ON STRICTLY STAR-LINDELÖF SPACES

Shinji Kawaguchi

Received May 12, 2006; revised November 17, 2006

ABSTRACT. In this paper, we introduce new properties of topological spaces defined by stars of coverings, which are called strict star-Lindelöfness and strict starcompactness. Following the fundamental studies on star covering properties by E.K.van Douwen, G.M.Reed, A.W.Roscoe and I.J.Tree ([1]), there have been several related studies (see M.V.Matveev [7], [8], [9], for survey). Star-Lindelöf spaces have many nice properties. However, star-Lindelöfness is not preserved by closed subspaces ([7]). We define strict star-Lindelöfness to modify this defect and still so as to keep possible properties of star-Lindelöfness. Furthermore, we investigate relationships among these covering properties and give various examples.

1. Introduction and preliminaries. In this paper, all spaces are assumed to be T_1 . For a cover \mathcal{U} of a space X and a subset A of X,

$$St(A, \mathcal{U}) = \bigcup \{ U \in \mathcal{U} \mid U \cap A \neq \emptyset \}$$

is called a *star* of A (with respect to \mathcal{U}). Define $\operatorname{St}^{0}(A, \mathcal{U}) = A$, $\operatorname{St}^{1}(A, \mathcal{U}) = \operatorname{St}(A, \mathcal{U})$ and $\operatorname{St}^{n+1}(A, \mathcal{U}) = \operatorname{St}(\operatorname{St}^{n}(A, \mathcal{U}), \mathcal{U})$ for $n \in \mathbb{N}$. For a singleton $A = \{x\}$, we usually write $\operatorname{St}(x, \mathcal{U})$ instead of $\operatorname{St}(\{x\}, \mathcal{U})$.

W.M.Fleischman [3] defined the following notion of starcompact spaces and studied its properties.

Definition 1.1 ([3]). A space X is *starcompact* if for every open cover \mathcal{U} of X, there exists a finite subset F of X such that $St(F, \mathcal{U}) = X$.

He proved in [3] that starcompactness is equivalent to countable compactness in the class of regular spaces. It was informed in [3] that R.S.Houston afterwards showed the equivalence in the class of Hausdorff spaces.

The following notion of star-Lindelöf spaces is defined by S.Ikenaga [5] originally under the name of ω -star spaces, the present term was given by E.K.van Douwen, G.M.Reed, A.W.Roscoe and I.J.Tree [1].

Definition 1.2 ([1]). A space is *star-Lindelöf* if for every open cover \mathcal{U} of X, there exists a countable subset A of X such that $St(A, \mathcal{U}) = X$.

We call such notions of topological spaces defined by taking stars of coverings *star* covering properties.

Later, E.K.van Douwen, G.M.Reed, A.W.Roscoe and I.J.Tree [1] established the fundamentals of star covering properties. Subsequently, there have been several related studies. M.V.Matveev [7], [8], [9] presented a nice exposition of star covering properties which contain many significant results. Among star covering properties, star-Lindelöfness has so far

²⁰⁰⁰ Mathematics Subject Classification. Primary 54D20; Secondary 54B05, 54B10, 54D30, 54G20.

Key words and phrases. star-Lindelöf, star
compact, strictly star-Lindelöf, strictly star
compact, ω_1 compact.

most appeared in the related studies. Many covering properties are preserved by closed subspaces, while star-Lindelöfness is not the case ([7]).

The aim of this paper is to introduce the following new notion of spaces, called strictly star-Lindelöf spaces, which will be shown to have possible properties of star-Lindelöf spaces so as to improve the above defect on closed heredity.

Definition 1.3. A space X is *strictly star-Lindelöf* if for every open cover \mathcal{U} of X and for every subset A of X satisfying $St(A, \mathcal{U}) = X$ there exists a countable subset B of A such that $St(B, \mathcal{U}) = X$.

We also define the following notion, called strictly starcompact spaces, which is related to starcompact spaces.

Definition 1.4. A space X is *strictly starcompact* if for every open cover \mathcal{U} of X and for every subset A of X satisfying $St(A, \mathcal{U}) = X$ there exists a finite subset F of A such that $St(F, \mathcal{U}) = X$.

