THE (E.R.T.)-INTEGRAL AND FOURIER TRANSFORM

Keiko NAKAGAMI

Received October 25, 2006; revised November 20, 2006

Abstract. We show the relation between the (E.R.T)-integral and the improper Riemann integral, and define a restricted Fourier's integral formula.

1 Introduction In our previous paper [11], we described the (E.R.T)-integral defined independently of points where the integrand have the infinity. It is defined on the space $\Gamma_{0}(I) \oplus M_{0}(I)$ of generalized functions over an interval I of \mathbf{R}. The set $\Gamma_{0}(I)$ is the singular part of $\Gamma_{0}(I) \oplus M_{0}(I)$ in the sense that it contains the δ-function and it's heigher derivatives, and the set $M_{0}(I)$ consists of all Lebesgue measurable functions on I, which is the regular part of $\Gamma_{0}(I) \oplus M_{0}(I)$.

In this paper, we do not consider $\Gamma_{0}(I)$. That is, we consider only the (E.R.T)-integral for generalized function in $0 \bigoplus M_{0}(I)$ (namely, $M_{0}(I)$).

In Section 2, we recall some terminologies and notations containing the definition of the (E.R.T)-integral in $M_{0}(I)$.

In Section 3, we will show the relations between the (E.R.T)-integral and the improper Riemann integral as well as the Lebesgue integral.

From these relations, it is easy to see that the main fundamental theorems for Fourier integrals hold also for the (E.R.T)-integrals. In Section 4, we see that the theorem of Riemann-Lebesgue, Fourier's integral formula, and Fourier's single-integral formula hold also for the (E.R.T)-integrals.

In Section 5, we define a restricted Fourier's integral formula for some functions which are neither Lebesgue integrable nor of bounded variation on \mathbf{R}.

2 Terminologies and notations Let I be a finite or infinite open interval in \mathbf{R}, and $M_{0}(I)$ the set of all real valued Lebesgue measurable functions defined on I.

We recall some terminologies and notations used in the definition of the (E.R.T)-integral in $M_{0}(I)$ ([11]).

In what follows, we suppose that the set $M_{0}(I)$ is classified by the usual equivalence relation $f(x)=g(x)$ a.e. We denote a class in $M_{0}(I)$ and it's representative by the same symbol $f(x)$ or f, and call also the class a function. For each Lebesgue measurable subset A of I and $\epsilon>0$, we difine a pre-neighbourhood $V(f, \epsilon, A)$ as

$$
V(f, \epsilon, A)=\left\{g \in M_{0}(I) ; \int_{A}|f(x)-g(x)| d x \leq \epsilon\right\} .
$$

We denote $V(f, \epsilon, A)$ or $V(f)$ for short.
A sequence $\left(V\left(f_{n}\right)\right)=\left(V\left(f_{n}, \epsilon_{n}, A_{n}\right)\right)$ is called a Cauchy sequence if (i) $V\left(f_{1}\right) \supseteq V\left(f_{2}\right) \supseteq$ \cdots, and (ii) $\epsilon_{n} \rightarrow 0$.

Let $\Lambda=\left(\lambda_{n}\right)$ be a sequence of finite measures on \mathbf{R} such that (1) any Lebesgue measurable set is λ_{n}-measurable and (2) $\mathrm{m}(A)=0$ if and only if $\lambda_{n}(A)=0$.

[^0]A Cauchy sequence $\left(V\left(g_{n}, \epsilon_{n}, A_{n}\right)\right)$ is called an L_{0}-Cauchy sequence for Λ if it satisfies the following three conditions on I :
$\left(K_{1}\right)$ if B is a Lebesgue measurable subset of I with $\lambda_{n}\left(I \backslash A_{n}\right) \geq \lambda_{n}(B)$, then

$$
m\left(B \cap\left[-1 / \epsilon_{n}, 1 / \epsilon_{n}\right]\right) \leq \epsilon_{n}
$$

$\left(K_{2}\right)$ if $\mathrm{m}\left(I \backslash A_{n}\right)>0$ for all n, there exist $k, k^{\prime}>0$ such that

$$
k \leq \lambda_{n}\left(I \backslash A_{n}\right) \leq k^{\prime}
$$

for all n.
$\left(K_{3}\right)$ if B is a Lebesgue measurable subset of I with $\lambda_{n}\left(I \backslash A_{n}\right) \geq \lambda_{n}(B)$, then

$$
\int_{B}\left|g_{n}(x)\right| d x \leq \epsilon_{n}
$$

Let $\mathbf{F}_{0}(\Lambda)$ be the set of L_{0}-Cauchy sequences for Λ, and $L_{0}(\Lambda)$ the set of sequences $\left(g_{n}\right)$ in $L_{1}(I)$ such that there exists an L_{0}-Cauchy sequence $\left(V\left(g_{n}\right)\right) \in \mathbf{F}_{0}(\Lambda) .{ }^{1}$ A sequence $\left(V\left(g_{n}\right)\right) \in \mathbf{F}_{0}(\Lambda)$ is called an L_{0}-Cauchy sequence for Λ and g, or for g, if $\bigcap_{n=1}^{\infty} V\left(g_{n}\right)=\{g\}$.

We fix two increasing sequences $\left(\alpha_{n}\right)$ and $\left(\beta_{n}\right)$ of real numbers with $\lim _{n \rightarrow \infty} \alpha_{n}=\infty$ and $\lim _{n \rightarrow \infty} \beta_{n}=\infty$, and a decreasing sequence $\left(J_{n}\right)$ of measurable subsets with $J_{n} \subseteq\left[-\beta_{n}, \beta_{n}\right]$ and $\lim _{n \rightarrow \infty} m\left(J_{n}\right)=0$.

