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THE (E.R.T.)-INTEGRAL AND FOURIER TRANSFORM
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Abstract. We show the relation between the (E.R.T )-integral and the improper
Riemann integral, and define a restricted Fourier’s integral formula.

1 Introduction In our previous paper [11], we described the (E.R.T )-integral defined
independently of points where the integrand have the infinity. It is defined on the space
Γ0(I)

⊕
M0(I) of generalized functions over an interval I of R. The set Γ0(I) is the sin-

gular part of Γ0(I)
⊕

M0(I) in the sense that it contains the δ-function and it’s heigher
derivatives, and the set M0(I) consists of all Lebesgue measurable functions on I, which is
the regular part of Γ0(I)

⊕
M0(I).

In this paper, we do not consider Γ0(I) . That is, we consider only the (E.R.T )-integral
for generalized function in 0

⊕
M0(I) (namely, M0(I)).

In Section 2, we recall some terminologies and notations containing the definition of the
(E.R.T )-integral in M0(I) .

In Section 3, we will show the relations between the (E.R.T )-integral and the improper
Riemann integral as well as the Lebesgue integral.

From these relations, it is easy to see that the main fundamental theorems for Fourier
integrals hold also for the (E.R.T )-integrals. In Section 4, we see that the theorem of
Riemann-Lebesgue, Fourier’s integral formula, and Fourier’s single-integral formula hold
also for the (E.R.T )-integrals.

In Section 5, we define a restricted Fourier’s integral formula for some functions which
are neither Lebesgue integrable nor of bounded variation on R.

2 Terminologies and notations Let I be a finite or infinite open interval in R, and
M0(I) the set of all real valued Lebesgue measurable functions defined on I.

We recall some terminologies and notations used in the definition of the (E.R.T )-integral
in M0(I) ([11]).

In what follows, we suppose that the set M0(I) is classified by the usual equivalence
relation f(x) = g(x) a.e. We denote a class in M0(I) and it’s representative by the same
symbol f(x) or f , and call also the class a function. For each Lebesgue measurable subset
A of I and ε > 0, we difine a pre-neighbourhood V (f, ε, A) as

V (f, ε, A) = {g ∈ M0(I);
∫

A

|f(x) − g(x)|dx ≤ ε}.

We denote V (f, ε, A) or V (f) for short.
A sequence (V (fn)) = (V (fn, εn, An)) is called a Cauchy sequence if (i) V (f1) ⊇ V (f2) ⊇

· · · , and (ii) εn → 0 .
Let Λ = (λn) be a sequence of finite measures on R such that (1) any Lebesgue mea-

surable set is λn-measurable and (2) m(A) = 0 if and only if λn(A) = 0.
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A Cauchy sequence (V (gn, εn, An)) is called an L0-Cauchy sequence for Λ if it satisfies
the following three conditions on I:

(K1) if B is a Lebesgue measurable subset of I with λn(I \ An) ≥ λn(B), then

m(B ∩ [ − 1/εn, 1/εn]) ≤ εn.

(K2) if m(I \ An) > 0 for all n, there exist k, k′ > 0 such that

k ≤ λn(I \ An) ≤ k′

for all n.
(K3) if B is a Lebesgue measurable subset of I with λn(I \ An) ≥ λn(B), then∫

B

|gn(x)|dx ≤ εn.

Let F0(Λ) be the set of L0-Cauchy sequences for Λ, and L0(Λ) the set of sequences
(gn) in L1(I) such that there exists an L0-Cauchy sequence (V (gn)) ∈ F0(Λ).1 A sequence
(V (gn)) ∈ F0(Λ) is called an L0-Cauchy sequence for Λ and g, or for g, if

⋂∞
n=1 V (gn) = {g}.

We fix two increasing sequences (αn) and (βn) of real numbers with lim
n→∞αn = ∞ and

lim
n→∞βn = ∞ , and a decreasing sequence (Jn) of measurable subsets with Jn ⊆ [−βn, βn]

and lim
n→∞m(Jn) = 0.