We investigate properties of strictly star-Lindelöf spaces in Section 2., and strictly starcompact spaces in Section 3.. In Section 4. various examples on strictly star-Lindelöf spaces and other related spaces will be given.

We denote $\mathbb{N}_{\frac{1}{2}} = \{n + \frac{1}{2} \mid n \in \mathbb{N} \cup \{0\}\}$ and $\mathbb{\widetilde{N}} = \mathbb{N} \cup \mathbb{N}_{\frac{1}{2}} \cup \{0\}$ following [7], and other notations and terminology are as in [2].

2. Strictly star-Lindelöf spaces. In this section, we consider strict star-Lindelöfness. To begin with, we recall the definition of *k*-star-Lindelöfness.

For $k \in \mathbb{N} \cup \{0\}$, a space X is k-star-Lindelöf if for every open cover \mathcal{U} of X, there exists a countable subset A of X such that $\operatorname{St}^k(A, \mathcal{U}) = X$. A space X is $k\frac{1}{2}$ -star-Lindelöf if for every open cover \mathcal{U} of X, there exists a countable subcollection \mathcal{V} of \mathcal{U} such that $\operatorname{St}^k(\bigcup \mathcal{V}, \mathcal{U}) = X$. Moreover, a space X is ω -star-Lindelöf if for every open cover \mathcal{U} of X, there exist an $n \in \mathbb{N}$ and a countable subset A of X such that $\operatorname{St}^n(A, \mathcal{U}) = X$. Note that $\frac{1}{2}$ -star-Lindelöfness and 1-star-Lindelöfness are precisely Lindelöfness and star-Lindelöfness, respectively ([7]).

Just like k-star-Lindelöfness, we define the following notions of spaces that are weaker than strict star-Lindelöfness.

Definition 2.1. Let X be a space and $k \in \mathbb{N} \cup \{0\}$.

(1) X is strictly k-star-Lindelöf if for every open cover \mathcal{U} of X and every subset A of X satisfying $\operatorname{St}^k(A,\mathcal{U}) = X$, there exists a countable subset B of A such that $\operatorname{St}^k(B,\mathcal{U}) = X$.

(2) X is strictly $k^{\frac{1}{2}}$ -star-Lindelöf if for every open cover \mathcal{U} of X and every subcollection \mathcal{V} of \mathcal{U} satisfying $\operatorname{St}^{k}(\bigcup \mathcal{V}, \mathcal{U}) = X$, there exists a countable subcollection \mathcal{W} of \mathcal{V} such that $\operatorname{St}^{k}(\bigcup \mathcal{W}, \mathcal{U}) = X$.

(3) X is strictly ω -star-Lindelöf if for every open cover \mathcal{U} of X, there exists an $n \in \mathbb{N}$ such that for every subset A of X satisfying $\operatorname{St}^{n}(A, \mathcal{U}) = X$, there exists a countable subset B of A such that $\operatorname{St}^{n}(B, \mathcal{U}) = X$.

Obviously, strict $\frac{1}{2}$ -star-Lindelöfness and strict 1-star-Lindelöfness are precisely Lindelöfness and strict star-Lindelöfness, respectively.

By Definition 2.1, it is clear that every strictly k-star-Lindelöf space is k-star-Lindelöf for every $k \in \widetilde{\mathbb{N}}$, and every strictly ω -star-Lindelöf space is ω -star-Lindelöf.

Furthermore, for every $k \in \mathbb{N}$ we have that every strictly k-star-Lindelöf space is strictly $k\frac{1}{2}$ -star-Lindelöf, and every strictly $k\frac{1}{2}$ -star-Lindelöf space is strictly (k + 1)-star-Lindelöf

(see Diagram 1 in Section 4.).

Now, recall that a space X satisfies the *discrete countable chain condition* (DCCC, for short) if every discrete collection of non-empty open sets in X is countable ([1]).

Here, we consider properties of strictly k-star-Lindelöf spaces. At first, similarly to the case of k-star-Lindelöfness ([7]), we have the following relations between strict k-star-Lindelöfness and the DCCC.

Theorem 2.2. For a regular space X, the following are equivalent.