Let ν_{n} be an absolutely continuous measure on \mathbf{R} such that

$$
\nu_{n}\left(E_{n}\right)=\exp \left(-\alpha_{n}\right)=\nu_{n}\left(J_{n}\right)
$$

for $E_{n}=\mathbf{R} \backslash\left[-\beta_{n}, \beta_{n}\right]$ and non empty J_{n}.
Denote $J_{n}+a=\left\{x+a ; x \in J_{n}\right\}$ by J_{n}^{a}. For any measurable subset E of \mathbf{R} and for any different points $a_{1}, a_{2}, \ldots, a_{l} \in I$, we set

$$
\begin{gather*}
\mu_{n}^{0}(E)=\sum_{i=1}^{l} \nu_{n}\left(\left(E \cap J_{n}^{a_{i}}\right)-a_{i}\right)+\nu_{n}\left(E \cap E_{n}\right) \tag{2.1}\\
+m\left(E \cap\left(C E_{n} \backslash \bigcup_{i=1}^{l} J_{n}^{a_{i}}\right)\right) .^{2}
\end{gather*}
$$

Let

$$
\begin{equation*}
\mu_{n}=\mu_{n}^{0} / \exp \left(-\alpha_{n}\right) \quad(n=1,2, \ldots) \tag{2.2}
\end{equation*}
$$

Then $\left(\mu_{n}\right)$ is called a sequence of measures defined for $a_{1}, a_{2}, \ldots, a_{l}$. We denote $\left(\mu_{n}\right)$ by $T\left(\left(a_{i}\right)_{1}^{l}\right)$ or $T\left(a_{1}, a_{2}, \ldots, a_{l}\right)$. If $J_{n_{0}}=\phi$ for some $n_{0} \in \mathbf{N}$, the measure μ_{n} for each $n \geq n_{0}$ is independent of the choice of points $a_{1}, a_{2}, \ldots, a_{l}$.

We fix the sequence $\left(\nu_{n}\right)$ in the following.
If $\left(g_{n}\right)$ and $\left(f_{n}\right)$ are sequence in $L_{0}\left(T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$ with L_{0}-Cauchy sequences for g, then

$$
\lim \sup _{n \rightarrow \infty} \int_{I} f_{n}(x) d x=\lim \sup _{n \rightarrow \infty} \int_{I} g_{n}(x) d x
$$

and

$$
\liminf _{n \rightarrow \infty} \int_{I} f_{n}(x) d x=\liminf _{n \rightarrow \infty} \int_{I} g_{n}(x) d x
$$

Hence we can define an integral as follows.

[^1]Definition 1 Let $\left(g_{n}\right)$ be a sequence in $L_{0}\left(T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$ with an L_{0}-Cauchy sequence for g. If

$$
\limsup \mathrm{S}_{n \rightarrow \infty} \int_{I} g_{n}(x) d x=\liminf _{n \rightarrow \infty} \int_{I} g_{n}(x) d x
$$

this common value is denoted by

$$
I\left(g, T\left(\left(a_{i}\right)_{1}^{l}\right)\right)=\left(E . R \cdot T\left(\left(a_{i}\right)_{1}^{l}\right)\right) \int_{I} g(x) d x
$$

and $I\left(g, T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$ is called the $\left(E . R . T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$-integral of g on I. If $-\infty<I\left(g, T\left(\left(a_{i}\right)_{1}^{l}\right)\right)<$ ∞, g is called to be $\left(E . R . T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$-integrable on I.

Definition $2 A$ sequence $\left(g_{n}\right)$ of functions in $M_{0}(I)$ is said to satisfy (*)-condition for $a_{1}, a_{2}, \ldots, a_{l}$ if

$$
\lim _{n \rightarrow \infty} \int_{J_{n}^{a} \cap I}\left|g_{n}(x)\right| d x=0
$$

for any $a \in I$ with $a \neq a_{i}(i=1,2, \ldots, l)$.
Let $L_{0}^{*}\left(T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$ be the set of all sequences $\left(g_{n}\right)$ in $L_{0}\left(T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$ with $(*)$-condition for $a_{1}, a_{2}, \ldots, a_{l}$.

We define a translation invariant integral in $M_{0}(I)$.
Definition 3 Let $g \in M_{0}(I)$ be a function such that ,for some sequence $T\left(\left(a_{i}\right)_{1}^{l}\right)$ of measures, there exists a sequence $\left(g_{n}\right) \in L_{0}^{*}\left(T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$ with an L_{0}-Cauchy sequence $\left(V\left(g_{n}\right)\right)$ for g. If the $\left(E . R . T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$-integral of g exists, the (E.R.T)-integral

$$
(E . R . T) \int_{I} g(x) d x
$$

of g is defined to be the $\left(E . R . T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$-integral of g, where the (E.R.T)-integral of g may be finite or infinite. If the (E.R.T)-integral of g is finite, g is said to be (E.R.T)-integrable.

Remark 1 We take sequences $\left(\alpha_{n}\right),\left(\beta_{n}\right),\left(T_{n}\right)$, and $\left(\nu_{n}\right)$ with the above conditions arbitrarily and fix there. We make some particular choices for the situations there.

Remark 2 In the above assertions, an open interval I can be replaced by a semiclosed or closed interval. That is, the (E.R.T $\left.\left(\left(a_{i}\right)_{1}^{l}\right)\right)$-integral and (E.R.T)-integral can be defined on a semiclosed or closed interval.

3 Relations to improper Riemann integral and Lebesgue integral First, we consider the relation between the (E.R.T)-integral and the improper Riemann integral. In this Section, let $E_{n}=\mathbf{R} \backslash[-\mathrm{n}, \mathrm{n}], \beta_{n}=n$, and $J_{n}=[-1 /(2 \mathrm{n}), 1 /(2 \mathrm{n})]$ for $n=1,2, \cdots$. In the following, a function f is assumed to be measurable on an interval I.