Let νn be an absolutely continuous measure on R such that

νn(En) = exp(−αn) = νn(Jn)

for En = R \ [−βn, βn] and non empty Jn.
Denote Jn + a = {x + a; x ∈ Jn} by Ja

n . For any measurable subset E of R and for any
different points a1, a2, ..., al ∈ I, we set

(2.1) µ0
n(E) =

l∑
i=1

νn((E ∩ Jai
n ) − ai) + νn(E ∩ En)

+m(E ∩ (CEn \
l⋃

i=1

Jai
n )).2

Let
(2.2) µn = µ0

n/exp(−αn) (n = 1, 2, ...).

Then (µn) is called a sequence of measures defined for a1, a2, ..., al. We denote (µn) by
T ((ai)l

1) or T (a1, a2, ..., al). If Jn0 = φ for some n0 ∈ N, the measure µn for each n ≥ n0 is
independent of the choice of points a1, a2, ..., al.

We fix the sequence (νn) in the following.
If (gn) and (fn) are sequence in L0(T ((ai)l

1)) with L0-Cauchy sequences for g, then

lim supn→∞

∫
I

fn(x)dx = lim supn→∞

∫
I

gn(x)dx,

and
lim infn→∞

∫
I

fn(x)dx = lim infn→∞
∫

I

gn(x)dx.

Hence we can define an integral as follows.
1The set L1(I) is the set of Lebesgue integrable functuions on I.
2CEn = R \ En
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Definition 1 Let (gn) be a sequence in L0(T ((ai)l
1)) with an L0-Cauchy sequence for g. If

lim supn→∞

∫
I

gn(x)dx = lim infn→∞
∫

I

gn(x)dx,

this common value is denoted by

I(g, T ((ai)l
1)) = (E.R.T ((ai)l

1))
∫

I

g(x)dx

and I(g, T ((ai)l
1)) is called the (E.R.T ((ai)l

1))-integral of g on I. If −∞ < I(g, T ((ai)l
1)) <

∞, g is called to be (E.R.T ((ai)l
1))-integrable on I.

Definition 2 A sequence (gn) of functions in M0(I) is said to satisfy (∗)-condition for
a1, a2, ..., al if

lim
n→∞

∫
Ja

n∩I

|gn(x)|dx = 0

for any a ∈ I with a 
= ai(i = 1, 2, ..., l).

Let L∗
0(T ((ai)l

1)) be the set of all sequences (gn) in L0(T ((ai)l
1)) with (∗)-condition for

a1, a2, ..., al.
We define a translation invariant integral in M0(I).

Definition 3 Let g ∈ M0(I) be a function such that ,for some sequence T ((ai)l
1) of mea-

sures, there exists a sequence (gn) ∈ L∗
0(T ((ai)l

1)) with an L0-Cauchy sequence (V (gn)) for
g. If the (E.R.T ((ai)l

1))-integral of g exists, the (E.R.T )-integral

(E.R.T )
∫

I

g(x)dx

of g is defined to be the (E.R.T ((ai)l
1))-integral of g, where the (E.R.T )-integral of g may

be finite or infinite. If the (E.R.T )-integral of g is finite, g is said to be (E.R.T )-integrable.

Remark 1 We take sequences (αn), (βn), (Tn), and (νn) with the above conditions arbitrar-
ily and fix there. We make some particular choices for the situations there.

Remark 2 In the above assertions, an open interval I can be replaced by a semiclosed or
closed interval. That is, the (E.R.T ((ai)l

1))-integral and (E.R.T )-integral can be defined on
a semiclosed or closed interval.

3 Relations to improper Riemann integral and Lebesgue integral First, we con-
sider the relation between the (E.R.T )-integral and the improper Riemann integral. In this
Section, let En = R \ [−n, n], βn = n, and Jn = [−1/(2n), 1/(2n)] for n = 1, 2, · · · . In the
following, a function f is assumed to be measurable on an interval I.