- (a) X is strictly $2\frac{1}{2}$ -star-Lindelöf.
- (b) X is strictly k-star-Lindelöf for every $k \in \widetilde{\mathbb{N}}$ with $k \geq 3$.
- (c) X is strictly ω -star-Lindelöf.
- (d) X satisfies the DCCC.

Proof. The implications $(a) \Rightarrow (b)$ and $(b) \Rightarrow (c)$ are trivial.

 $(c) \Rightarrow (d)$: This follows from the fact that every ω -star-Lindelöf regular space satisfies the DCCC ([7]).

 $(d) \Rightarrow (a)$: Suppose that X is regular but not strictly $2\frac{1}{2}$ -star-Lindelöf. Then there exist an open cover \mathcal{U} of X and a subcollection \mathcal{V} of \mathcal{U} such that $\mathrm{St}^2(\bigcup \mathcal{V}, \mathcal{U}) = X$ and $\mathrm{St}^2(\bigcup \mathcal{A}, \mathcal{U}) \neq X$ for any countable subcollection \mathcal{A} of \mathcal{V} .

Let $\alpha < \omega_1$. Suppose that a subset $\{x_\beta \mid \beta < \alpha\}$ of X and a subcollection $\{U_\beta \mid \beta < \alpha\}$ of \mathcal{V} satisfying $x_\beta \in X \setminus \operatorname{St}^2(\bigcup_{\gamma < \beta} U_\gamma, \mathcal{U})$ are given for every $\beta < \alpha$. By the assumption above, we can take $x_\alpha \in X \setminus \operatorname{St}^2(\bigcup_{\beta < \alpha} U_\beta, \mathcal{U})$. Then there exists a $U_\alpha \in \mathcal{V}$ such that $x_\alpha \in \operatorname{St}^2(U_\alpha, \mathcal{U})$. Set $\mathcal{W} = \{U_\alpha \mid \alpha < \omega_1\}$. Then one can show that \mathcal{W} is an uncountable discrete collection consisting of non-empty open sets in X. Therefore X does not satisfy the DCCC.

Now, a space X is ω_1 -compact if every uncountable subset of X has an accumulation point. Every countably compact space and every Lindelöf space are ω_1 -compact, and every ω_1 -compact space is star-Lindelöf.

The following theorem shows that strictly star-Lindelöf spaces are located between Lindelöf spaces and ω_1 -compact spaces.

Theorem 2.3. Every strictly star-Lindelöf space is ω_1 -compact.

Proof. Suppose that X is not ω_1 -compact. Then there exists an uncountable subset A of X with no accumulation points. For each $a \in A$, take a neighborhood U_a of a so that $U_a \cap A = \{a\}$, and define $\mathcal{U} = \{U_a \mid a \in A\} \cup \{X \setminus A\}$. Then \mathcal{U} is an open cover of X. Pick $x_0 \in X \setminus A$ arbitrarily. We have $\operatorname{St}(A \cup \{x_0\}, \mathcal{U}) = X$, but no countable subset B of A satisfies $\operatorname{St}(B \cup \{x_0\}, \mathcal{U}) = X$. Thus X is not strictly star-Lindelöf.

The converse of Theorem 2.3 need not be true (see Example 4.2 below).

It is known that every separable space is star-Lindelöf ([7]). Here we have the following theorem in the case of strictly k-star-Lindelöf spaces.

Theorem 2.4. Every separable space is strictly $1\frac{1}{2}$ -star-Lindelöf.

Proof. Let X be a separable space and D a countable dense subset of X. Let \mathcal{U} be an open cover of X and \mathcal{V} a subcollection of \mathcal{U} satisfying $\operatorname{St}(\bigcup \mathcal{V}, \mathcal{U}) = X$. For each $x \in X$, there exist a $V_x \in \mathcal{V}$ and a $U_x \in \mathcal{U}$ such that $x \in U_x$ and $V_x \cap U_x \neq \emptyset$. Then we can take $d_x \in D \cap (V_x \cap U_x)$ for every $x \in X$. Put $D' = \{d_x \mid x \in X\}$. Then D' is a countable subset of D satisfying $\operatorname{St}(D', \mathcal{U}) = X$. Denote $D' = \{d_n \mid n \in \mathbb{N}\}$. For each $d_n \in D'$, choose a $V_n \in \{V_x \mid x \in X\}$ so that $d_n \in V_n$. Define $\mathcal{W} = \{V_n \mid n \in \mathbb{N}\}$. Then \mathcal{W} is a countable subcollection of \mathcal{V} satisfying $\operatorname{St}(\bigcup \mathcal{W}, \mathcal{U}) = X$. Therefore, X is strictly $1\frac{1}{2}$ -star-Lindelöf. \Box

S. KAWAGUCHI

On the other hand, we cannot conclude that every separable space is strictly star-Lindelöf (see Example 4.3).