Theorem 1 Let $I=(a, b]$ be a finite interval. If f is a bounded Riemann integrable function on $[\mathrm{c}, \mathrm{b}]$ for every $c \in(\mathrm{a}, \mathrm{b})$ and

$$
\begin{equation*}
\lim _{c \rightarrow a+0} \int_{c}^{b} f(x) d x \tag{3.1}
\end{equation*}
$$

is finite, then f is (E.R.T)-integrable on I, and the value of the integral is given by the same value as (3.1).

Proof. Let n_{0} be an integer with $n_{0}>(2(b-a))^{-1}$. Put $A_{n}=[a+1 /(2 n), b]$ for $n=n_{0}, n_{0}+1, \cdots$. Let $\left(\alpha_{\mathrm{n}}\right)$ be an increasing sequence with

$$
\alpha_{n} \geq \max \left(\sup _{\mathrm{A}_{\mathrm{n}}}|\mathrm{f}(\mathrm{x})|, \mathrm{n}\right)
$$

and $\left(\nu_{n}\right)$ a sequence of measures on \mathbf{R} defined by

$$
\nu_{n}(E)=\int_{E} k_{n}(x) d x
$$

where

$$
k_{n}(x)=\left\{\begin{array}{lll}
\left(\alpha_{n} /\left(4 n x^{2}\right)\right) \exp \left(-\alpha_{n} /(2 n|x|)\right), & \text { on } & J_{n} \tag{3.2}\\
\left(\alpha_{n} /(2 n)\right) \exp \left(-\alpha_{n}|x| / n\right), & \text { on } & E_{n} \\
1, & \text { on } & \mathbf{R} \backslash\left(\mathbf{J}_{\mathbf{n}} \cup \mathbf{E}_{\mathbf{n}}\right)
\end{array}\right.
$$

Put $a_{1}=a$, and $\left(\mu_{n}\right)=T\left(a_{1}\right)$. Let $f_{n}(x)\left(n \geq n_{0}\right)$ be a function defined by $f_{n}(x)=f(x)$ on A_{n} and 0 elsewhere.

We will show that $\left(V\left(f_{n}\right)\right)_{N}^{\infty}=\left(V\left(f_{n}, \epsilon_{n}, A_{n}\right)\right)_{N}^{\infty}$ is an L_{0}-Cauchy sequence for $T\left(a_{1}\right)$ for sufficiently large $N\left(>n_{0}\right)$, where $\epsilon_{n}=1 / n$.

First, Since

$$
\int_{A_{n}}\left|f_{n}(x)-f_{n+1}(x)\right| d x=0
$$

$\left(V\left(f_{n}\right)\right)_{N}^{\infty}$ is a Cauchy sequence.
Next, we show that $\left(V\left(f_{n}\right)\right)_{N}^{\infty}$ satisfies $\left(K_{1}\right),\left(K_{2}\right)$, and $\left(K_{3}\right)$.
Let B be any Lebesgue measurable subset of I with $\mu_{n}^{0}\left(I \backslash A_{n}\right) \geq \mu_{n}^{0}(B)$. It follows that

$$
\begin{equation*}
\mu_{n}{ }^{0}\left(I \backslash A_{n}\right)=\exp \left(-\alpha_{n}\right) / 2 \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{n}{ }^{0}\left(B \cap A_{n}\right)=m\left(B \cap A_{n}\right) \tag{3.4}
\end{equation*}
$$

From (3.3) and(3.4), we have

$$
\int_{B}\left|f_{n}(x)\right| d x=\int_{B \cap A_{n}}|f(x)| d x \leq \alpha_{n} \exp \left(-\alpha_{n}\right) / 2 \leq \epsilon_{n}
$$

for sufficiently large n. Thus $\left(K_{3}\right)$ is satisfied.
Moreover, we have

$$
\begin{gathered}
\mathrm{m}\left(B \cap\left[-1 / \epsilon_{n}, 1 / \epsilon_{n}\right]\right) \leq \mathrm{m}\left(\left(I \backslash A_{n}\right) \cap B\right)+\mathrm{m}\left(A_{n} \cap B\right) \\
\leq 1 /(2 n)+\exp \left(-\alpha_{n}\right) / 2 \leq \epsilon_{n}
\end{gathered}
$$

for sufficiently large n. Thus $\left(K_{1}\right)$ is satisfied.
Since $\mu_{n}\left(I \backslash A_{n}\right)=\mu_{n}^{0}\left(I \backslash A_{n}\right) / \exp \left(-\alpha_{n}\right)=1 / 2,\left(K_{2}\right)$ is satisfied.
Threrefore $\left(V\left(f_{n}\right)\right)_{N}^{\infty} \in \mathbf{F}_{0}\left(T\left(a_{1}\right)\right)$.
We see easily that $\left(f_{n}\right)$ satisfies $(*)$-condition. Hence we have $\left(f_{n}\right) \in L_{0}^{*}\left(T\left(a_{1}\right)\right)$ and

$$
\begin{gathered}
\text { (E.R.T) } \int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x \\
=\lim _{c \rightarrow a+0} \int_{c}^{b} f(x) d x
\end{gathered}
$$

The approximation of the integral from the right to the left extremity a can be replaced by that from the left to the right extremity b by the same argument as Theorem 1.

Next, we consider an improper Riemann integrable function on an infinite interval $[a, \infty)$.
Theorem 2 Suppose that f is a bounded Riemann integrable function on $[a, b)$ for every b with $a<b$ and

$$
\begin{equation*}
\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x \tag{3.5}
\end{equation*}
$$

is finite. Then f is (E.R.T)-integrable on the interval $I=[a, \infty)$ and the integral value coinsides with the limit (3.5).