Theorem 1 Let I = (a, b] be a finite interval. If f is a bounded Riemann integrable function
on [c, b] for every c ∈ (a, b) and

(3.1) lim
c→a+0

∫ b

c

f(x)dx

is finite, then f is (E.R.T )-integrable on I, and the value of the integral is given by the
same value as (3.1).
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Proof. Let n0 be an integer with n0 > (2(b − a))−1. Put An = [a + 1/(2n), b] for
n = n0, n0 + 1, · · · . Let (αn) be an increasing sequence with

αn ≥ max(sup
An

|f(x)|,n),

and (νn) a sequence of measures on R defined by

νn(E) =
∫

E

kn(x)dx,

where

(3.2) kn(x) =

⎧⎨
⎩

(αn/(4nx2)) exp(−αn/(2n|x|)), on Jn

(αn/(2n)) exp(−αn|x|/n), on En

1, on R \ (Jn ∪ En).

Put a1 = a, and (µn) = T (a1). Let fn(x) (n ≥ n0) be a function defined by fn(x) = f(x)
on An and 0 elsewhere.

We will show that (V (fn))∞N = (V (fn, εn, An))∞N is an L0-Cauchy sequence for T (a1)
for sufficiently large N (> n0), where εn = 1/n.

First, Since ∫
An

|fn(x) − fn+1(x)|dx = 0,

(V (fn))∞N is a Cauchy sequence.
Next, we show that (V (fn))∞N satisfies (K1),(K2), and (K3).
Let B be any Lebesgue measurable subset of I with µ0

n(I \An) ≥ µ0
n(B). It follows that

(3.3) µn
0(I \ An) = exp(−αn)/2

and
(3.4) µn

0(B ∩ An) = m(B ∩ An).

From (3.3) and(3.4), we have
∫

B

|fn(x)|dx =
∫

B∩An

|f(x)|dx ≤ αn exp(−αn)/2 ≤ εn

for sufficiently large n. Thus (K3) is satisfied.
Moreover, we have

m(B ∩ [−1/εn, 1/εn]) ≤ m((I \ An) ∩ B) + m(An ∩ B)

≤ 1/(2n) + exp(−αn)/2 ≤ εn

for sufficiently large n. Thus (K1) is satisfied.
Since µn(I \ An) = µ0

n(I \ An)/exp(−αn) = 1/2, (K2) is satisfied.
Threrefore (V (fn))∞N ∈ F0(T (a1)).
We see easily that (fn) satisfies (∗)-condition. Hence we have (fn) ∈ L∗

0(T (a1)) and

(E.R.T )
∫ b

a

f(x)dx = lim
n→∞

∫ b

a

fn(x)dx

= lim
c→a+0

∫ b

c

f(x)dx.�
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The approximation of the integral from the right to the left extremity a can be replaced
by that from the left to the right extremity b by the same argument as Theorem 1.

Next, we consider an improper Riemann integrable function on an infinite interval [a,∞).

Theorem 2 Suppose that f is a bounded Riemann integrable function on [a, b) for every b
with a < b and

(3.5) lim
b→∞

∫ b

a

f(x)dx

is finite. Then f is (E.R.T )-integrable on the interval I = [a,∞) and the integral value
coinsides with the limit (3.5).

Proof. Let (αn) and (νn) be sequences in Theorem 1 defined by An = [a, n] in place of
An = [a + 1/(2n), n]. A function fn(x) on I = [a,∞) is defined to be f(x) on An and 0
elsewhere. We will show that

(V (fn))∞N = (V (fn, εn, An))∞N ∈ F0(T (a1))

for sufficiently large N , where a1 = a and εn = 1/
√

n.
We see easily that (V (fn))∞N is a Cauchy sequence. Since µ0

n(I \An) = exp(−αn), (K2)
is satisfied.

Let B be any subset of I satisfying µ0
n(I \ An) ≥ µ0

n(B).
Since exp(−αn) = µ0

n(I \ An) ≥ µ0
n(B) and µ0

n(B ∩ An) = m(B ∩ An), we have

(3.6)
∫

B

|fn(x)|dx ≤
∫

I\An

|f(x)|dx +
∫

B∩An

|f(x)|dx

≤ M/(2n) + αnexp(−αn) < εn

for sufficiently large n, where M = max
[a,a+1]

|f(x)| . Thus (K3) is satisfied.

