T - S)y”
for all x,y € C, or, equivalently,
(4.1) (Sz — Sy, & —y) < |lz — y||”
for all z,y € C.

Theorem 4.3. Let C be a closed convex subset of a real Hilbert space H. Let S be a pseu-
docontractive, m-Lipschitz-continuous mapping of C into itself and Ty, T3, ... be a countable
family of nonexpansive mappings of C into itself such that ( N2, F (T;)) N F(S) # 0 .
Let ¢,d and a1, aq,... be real numbers such that 0 < ¢ < a; < d < 1 for every i € N.
Let Wy, n = 1,2, ... be the W-mappings of C into itself generated by T,,,Ty_1,...,T1 and
Qpy Qp—1, .y 1 and let U be the W-mapping of C into itself generated by Ty, Ts, ... and
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o1, 09,..., t.e. Ux = lim Wyx = lim U,z for every x € C. Let {x,}, {yn} and {z,} be

n—oo n—o0

sequences generated by

r1=xz€C

Yn = Tp — An (xn - an)

zn = WnPco (2n — An (Y — Syn))

Co={2€C :|lzn— 2| < lm — 2}

Qn=A{2z€C:(xy,— 22—z, >0}

Tnt1 = Po,nQ, T
for every n =1,2, ..., where {an} C [a,b] for some a,b with 0 < a <b < #H
Then F(U) = N2, F (T;) and the sequences {xn}, {yn} and {z,} converge strongly to
Prwynr(s)z-
Proof. Let A =1 —S. Let us show the mapping A is monotone and (m + 1)-Lipschitz-
continuous. From the definition of the mapping A and (4.1), we have

(Az — Ay,z —y) =(x —y— Sz + Sy, x —y)
= |lz —yl|* = (Sz = Sy,z —y) > |lz —y|* — |z —y|* = 0.
So, A is monotone. We also have
Az — Ay|* = ||(I = S)x = (I = S)y|
= |lz = y[|* + ISz — Sy|* — 2 (z — y, Sw — Sy)
< o = yll* + m?* |z — yl|* + 2 = — yll | Sz - Sy|
< o = gll* + m* lw — yll* +2m o — yl* = (m + 1)* = - y||”.

So, we have ||[Az — Ay|| < (m + 1) ||z — y|| and A is (m + 1)-Lipschitz-continuous. Now let
us show F' (S) = VI(C, A). In fact, we have, for A > 0,

ueVI(C,A) & (y—u,Au) >0 Vyel
Su—y,u—ANMu—u) >0 Vyel
< u = Po (u— ANAu)
< u = Po(u— Au+ ASu)
S{u—du+ASu—uu—y) >0 VyeC
& (u—-Su,u—y) <0 Vyel

< u = Su.
By Theorem 3.1 we obtain the desired result. O
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