Proof. Let $\left(\alpha_{n}\right)$ and $\left(\nu_{n}\right)$ be sequences in Theorem 1 defined by $A_{n}=[a, n]$ in place of $A_{n}=[a+1 /(2 n), n]$. A function $f_{n}(x)$ on $I=[a, \infty)$ is defined to be $f(x)$ on A_{n} and 0 elsewhere. We will show that

$$
\left(V\left(f_{n}\right)\right)_{N}^{\infty}=\left(V\left(f_{n}, \epsilon_{n}, A_{n}\right)\right)_{N}^{\infty} \in \mathbf{F}_{0}\left(T\left(a_{1}\right)\right)
$$

for sufficiently large N, where $a_{1}=a$ and $\epsilon_{n}=1 / \sqrt{n}$.
We see easily that $\left(V\left(f_{n}\right)\right)_{N}^{\infty}$ is a Cauchy sequence. Since $\mu_{n}^{0}\left(I \backslash A_{n}\right)=\exp \left(-\alpha_{n}\right),\left(K_{2}\right)$ is satisfied.

Let B be any subset of I satisfying $\mu_{n}^{0}\left(I \backslash A_{n}\right) \geq \mu_{n}^{0}(B)$.
Since $\exp \left(-\alpha_{n}\right)=\mu_{n}^{0}\left(I \backslash A_{n}\right) \geq \mu_{n}^{0}(B)$ and $\mu_{n}^{0}\left(B \cap A_{n}\right)=\mathrm{m}\left(B \cap A_{n}\right)$, we have

$$
\begin{gather*}
\int_{B}\left|f_{n}(x)\right| d x \leq \int_{I \backslash A_{n}}|f(x)| d x+\int_{B \cap A_{n}}|f(x)| d x \tag{3.6}\\
\leq M /(2 n)+\alpha_{n} \exp \left(-\alpha_{n}\right)<\epsilon_{n}
\end{gather*}
$$

for sufficiently large n, where $M=\max _{[a, a+1]}|f(x)|$. Thus $\left(K_{3}\right)$ is satisfied.
Moreover, we obtain

$$
\begin{aligned}
& \mathrm{m}\left(B \cap\left[-1 / \epsilon_{n}, 1 / \epsilon_{n}\right]\right) \leq \mathrm{m}\left(B \cap\left(I \backslash A_{n}\right)\right) \\
& +\mathrm{m}\left(B \cap A_{n}\right) \leq 1 /(2 n)+\exp \left(-\alpha_{n}\right) \leq \epsilon_{n}
\end{aligned}
$$

which means that $\left(K_{1}\right)$ is satisfied. Thus $\left(V\left(f_{n}\right)\right)_{N}^{\infty} \in \mathbf{F}_{0}\left(T\left(a_{1}\right)\right)$.
Since $\left(f_{n}\right)$ satisfies $(*)$-condition, f is (E.R.T)-integrable and

$$
\begin{gathered}
\left(\text { E.R.T) } \int_{a}^{\infty} f(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{\infty} f_{n}(x) d x\right. \\
=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
\end{gathered}
$$

By the similar verification as Theorem 2, we can find that the assertion in Theorem 2 holds also for an interval $(-\infty, a]$ or $(-\infty, \infty)$ in place of $[a, \infty)$.

Example 1 Since $f(x)=\sin x / x$ is improper Riemann integrable on $[0, \infty), f$ is $(E . R . T)$ integrable, and we have

$$
(E . R . T) \int_{0}^{\infty} \sin x / x d x=\pi / 2
$$

Next we discuss with the relation of the Lebesgue integral and the (E.R.T)-integral.
Theorem 3 If f is Lebesgue integrable on a finite or an infinite interval I, f is (E.R.T)integrable on I and both integral values coincide.

Proof. Let $\left(\nu_{n}\right)$ be a sequence of measures in Theorem 1 defined by $\left(\alpha_{n}\right)=(n)$. We set $\left(\mu_{n}\right)=T\left(a_{1}\right)$, where a_{1} is any number in I. Put $A_{n}=I, f_{n}=f$, and $\epsilon_{n}=1 / n$ for $n=1,2, \cdots$. Since $I \backslash A_{n}=\phi$, it is clear that $\left(V\left(f_{n}, \epsilon_{n}, A_{n}\right)\right) \in \mathbf{F}_{0}\left(T\left(a_{1}\right)\right)$. Since $\left(f_{n}\right)$ satisfies $(*)$-condition, f is (E.R.T)-integrable and

$$
(E . R . T) \int_{I} f(x) d x=\int_{I} f(x) d x .
$$

Definition $4 I f|f|$ is (E.R.T)-integrable on I, f is called to be absolutely (E.R.T)-integrable on I.

Theorem 4 If f is absolutely (E.R.T)-integrable on a finite or an infinite interval I, f is Lebesgue integrable and

$$
(E . R . T) \int_{I} f(x) d x=\int_{I} f(x) d x
$$

Proof. If $|f|$ is $(E . R . T)$-intagrable on I, there exists a Cauchy sequence $\left(V\left(g_{n}\right)\right)=$ $\left(V\left(g_{n}, \epsilon_{n}, B_{n}\right)\right)$ and a finite number of points $a_{1}, a_{2}, \cdots, a_{l}$ such that $\bigcap_{n=1}^{\infty} V\left(g_{n}, \epsilon_{n}, B_{n}\right) \ni|f|$ and $\left(V\left(g_{n}, \epsilon_{n}, B_{n}\right)\right) \in \mathrm{F}_{0}\left(T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$. Hence we have

$$
\int_{B_{n}}\left|g_{n}(x)-|f(x)|\right| d x \leq \epsilon_{n}
$$

so that

$$
\begin{equation*}
(E . R . T) \int_{I}|f(x)| d x=\lim _{n \rightarrow \infty} \int_{B_{n}} g_{n}(x) d x=\lim _{n \rightarrow \infty} \int_{B_{n}}|f(x)| d x \tag{3.7}
\end{equation*}
$$