Moreover, we obtain

m(B ∩ [−1/εn, 1/εn]) ≤ m(B ∩ (I \ An))

+m(B ∩ An) ≤ 1/(2n) + exp(−αn) ≤ εn,

which means that (K1) is satisfied. Thus (V (fn))∞N ∈ F0(T (a1)).
Since (fn) satisfies (∗)-condition, f is (E.R.T )-integrable and

(E.R.T )
∫ ∞

a

f(x)dx = lim
n→∞

∫ ∞

a

fn(x)dx

= lim
b→∞

∫ b

a

f(x)dx.�

By the similar verification as Theorem 2, we can find that the assertion in Theorem 2
holds also for an interval (−∞, a] or (−∞,∞) in place of [a,∞).

Example 1 Since f(x) = sin x/x is improper Riemann integrable on [0,∞), f is (E.R.T )-
integrable, and we have

(E.R.T )
∫ ∞

0

sin x/x dx = π/2.
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Next we discuss with the relation of the Lebesgue integral and the (E.R.T )-integral.

Theorem 3 If f is Lebesgue integrable on a finite or an infinite interval I, f is (E.R.T )-
integrable on I and both integral values coincide.

Proof. Let (νn) be a sequence of measures in Theorem 1 defined by (αn) = (n). We
set (µn) = T (a1), where a1 is any number in I. Put An = I, fn = f , and εn = 1/n for
n = 1, 2, · · · . Since I \ An = φ, it is clear that (V (fn, εn, An)) ∈ F0(T (a1)). Since (fn)
satisfies (∗)-condition, f is (E.R.T )-integrable and

(E.R.T )
∫

I

f(x)dx =
∫

I

f(x)dx.�

Definition 4 If |f | is (E.R.T )-integrable on I, f is called to be absolutely (E.R.T )-integrable
on I.

Theorem 4 If f is absolutely (E.R.T )-integrable on a finite or an infinite interval I, f is
Lebesgue integrable and

(E.R.T )
∫

I

f(x)dx =
∫

I

f(x)dx.

Proof. If |f | is (E.R.T )-intagrable on I, there exists a Cauchy sequence (V (gn)) =

(V (gn, εn, Bn)) and a finite number of points a1, a2, · · · , al such that
∞⋂

n=1

V (gn, εn, Bn)  |f |

and (V (gn, εn, Bn)) ∈ F0(T ((ai)l
1)). Hence we have∫
Bn

|gn(x) − |f(x)||dx ≤ εn.

so that

(3.7) (E.R.T )
∫

I

|f(x)|dx = lim
n→∞

∫
Bn

gn(x)dx = lim
n→∞

∫
Bn

|f(x)|dx.

Putting, Bn
∗ =

n⋃
j=1

Bj , we have m(Bn
∗ \ Bn) = 0. Hence it follows that

(3.8)
∫

B∗
n

|f(x)|dx =
∫

Bn

|f(x)|dx.

Let hn(x) be a function defined by

hn(x) =
{ |f(x)|, on B∗

n

0, on I \ B∗
n,

Since m(I \⋃∞
j=1 Bj) = 0, we obtain hn ↑ |f | a.e. From the monotone convergence theorem,

it follows that ∫
I

|f(x)|dx = lim
n→∞

∫
I

hn(x)dx = lim
n→∞

∫
B∗

n

|f(x)|dx.

Hence we have ∫
I

|f(x)|dx = lim
n→∞

∫
Bn

|f(x)|dx = (E.R.T )
∫

I

|f(x)|dx

from (3.7) and (3.8). Thus |f | is Lebesgue integrable on I. �
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4 Fourier transform By virtue of Theorems 2, 3, and 4, it will be shown that the main
fundamental theorems on Fourier integrals hold also for (E.R.T )-integral.

In this chapter, we will state three statements without proof which are the theorem of
Riemann-Lebesgue, Fourier’s integral formula, and Fourier’s single-integral formula.

Theorem 5 Let f be absolutely (E.R.T )-integrable on R. Then it holds that

lim
λ→∞

(E.R.T )
∫ ∞

−∞
f(x)cosλxdx = 0,

and
lim

λ→∞
(E.R.T )

∫ ∞

−∞
f(x)sinλxdx = 0.