It is known that every open F_{σ} -set of a star-Lindelöf space is star-Lindelöf ([7]). Concerning strictly star-Lindelöf spaces, we have

Theorem 2.5. Every F_{σ} -set of a strictly star-Lindelöf space is strictly star-Lindelöf.

Proof. Let X be a strictly star-Lindelöf space and $Y = \bigcup_{n \in \mathbb{N}} H_n$ an F_{σ} -set of X, where H_n is a closed set in X for every $n \in \mathbb{N}$.

Let \mathcal{U} be an open cover of Y and A a subset of Y satisfying $\operatorname{St}(A, \mathcal{U}) = Y$. For each $U \in \mathcal{U}$, take an open set V_U in X so that $V_U \cap Y = U$. Set $\mathcal{V} = \{V_U \mid U \in \mathcal{U}, U \cap A \neq \emptyset\}$.

If $\bigcup \mathcal{V} = X$, notice that $\operatorname{St}(A, \mathcal{V}) = X$. Since X is strictly star-Lindelöf, there exists a countable subset B of A such that $\operatorname{St}(B, \mathcal{V}) = X$. Then, we have $\operatorname{St}(B, \mathcal{U}) \supset \operatorname{St}(B, \mathcal{V}) \cap Y = Y$.

Suppose $\bigcup \mathcal{V} \neq X$. Then, fix $n \in \mathbb{N}$. Note that $\mathcal{V}_n = \mathcal{V} \cup \{X \setminus H_n\}$ is an open cover of X. Choose $x_0 \in X \setminus \bigcup \mathcal{V}$ and put $A' = A \cup \{x_0\}$. Then A' satisfies $\operatorname{St}(A', \mathcal{V}_n) = X$. Since X is strictly star-Lindelöf, there exists a countable subset B'_n of A' such that $\operatorname{St}(B'_n, \mathcal{V}_n) = X$. Let $B_n = B'_n \setminus \{x_0\}$. Then B_n is a countable subset of A satisfying $\operatorname{St}(B_n, \mathcal{U}) \supset \operatorname{St}(B_n, \mathcal{V}) \cap Y \supset H_n$.

Let us set $B = \bigcup_{n \in \mathbb{N}} B_n$. Then B is a countable subset of A, and we have

$$\operatorname{St}(B,\mathcal{U}) = \bigcup_{n \in \mathbb{N}} \operatorname{St}(B_n,\mathcal{U}) \supset \bigcup_{n \in \mathbb{N}} H_n = Y$$

Therefore Y is strictly star-Lindelöf.

As opposed to star-Lindelöfness, we have

Corollary 2.6. Every closed subspace of a strictly star-Lindelöf space is also strictly star-Lindelöf.

On the other hand, strict k-star-Lindelöfness is not necessarily preserved by closed subspaces for every $k \in \mathbb{N}$ with $k \ge 1\frac{1}{2}$ (see Section 4.).

A subset A of a space X is called a *cozero-set* if there is a continuous function $f : X \to \mathbb{R}$ such that $A = \{x \in X \mid f(x) \neq 0\}$.

Corollary 2.7. Every cozero-set of a strictly star-Lindelöf space is also strictly star-Lindelöf.

It is also known that every continuous image of a star-Lindelöf space is star-Lindelöf ([5], [7]). Likewise, we have

Theorem 2.8. Every continuous image of a strictly star-Lindelöf space is also strictly star-Lindelöf.

Proof. Let X be a strictly star-Lindelöf space, Y a space and $f : X \to Y$ a continuous mapping from X onto Y.