Putting, $B_{n}{ }^{*}=\bigcup_{j=1}^{n} B_{j}$, we have $\mathrm{m}\left(B_{n}{ }^{*} \backslash B_{n}\right)=0$. Hence it follows that

$$
\begin{equation*}
\int_{B_{n}^{*}}|f(x)| d x=\int_{B_{n}}|f(x)| d x \tag{3.8}
\end{equation*}
$$

Let $h_{n}(x)$ be a function defined by

$$
h_{n}(x)=\left\{\begin{array}{lll}
|f(x)|, & \text { on } & B_{n}^{*} \\
0, & \text { on } & I \backslash B_{n}^{*}
\end{array}\right.
$$

Since $\mathrm{m}\left(I \backslash \bigcup_{j=1}^{\infty} B_{j}\right)=0$, we obtain $h_{n} \uparrow|f|$ a.e. From the monotone convergence theorem, it follows that

$$
\int_{I}|f(x)| d x=\lim _{n \rightarrow \infty} \int_{I} h_{n}(x) d x=\lim _{n \rightarrow \infty} \int_{B_{n}^{*}}|f(x)| d x
$$

Hence we have

$$
\int_{I}|f(x)| d x=\lim _{n \rightarrow \infty} \int_{B_{n}}|f(x)| d x=\left(\text { E.R.T) } \int_{I}|f(x)| d x\right.
$$

from (3.7) and (3.8). Thus $|f|$ is Lebesgue integrable on I.

4 Fourier transform By virtue of Theorems 2, 3, and 4, it will be shown that the main fundamental theorems on Fourier integrals hold also for (E.R.T)-integral.

In this chapter, we will state three statements without proof which are the theorem of Riemann-Lebesgue, Fourier's integral formula, and Fourier's single-integral formula.

Theorem 5 Let f be absolutely (E.R.T)-integrable on \mathbf{R}. Then it holds that

$$
\lim _{\lambda \rightarrow \infty}(E . R . T) \int_{-\infty}^{\infty} f(x) \cos \lambda x d x=0
$$

and

$$
\lim _{\lambda \rightarrow \infty}(E . R . T) \int_{-\infty}^{\infty} f(x) \sin \lambda x d x=0
$$

Theorem 6 Let f be absolutly (E.R.T)-integrable on \mathbf{R}. If f is of bounded variation in an interval including the point x, then

$$
\begin{gathered}
\frac{1}{\pi}(E . R . T) \int_{0}^{\infty}(E . R . T) \int_{-\infty}^{\infty} f(t) \cos u(x-t) d t d u \\
=\frac{1}{2}(f(x+0)+f(x-0))
\end{gathered}
$$

Theorem 7 If $f(t) /(1+|t|)$ is absolutely (E.R.T)-integrable on $(-\infty, \infty)$ and f is of bounded variation in an interval including the point x, then

$$
\begin{gathered}
\lim _{\lambda \rightarrow \infty} \frac{1}{\pi}(E \cdot R \cdot T) \int_{-\infty}^{\infty} f(t) \frac{\sin \lambda(x-t)}{x-t} d t \\
=\frac{1}{2}(f(x+0)+f(x-0))
\end{gathered}
$$

Remark 3 It is known that the Fourier's integral and Fourier's single-integral formulas mentioned in theorems 6 and 7 are described by using not only the Lebesgue integral but the improper Riemann integral. However, the (E.R.T)-integral is an extention of their integral as mentioned in Section 3, and their formulas are described by using only the (E.R.T)integral.

5 A restricted Fourier's integral formula. In this section, for some functions which are neither Lebesgue integrable nor of bounded variation on \mathbf{R}, we introduce a restricted Fourier transform.

For different points $c_{1}, c_{2}, \cdots, c_{l}$, we denote $H_{n}=\bigcup_{i=1}^{l}\left(c_{i}-\frac{1}{2 n}, c_{i}+\frac{1}{2 n}\right)$ and $A_{n}=$ $[-n, n] \backslash H_{n}$. Let $\left(\alpha_{n}\right)$ be an increasing sequence with $\alpha_{n} \geq n$ for $n=1,2, \cdots$.

In what follows, we suppose that f is a measurable function on \mathbf{R} which satiisfies the following conditions:
(i) $\operatorname{ess}^{\sup _{A_{n}}}|f(x)| \leq \alpha_{n}$.
(ii) For each $c_{i}(i=1,2, \cdots, l)$, there exists a positive number ω_{i} such that

$$
f\left(c_{i}+t\right)=-f\left(c_{i}-t\right)
$$

for $0<t \leq \omega_{i}$.
We choose any numbers ξ_{1} and $\xi_{2}\left(\xi_{1}<\xi_{2}\right)$ satisfying the following two conditions:
(1) if $x \notin\left\{c_{1}, c_{2}, \cdots, c_{l}\right\}$, the open interval $\left(\xi_{1}, \xi_{2}\right)$ includes x and the closed interval $\left[\xi_{1}, \xi_{2}\right]$ excludes c_{1}, c_{2}, \cdots, and c_{l}.
(2) if $x=c_{i}$ for some i, the open interval $\left(\xi_{1}, \xi_{2}\right)$ includes x and the closed interval $\left[\xi_{1}, \xi_{2}\right]$ excludes any $c_{j}(j \neq i)$.