Theorem 6 Let f be absolutly (E.R.T )-integrable on R. If f is of bounded variation in an
interval including the point x, then

1
π

(E.R.T )
∫ ∞

0

(E.R.T )
∫ ∞

−∞
f(t)cosu(x − t)dtdu

=
1
2
(f(x + 0) + f(x − 0)).

Theorem 7 If f(t)/(1 + |t|) is absolutely (E.R.T )-integrable on (−∞,∞) and f is of
bounded variation in an interval including the point x, then

lim
λ→∞

1
π

(E.R.T )
∫ ∞

−∞
f(t)

sinλ(x − t)
x − t

dt

=
1
2
(f(x + 0) + f(x − 0)).

Remark 3 It is known that the Fourier’s integral and Fourier’s single-integral formulas
mentioned in theorems 6 and 7 are described by using not only the Lebesgue integral but the
improper Riemann integral. However, the (E.R.T )-integral is an extention of their integral
as mentioned in Section 3, and their formulas are described by using only the (E.R.T )-
integral.

5 A restricted Fourier’s integral formula. In this section, for some functions which
are neither Lebesgue integrable nor of bounded variation on R, we introduce a restricted
Fourier transform.

For different points c1, c2, · · · , cl, we denote Hn =
l⋃

i=1

(ci − 1
2n

, ci +
1
2n

) and An =

[−n, n] \ Hn. Let (αn) be an increasing sequence with αn ≥ n for n = 1, 2, · · · .
In what follows, we suppose that f is a measurable function on R which satiisfies the

following conditions:
(i) ess.supAn

|f(x)| ≤ αn.
(ii) For each ci (i = 1, 2, · · · , l), there exists a positive number ωi such that

f(ci + t) = −f (ci − t)

for 0 < t ≤ ωi.
We choose any numbers ξ1 and ξ2 (ξ1 < ξ2) satisfying the following two conditions:
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(1) if x /∈ {c1, c2, · · · , cl}, the open interval (ξ1, ξ2) includes x and the closed interval
[ξ1, ξ2] excludes c1, c2, · · · , and cl.

(2) if x = ci for some i, the open interval (ξ1, ξ2) includes x and the closed interval
[ξ1, ξ2] excludes any cj(j 
= i).

Let χx(t, ξ1, ξ2) be a function with

χx(t, ξ1, ξ2) =
{

1, on ξ1 < t < ξ2

0, on elsewhere.

We define a restricted Fourier transform

F (u, x) ∼ (E.R.T )
∫ ∞

−∞
χx(t, ξ1, ξ2)f(t)exp(−iut)dt,

and define the inverse transform by

f(x) ∼ 1
2π

(E.R.T )
∫ ∞

−∞
F (u, x)exp(iux)du.

Let Jn = [−1/(2n), 1/(2n)] and En = R \ [−n, n]. Moreover, let (νn) be a sequence of
measures on R defined by

νn(E) =
∫

E

kn(x)dx,

where kn(x) is a function defined by (3.2) in Theorem 1, where (αn) is the sequence defined
at the biginning of this section. We put (µn) = T ((ci)l

1).

Lemma 1 If x = ci for some i, then, for any positive number u,

g(t) = f(t)χx(t, ξ1, ξ2) cos u(x − t)

is (E.R.T )-integrable on R.

Proof. Let gn(t) be a function defined by g(t) on An and 0 elsewhere.
We will show that

(V (gn))∞N = (V (gn, εn, An))∞N ∈ F0(T ((ci)l
1)

for sufficiently large N , where εn = 2l/n. Let B be any Lebesgue measurable subset of R
with µ0

n(CAn) ≥ µ0
n(B). It follows that

µ0
n(CAn) = (l + 1)exp(−αn)

and
µ0

n(B ∩ An) = m(B ∩ An).

Hence, by the similar argument as the proof of Theorem 2, we can see that
∫

B

|gn(t)|dt =
∫

B∩An

|g(t)|dt ≤ αnm(B ∩ An)

< αn(l + 1)exp(−αn) ≤ εn

for sufficiently large n. Thus (K3) is satisfied. Moreover, we have

m(B ∩ [−1/εn, 1/εn]) ≤
l∑

i=1

m(B ∩ [ci − 1/(2n), ci + 1/(2n)] + m(B ∩ An)
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≤ l

n
+ (l + 1)exp(−αn) < εn

Thus (K1)is satisfied. We can easily see that (V (gn)) is a Cauchy sequence with (K2) and
(gn) satisfies (∗)-condition.