Let \mathcal{U} be an open cover of Y and A a subset of Y satisfying $\operatorname{St}(A, \mathcal{U}) = Y$. Put $\mathcal{V} = \{f^{-1}(U) \mid U \in \mathcal{U}\}$. Then \mathcal{V} is an open cover of X satisfying $\operatorname{St}(f^{-1}(A), \mathcal{V}) = X$. Since X is strictly star-Lindelöf, there is a countable subset B of $f^{-1}(A)$ such that $\operatorname{St}(B, \mathcal{V}) = X$. Then f(B) is countable and $f(B) \subset A$. We have $\operatorname{St}(f(B), \mathcal{U}) = Y$. Thus Y is strictly star-Lindelöf.

3. Strictly starcompact spaces. Next, we consider properties of strictly starcompact spaces. We recall the definition of *k*-starcompactness.

For $k \in \mathbb{N} \cup \{0\}$, a space X is k-starcompact if for each open cover \mathcal{U} of X, there exists a finite subset F of X such that $\operatorname{St}^k(F,\mathcal{U}) = X$. A space X is $k\frac{1}{2}$ -starcompact if for each open cover \mathcal{U} of X, there exists a finite subcollection \mathcal{V} of \mathcal{U} such that $\operatorname{St}^k(\bigcup \mathcal{V},\mathcal{U}) = X$. Moreover, a space X is ω -starcompact if for every open cover \mathcal{U} of X, there exist an $n \in \mathbb{N}$ and a finite subset A of X such that $\operatorname{St}^n(A,\mathcal{U}) = X$. Note that $\frac{1}{2}$ -starcompactness and 1-starcompactness are precisely compactness and starcompactness, respectively ([7]).

Now, we define the following notions of spaces that are related to strict starcompactness.

Definition 3.1. Let X be a space and $k \in \mathbb{N} \cup \{0\}$.

(1) X is strictly k-starcompact if for every open cover \mathcal{U} of X and every subset A of X satisfying $\operatorname{St}^k(A, \mathcal{U}) = X$, there exists a finite subset F of A such that $\operatorname{St}^k(F, \mathcal{U}) = X$.

(2) X is strictly k_2^1 -starcompact if for every open cover \mathcal{U} of X and every subcollection \mathcal{V} of \mathcal{U} satisfying $\mathrm{St}^k(\bigcup \mathcal{V}, \mathcal{U}) = X$, there exists a finite subcollection \mathcal{A} of \mathcal{V} such that $\mathrm{St}^k(\bigcup \mathcal{A}, \mathcal{U}) = X$.

(3) X is strictly ω -starcompact if for every open cover \mathcal{U} of X, there exists an $n \in \mathbb{N}$ such that for every subset A of X satisfying $\operatorname{St}^{n}(A, \mathcal{U}) = X$, there exists a finite subset F of A such that $\operatorname{St}^{n}(F, \mathcal{U}) = X$.

In particular, strict $\frac{1}{2}$ -starcompactness and strict 1-starcompactness are precisely compactness and strict starcompactness, respectively.

It follows from Definition 3.1 that every strictly k-starcompact space is k-starcompact for every $k \in \widetilde{\mathbb{N}}$, and every strictly ω -starcompact space is ω -starcompact.

In addition, every strictly k-starcompact space is clearly strictly k-star-Lindelöf, and every strictly ω -starcompact space is strictly ω -star-Lindelöf.

Furthermore, for every $k \in \mathbb{N}$ we have that every strictly k-starcompact space is strictly $k\frac{1}{2}$ -starcompact, and every strictly $k\frac{1}{2}$ -starcompact space is strictly (k+1)-starcompact (see Diagram 2 in Section 4.).

Now, recall that a space X satisfies the discrete finite chain condition (DFCC, for short) if every discrete collection of non-empty open sets in X is finite ([1]). Similarly to the case of k-starcompact spaces ([7]), we have the following relations between strict k-starcompactness and the DFCC.

Theorem 3.2. For a regular space X, the following are equivalent.

- (a) X is strictly $2\frac{1}{2}$ -starcompact.
- (b) X is strictly k-starcompact for every $k \in \mathbb{N}$ with $k \geq 3$.
- (c) X is strictly ω -starcompact.
- (d) X satisfies the DFCC.

It is known that every countably compact Lindelöf space is compact. The following result seems to be interesting in itself; the proof are easy and omitted.