Let $\chi_{x}\left(t, \xi_{1}, \xi_{2}\right)$ be a function with

$$
\chi_{x}\left(t, \xi_{1}, \xi_{2}\right)=\left\{\begin{array}{lll}
1, & \text { on } & \xi_{1}<t<\xi_{2} \\
0, & \text { on } & \text { elsewhere }
\end{array}\right.
$$

We define a restricted Fourier transform

$$
F(u, x) \sim(E . R . T) \int_{-\infty}^{\infty} \chi_{x}\left(t, \xi_{1}, \xi_{2}\right) f(t) \exp (-i u t) d t
$$

and define the inverse transform by

$$
f(x) \sim \frac{1}{2 \pi}(E . R \cdot T) \int_{-\infty}^{\infty} F(u, x) \exp (i u x) d u
$$

Let $J_{n}=[-1 /(2 n), 1 /(2 n)]$ and $E_{n}=\mathbf{R} \backslash[-n, n]$. Moreover, let $\left(\nu_{n}\right)$ be a sequence of measures on \mathbf{R} defined by

$$
\nu_{n}(E)=\int_{E} k_{n}(x) d x
$$

where $k_{n}(x)$ is a function defined by (3.2) in Theorem 1 , where $\left(\alpha_{n}\right)$ is the sequence defined at the biginning of this section. We put $\left(\mu_{n}\right)=T\left(\left(c_{i}\right)_{1}^{l}\right)$.

Lemma 1 If $x=c_{i}$ for some i, then, for any positive number u,

$$
g(t)=f(t) \chi_{x}\left(t, \xi_{1}, \xi_{2}\right) \cos u(x-t)
$$

is (E.R.T)-integrable on \mathbf{R}.
Proof. Let $g_{n}(t)$ be a function defined by $g(t)$ on A_{n} and 0 elsewhere. We will show that

$$
\left(V\left(g_{n}\right)\right)_{N}^{\infty}=\left(V\left(g_{n}, \epsilon_{n}, A_{n}\right)\right)_{N}^{\infty} \in \mathbf{F}_{0}\left(T\left(\left(c_{i}\right)_{1}^{l}\right)\right.
$$

for sufficiently large N, where $\epsilon_{n}=2 l / n$. Let B be any Lebesgue measurable subset of \mathbf{R} with $\mu_{n}^{0}\left(C A_{n}\right) \geq \mu_{n}^{0}(B)$. It follows that

$$
\mu_{n}^{0}\left(C A_{n}\right)=(l+1) \exp \left(-\alpha_{n}\right)
$$

and

$$
\mu_{n}^{0}\left(B \cap A_{n}\right)=\mathrm{m}\left(B \cap A_{n}\right)
$$

Hence, by the similar argument as the proof of Theorem 2, we can see that

$$
\begin{gathered}
\int_{B}\left|g_{n}(t)\right| d t=\int_{B \cap A_{n}}|g(t)| d t \leq \alpha_{n} \mathrm{~m}\left(B \cap A_{n}\right) \\
<\alpha_{n}(l+1) \exp \left(-\alpha_{n}\right) \leq \epsilon_{n}
\end{gathered}
$$

for sufficiently large n. Thus $\left(K_{3}\right)$ is satisfied. Moreover, we have

$$
\mathrm{m}\left(B \cap\left[-1 / \epsilon_{n}, 1 / \epsilon_{n}\right]\right) \leq \sum_{i=1}^{l} \mathrm{~m}\left(B \cap\left[c_{i}-1 /(2 n), c_{i}+1 /(2 n)\right]+m\left(B \cap A_{n}\right)\right.
$$

$$
\leq \frac{l}{n}+(l+1) \exp \left(-\alpha_{n}\right)<\epsilon_{n}
$$

Thus $\left(K_{1}\right)$ is satisfied. We can easily see that $\left(V\left(g_{n}\right)\right)$ is a Cauchy sequence with $\left(K_{2}\right)$ and $\left(g_{n}\right)$ satisfies $(*)$-condition.

By virtue of condition (ii) for f, these exists a number ω_{i} such that $f(x+t)=-f(x-t)$ for $0<|t| \leq \omega_{i}$.

First, let $\left(x-\omega_{i}, x+\omega_{i}\right) \subset\left(\xi_{1}, \xi_{2}\right)$. Putting $W=\left(\xi_{1}, x-\omega_{i}\right) \cup\left(x+\omega_{i}, \xi_{2}\right), g(t)$ is essentially bounded on W. Hence g is Lebesgue integrable on W. Moreover, there exists a number n_{0} such that $1 / n_{0}<\omega_{i}$. Therefore we have, for every $n>n_{0}$,

$$
\begin{equation*}
\int_{\frac{1}{n}<|x-t|<\omega_{i}} g(t) d t=\int_{\frac{1}{n}}^{\omega_{i}}(f(x-t)+f(x+t)) \cos u t d t=0 \tag{5.1}
\end{equation*}
$$

From (5.1) it follows that

$$
\begin{equation*}
(E . R . T) \int_{-\infty}^{\infty} g(t) d t=\lim _{n \rightarrow \infty} \int_{A_{n}} g(t) d t=\int_{W} g(t) d t \tag{5.2}
\end{equation*}
$$

Thus g is (E.R.T)-integrable on \mathbf{R}.
Next, let $\left(x-\omega_{i}, x+\omega_{i}\right) \not \subset\left(\xi_{1}, \xi_{2}\right)$. If $x-\xi_{1} \leq \xi_{2}-x$, then

$$
\int_{\xi_{1}}^{2 x-\xi_{1}} g(t) d t=0
$$

so that

$$
\begin{equation*}
(E . R . T) \int_{-\infty}^{\infty} g(t) d t=\int_{2 x-\xi_{1}}^{\xi_{2}} q(t) d t \tag{5.3}
\end{equation*}
$$

Since $g(t)$ is essentially bounded on $\left(2 x-\xi_{1}, \xi_{2}\right), g$ is (E.R.T)-integrable on \mathbf{R}.
In the same way, if $x-\xi_{1}>\xi_{2}-x$, then

$$
\begin{equation*}
(E . R . T) \int_{-\infty}^{\infty} g(t) d t=\int_{\xi_{1}}^{2 x-\xi_{2}} g(t) d t \tag{5.4}
\end{equation*}
$$