By virtue of condition (ii) for f , these exists a number ωi such that f(x+ t) = −f (x− t)
for 0 < |t| ≤ ωi.

First, let (x − ωi, x + ωi) ⊂ (ξ1, ξ2). Putting W = (ξ1, x − ωi) ∪ (x + ωi, ξ2), g(t) is
essentially bounded on W . Hence g is Lebesgue integrable on W . Moreover, there exists a
number n0 such that 1/n0 < ωi. Therefore we have, for every n > n0,

(5.1)
∫

1
n <|x−t|<ωi

g(t)dt =
∫ ωi

1
n

(f(x − t) + f(x + t)) cos utdt = 0

From (5.1) it follows that

(5.2) (E.R.T )
∫ ∞

−∞
g(t)dt = lim

n→∞

∫
An

g(t)dt =
∫

W

g(t)dt.

Thus g is (E.R.T )-integrable on R.
Next, let (x − ωi, x + ωi) 
⊂ (ξ1, ξ2). If x − ξ1 ≤ ξ2 − x, then

∫ 2x−ξ1

ξ1

g(t)dt = 0,

so that

(5.3) (E.R.T )
∫ ∞

−∞
g(t)dt =

∫ ξ2

2x−ξ1

q(t)dt.

Since g(t) is essentially bounded on (2x − ξ1, ξ2), g is (E.R.T )-integrable on R.
In the same way, if x − ξ1 > ξ2 − x, then

(5.4) (E.R.T )
∫ ∞

−∞
g(t)dt =

∫ 2x−ξ2

ξ1

g(t)dt.

Thus g is (E.R.T )-integrable on R. �

Lemma 2 If x = ci, there is a Cauchy sequence (V (pn)) for

p(u) = (E.R.T )
∫ ∞

−∞
f(t) χx(t, ξ1, ξ2) cos u(x − t)dt

on I = [0,∞).

Proof. By the right hand side of (5.2), (5.3),and (5.4), we find that p(u) is bounded.
For a function pn defined by pn(u) = p(u) on (1/(2n), n) and pn(u) = 0 on elsewhere,

it is easily seen that (V (pn, εn, Gn))∞N ∈ F0(T (a1)), where a1 = 0, Gn = (1/(2n), n) and
εn = 1/n. �

Now we prove the following integral formula for the restricted Fourier transform.
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Theorem 8 (1) Suppose that x /∈ {c1, c2, · · · , cl} and f is of bounded variation in an open
interval including x. Then

(5.5)
1
π

(E.R.T )
∫ ∞

0

(E.R.T )
∫ ∞

−∞
f(t)χx(t, ξ1, ξ2)cosu(x − t)dtdu

=
1
2
(f(x + 0) + f(x − 0)).

(2) Suppose that x = ci for some i (1 ≤ i ≤ l). Then

(5.6)
1
π

(E.R.T )
∫ ∞

0

(E.R.T )
∫ ∞

−∞
f(t) χx(t, ξ1, ξ2) cos u(x − t)dtdu = 0.

Proof. First,we prove (1). For any x /∈ {c1, c2, · · · , cl}, f(t) is essentially bounded on
(ξ1, ξ2) by the condition (i) for f . Hence, from Theorem 6, the formula (5.5) holds.

Next,we prove (2). We use the notations used in Lemmas 1 and 2.
Let (x − ωi, x + ωi) be a subinterval of (ξ1, ξ2). Then the formula (5.2) implies that

p(u) = (E.R.T )
∫ ∞

−∞
g(t)dt =

∫
W

g(t)dt

=
∫ x−ωi

ξ1

f(t) cosu(x − t)dt +
∫ ξ2

x+ωi

f(t) cos u(x − t)dt

=
∫ x−ξ1

ωi

f(x − t) cos utdt +
∫ −ωi

x−ξ2

f(x − t) cos utdt

It follows that∫ n

1
2n

∫ x−ξ1

ωi

f(x − t) cos utdtdu =
∫ x−ξ1

ωi

f(x − t)
sin nt − sin(t/(2n))

t
dt.