Thus g is (E.R.T)-integrable on \mathbf{R}.
Lemma 2 If $x=c_{i}$, there is a Cauchy sequence $\left(V\left(p_{n}\right)\right)$ for

$$
p(u)=(E . R . T) \int_{-\infty}^{\infty} f(t) \chi_{x}\left(t, \xi_{1}, \xi_{2}\right) \cos u(x-t) d t
$$

on $I=[0, \infty)$.
Proof. By the right hand side of (5.2), (5.3), and (5.4), we find that $p(u)$ is bounded.
For a function p_{n} defined by $p_{n}(u)=p(u)$ on $(1 /(2 n), n)$ and $p_{n}(u)=0$ on elsewhere, it is easily seen that $\left(V\left(p_{n}, \epsilon_{n}, G_{n}\right)\right)_{N}^{\infty} \in \mathbf{F}_{0}\left(T\left(a_{1}\right)\right)$, where $a_{1}=0, G_{n}=(1 /(2 n), n)$ and $\epsilon_{n}=1 / n$.

Now we prove the following integral formula for the restricted Fourier transform.

Theorem 8 (1) Suppose that $x \notin\left\{c_{1}, c_{2}, \cdots, c_{l}\right\}$ and f is of bounded variation in an open interval including x. Then

$$
\begin{gather*}
\frac{1}{\pi}(E . R . T) \int_{0}^{\infty}(E . R . T) \int_{-\infty}^{\infty} f(t) \chi_{x}\left(t, \xi_{1}, \xi_{2}\right) \cos u(x-t) d t d u \tag{5.5}\\
=\frac{1}{2}(f(x+0)+f(x-0))
\end{gather*}
$$

(2) Suppose that $x=c_{i}$ for some $i(1 \leq i \leq l)$. Then

$$
\begin{equation*}
\frac{1}{\pi}(E . R . T) \int_{0}^{\infty}(E . R . T) \int_{-\infty}^{\infty} f(t) \chi_{x}\left(t, \xi_{1}, \xi_{2}\right) \cos u(x-t) d t d u=0 \tag{5.6}
\end{equation*}
$$

Proof. First,we prove (1). For any $x \notin\left\{c_{1}, c_{2}, \cdots, c_{l}\right\}, f(t)$ is essentially bounded on $\left(\xi_{1}, \xi_{2}\right)$ by the condition (i) for f. Hence, from Theorem 6 , the formula (5.5) holds.

Next, we prove (2). We use the notations used in Lemmas 1 and 2.
Let $\left(x-\omega_{i}, x+\omega_{i}\right)$ be a subinterval of $\left(\xi_{1}, \xi_{2}\right)$. Then the formula (5.2) implies that

$$
\begin{aligned}
& p(u)=(E \cdot R \cdot T) \int_{-\infty}^{\infty} g(t) d t=\int_{W} g(t) d t \\
& =\int_{\xi_{1}}^{x-\omega_{i}} f(t) \cos u(x-t) d t+\int_{x+\omega_{i}}^{\xi_{2}} f(t) \cos u(x-t) d t \\
& =\int_{\omega_{i}}^{x-\xi_{1}} f(x-t) \cos u t d t+\int_{x-\xi_{2}}^{-\omega_{i}} f(x-t) \cos u t d t
\end{aligned}
$$

It follows that

$$
\int_{\frac{1}{2 n}}^{n} \int_{\omega_{i}}^{x-\xi_{1}} f(x-t) \cos u t d t d u=\int_{\omega_{i}}^{x-\xi_{1}} f(x-t) \frac{\sin n t-\sin (t /(2 n))}{t} d t
$$

Since $f(x-t) / t$ is essentially bounded on the interval $\left(\omega_{i}, x-\xi_{1}\right)$, the formula

$$
\lim _{n \rightarrow \infty} \int_{\omega_{i}}^{x-\xi_{1}} f(x-t) \frac{\sin n t}{t} d t=0
$$

holds. Moreover, since $|\sin x| \leq|x|$, we have

$$
\left|\int_{\omega_{i}}^{x-\xi_{1}} f(x-t) \frac{\sin (t /(2 n))}{t} d t\right| \leq \frac{1}{2 n} \int_{\omega_{i}}^{x-\xi_{1}}|f(x-t)| d t
$$

Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\frac{1}{2 n}}^{n} \int_{\omega_{i}}^{x-\xi_{1}} f(x-t) \cos u t d t d u=0 \tag{5.7}
\end{equation*}
$$

By similar argument as above, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\frac{1}{2 n}}^{n} \int_{x-\xi_{2}}^{-\omega_{i}} f(x-t) \cos u t d t d u=0 \tag{5.8}
\end{equation*}
$$

It follows, from (5.7), (5.8) and Lemma 2, that

$$
\frac{1}{\pi}(E . R . T) \int_{0}^{\infty} p(u) d u=\frac{1}{\pi} \lim _{n \rightarrow \infty} \int_{\frac{1}{n}}^{n} p(u) d u=0
$$

Thus (5.6) holds.
Next, in the case of $\left(x-\omega_{i}, x+\omega_{i}\right) \not \subset\left(\xi_{1}, \xi_{2}\right)$, the formula

$$
\frac{1}{\pi}(E . R . T) \int_{0}^{\infty} p(u) d u=0
$$

can be shown by a similar argument as above.
Moreover, if an interval $[\alpha, \beta]$ does not contain x and $c_{i}(i=1,2, \ldots, l)$, the integral formula in Theorem 8 denoted by α, β in place of ξ_{1}, ξ_{2} is equal to 0 as follows.