Since f(x− t)/t is essentially bounded on the interval (ωi, x − ξ1), the formula

lim
n→∞

∫ x−ξ1

ωi

f(x − t)
sin nt

t
dt = 0

holds. Moreover, since | sinx| ≤ |x|, we have

|
∫ x−ξ1

ωi

f(x − t)
sin(t/(2n))

t
dt| ≤ 1

2n

∫ x−ξ1

ωi

|f(x − t)|dt.

Thus

(5.7) lim
n→∞

∫ n

1
2n

∫ x−ξ1

ωi

f(x − t) cos utdtdu = 0

By similar argument as above, we have

(5.8) lim
n→∞

∫ n

1
2n

∫ −ωi

x−ξ2

f(x − t) cos utdtdu = 0.

It follows, from (5.7), (5.8) and Lemma 2, that

1
π

(E.R.T )
∫ ∞

0

p(u)du =
1
π

lim
n→∞

∫ n

1
n

p(u)du = 0.
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Thus (5.6) holds.
Next, in the case of (x − ωi, x + ωi) 
⊂ (ξ1, ξ2), the formula

1
π

(E.R.T )
∫ ∞

0

p(u)du = 0

can be shown by a similar argument as above. �
Moreover, if an interval [α, β] does not contain x and ci(i = 1, 2, ..., l), the integral

formula in Theorem 8 denoted by α, β in place of ξ1, ξ2 is equal to 0 as follows.

Theorem 9 Let α, β be real numbers with α < β and ci /∈ [α, β] for i = 1, 2, ..., l. If
x /∈ [α, β], then

(E.R.T )
∫ ∞

0

(E.R.T )
∫ β

α

f(t) cos u(x − t)dtdu = 0.

Proof. There is an integer n0 with [α, β] ⊆ An0 . Hence f(x) is essentially bounded on
[α, β] from condition (i) for f . Thus f(t) cos u(x− t) is (E.R.T )-integrable on [α, β] for any
u ∈ I = [0,∞). Let h(u) be the function given by

(E.R.T )
∫ β

α

f(t) cos u(x − t)dt.

Let

hn(u) =
{

h(u), on Gn = [ 1
2n , n]

0, on D \ Gn.

Then it is easily seen that (V (hn, εn, Gn))∞N ∈ F0(T (a1)) for sufficiently large N , where
a1 = 0 and εn = 1/n.

Moreover, we obtain

(5.9) lim
n→∞

∫ ∞

0

hn(u)du = lim
n→∞

∫ n

1
2n

∫ β

α

f(t) cos u(x − t)dtdu

= lim
n→∞

∫ β−x

α−x

f(x − t)
sin(nt) − sin(t/(2n))

t
dt.

By a similar argument as the proof of Theorem 8, this limit in (5.9) turns out to be 0. It
follows that

(E.R.T )
∫ ∞

0

h(u)du = lim
n→∞

∫ ∞

0

hn(u)du = 0. �

Now we apply Theorem 8 to some example.

Example 2 Put f(t) = t−(2m+1) for some positive integer m. Let An = {x|1/(2n) < |x| <
n} and αn = expn. Then, we have

sup
An

|f(t)| ≤ (2n)(2m+1) ≤ exp n

for sufficiently large n.
We consider two cases as follows:
1. Set x = 0. Let ξ1 and ξ2 be any real numbers with ξ1 < x < ξ2. Then

1
π

(E.R.T )
∫ ∞

0

(E.R.T )
∫ ∞

−∞
χx(t, ξ1, ξ2)

cos ut

t2m+1
dtdu = 0.
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2. Let ξ1 and ξ2 be any real numbers with the same sign, and x any real number with
ξ1 < x < ξ2, Then

1
π

(E.R.T )
∫ ∞

0

(E.R.T )
∫ ∞

−∞
χx(t, ξ1, ξ2)

cos u(x − t)
t2m+1

dtdu =
1

x2m+1
.
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