Theorem 9 Let α, β be real numbers with $\alpha<\beta$ and $c_{i} \notin[\alpha, \beta]$ for $i=1,2, \ldots, l$. If $x \notin[\alpha, \beta]$, then

$$
(E . R . T) \int_{0}^{\infty}(E . R . T) \int_{\alpha}^{\beta} f(t) \cos u(x-t) d t d u=0
$$

Proof. There is an integer n_{0} with $[\alpha, \beta] \subseteq A_{n_{0}}$. Hence $f(x)$ is essentially bounded on $[\alpha, \beta]$ from condition (i) for f. Thus $f(t) \cos u(x-t)$ is (E.R.T)-integrable on $[\alpha, \beta]$ for any $u \in I=[0, \infty)$. Let $h(u)$ be the function given by

$$
(E . R . T) \int_{\alpha}^{\beta} f(t) \cos u(x-t) d t
$$

Let

$$
h_{n}(u)= \begin{cases}h(u), & \text { on } \quad G_{n}=\left[\frac{1}{2 n}, n\right] \\ 0, & \text { on } D \backslash G_{n} .\end{cases}
$$

Then it is easily seen that $\left(V\left(h_{n}, \epsilon_{n}, G_{n}\right)\right)_{N}^{\infty} \in \mathbf{F}_{0}\left(T\left(a_{1}\right)\right)$ for sufficiently large N, where $a_{1}=0$ and $\epsilon_{n}=1 / n$.

Moreover, we obtain

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int_{0}^{\infty} h_{n}(u) d u=\lim _{n \rightarrow \infty} \int_{\frac{1}{2 n}}^{n} \int_{\alpha}^{\beta} f(t) \cos u(x-t) d t d u \tag{5.9}\\
& =\lim _{n \rightarrow \infty} \int_{\alpha-x}^{\beta-x} f(x-t) \frac{\sin (n t)-\sin (t /(2 n))}{t} d t
\end{align*}
$$

By a similar argument as the proof of Theorem 8, this limit in (5.9) turns out to be 0 . It follows that

$$
(E . R . T) \int_{0}^{\infty} h(u) d u=\lim _{n \rightarrow \infty} \int_{0}^{\infty} h_{n}(u) d u=0
$$

Now we apply Theorem 8 to some example.
Example 2 Put $f(t)=t^{-(2 m+1)}$ for some positive integer m. Let $A_{n}=\{x|1 /(2 n)<|x|<$ $n\}$ and $\alpha_{n}=\exp n$. Then, we have

$$
\sup _{A_{n}}|f(t)| \leq(2 n)^{(2 m+1)} \leq \exp n
$$

for sufficiently large n.
We consider two cases as follows:

1. Set $x=0$. Let ξ_{1} and ξ_{2} be any real numbers with $\xi_{1}<x<\xi_{2}$. Then

$$
\frac{1}{\pi}(E . R . T) \int_{0}^{\infty}(E . R . T) \int_{-\infty}^{\infty} \chi_{x}\left(t, \xi_{1}, \xi_{2}\right) \frac{\cos u t}{t^{2 m+1}} d t d u=0 .
$$

2. Let ξ_{1} and ξ_{2} be any real numbers with the same sign, and x any real number with $\xi_{1}<x<\xi_{2}$, Then

$$
\frac{1}{\pi}(E . R . T) \int_{0}^{\infty}(E . R . T) \int_{-\infty}^{\infty} \chi_{x}\left(t, \xi_{1}, \xi_{2}\right) \frac{\cos u(x-t)}{t^{2 m+1}} d t d u=\frac{1}{x^{2 m+1}}
$$

References

[1] K.Kunugi:Sur une gènèralisation de l'integrale, Fundamental and Applied Aspects of Math.1(1959),1-30.
[2] H.Okano: Sur une gènèralisation de l'integrale (E.R.) et un thèorème génèral de l'integration par parties, J.Math.Soc.Japan.14(1962),432-442..
[3] K.Nakagami: Integration and differentiation of δ-function I, Math.Japan. 26(1981),297-317.
[4] K.Nakagami: Integration and differentiation of δ-function II, Math.Japan. 28(1983),519-533.
[5] K.Nakagami: Integration and differentiation of δ-function III, Math.Japan. 26(1983),703-709.
[6] K.Nakagami: Integration and differentiation of δ-function IV, Math.Japan. 32(1987), 621-641.
[7] K.Nakagami: Integration and differentiation of δ-function V, Math.Japan. 33(1988), 751-761.
[8] K.Nakagami: Integration and differentiation of δ-function VI,Math.Japan. 34(1989),235-251
[9] K.Nakagami: The space $\Gamma_{0}(I) \bigoplus M_{0}(I)$ of generalized functions, Math. Japan.40(1994),381367.
[10] K.Nakagami: A hyperbolic differential equation in the space $\Gamma_{0}(D) \oplus M_{0}(D)$,Math. Japan.48(1998), 31-41.
[11] K,Nakagami: An integral preserved by a translation on the space $\Gamma_{0}(D) \oplus M_{0}(D)$.Math.Japan. 4(2001),69-76.
[12] K,Nakagami: Multiple integrals on the space $\Gamma_{0}(D) \oplus M_{0}(D)$,Math.Japan. 60(2004),45-59
DEPARTMENT OF COMPUTER SCIENCES, KYOTO SANGYO UNIVERSITY
KAMIGAMO, KITA-KU, KYOTO, 603-8555
E mail : nakagami@cc.kyoto-su.ac.jp

[^0]: 2000 Mathematics Subject Classification. 46Fxx.
 Key words and phrases. integral, generalized function, fourier transform.

[^1]: ${ }^{1}$ The set $L_{1}(I)$ is the set of Lebesgue integrable functuions on I.
 ${ }^{2} C E_{n}=R \backslash E_{n}$