Theorem 3.3. A space X is strictly starcompact if and only if X is countably compact and strictly star-Lindelöf.

Strictly starcompact spaces have the following properties similar to strictly star-Lindelöf spaces. Proofs are similar to the case of strictly star-Lindelöf spaces.

Theorem 3.4. Every closed subspace of a strictly starcompact space is also strictly starcompact.

Theorem 3.5. Every continuous image of a strictly starcompact space is also strictly starcompact. **4.** Examples. In this section, we list various examples on strictly *k*-star-Lindelöf spaces and strictly *k*-starcompact spaces.

Let an infinite ordinal τ have the order topology. The symbol βX is the Stone-Čech compactification of a completely regular space X.

To begin with, we give an example of a strictly star-Lindelöf space which is not Lindelöf. It shows the gap between strict $\frac{1}{2}$ -star-Lindelöfness and strict 1-star-Lindelöfness.

Example 4.1. The space ω_1 is strictly starcompact (and hence strictly star-Lindelöf).

Proof. Let \mathcal{U} be an open cover of ω_1 and A a subset of ω_1 satisfying $\operatorname{St}(A, \mathcal{U}) = \omega_1$. For each $\alpha \in \omega_1$, there exist a $U_{\alpha} \in \mathcal{U}$ and a $\gamma_{\alpha} < \omega_1$ such that $(\gamma_{\alpha}, \alpha] \subset U_{\alpha}$. If A is not cofinal in ω_1 , A itself is countable. Hence we can assume that A is cofinal in ω_1 . By the pressing-down lemma ([6]), there exist an $\alpha_0 < \omega_1$ and a cofinal subset C of ω_1 such that $\gamma_{\alpha} < \alpha_0$ for every $\alpha \in C$.

Because A is cofinal in ω_1 , there is a $\xi \in A$ with $\alpha_0 < \xi$ such that $\gamma_\alpha < \alpha_0 < \xi$ for any $\alpha \in C \cap (\xi, \omega_1)$. Then for every $\beta \in (\xi, \omega_1)$, we can take an $\eta \in C$ so that $\xi < \beta < \eta$. Thus there exists a $U \in \mathcal{U}$ such that $\beta, \xi \in (\gamma_\eta, \eta] \subset U$. Hence $\beta \in \operatorname{St}(\xi, \mathcal{U})$. Therefore, we have $\operatorname{St}(\xi, \mathcal{U}) \supset (\xi, \omega_1)$.

Moreover, for each $\gamma \leq \xi$ there is an $a_{\gamma} \in A$ such that $\gamma \in \operatorname{St}(a_{\gamma}, \mathcal{U})$. Then $\{\operatorname{St}(a_{\gamma}, \mathcal{U}) \mid \gamma \leq \xi\}$ is an open cover of $[0, \xi]$. Since $[0, \xi]$ is compact, we can take finitely many $\gamma_1, \ldots, \gamma_n \leq \xi$ so that $\{\operatorname{St}(a_{\gamma_i}, \mathcal{U}) \mid i = 1, \ldots, n\}$ covers $[0, \xi]$. Let $F = \{a_{\gamma_i} \mid i = 1, \ldots, n\} \cup \{\xi\}$. Then F is a finite subset of A satisfying $\operatorname{St}(F, \mathcal{U}) = \omega_1$. Hence ω_1 is strictly starcompact.

Therefore, the space ω_1 is also an example of a non-compact strictly starcompact space.

Example 4.2. The space $\omega_1 \times (\omega_1 + 1)$ is ω_1 -compact but not strictly star-Lindelöf.

Proof. Define

$$\mathcal{U} = \{ [0, \alpha] \times (\alpha, \omega_1] \mid \alpha < \omega_1 \} \cup \{ \omega_1 \times \omega_1 \}$$

and

$$A = \{ \langle \alpha, \beta \rangle \in \omega_1 \times (\omega_1 + 1) \mid \alpha < \beta < \omega_1 \}.$$

Then \mathcal{U} is an open cover of $\omega_1 \times (\omega_1 + 1)$ and we have $\operatorname{St}(A, \mathcal{U}) = \omega_1 \times (\omega_1 + 1)$. Let C be an arbitrary countable subset of A. Define

$$\alpha_0 = \sup\{\alpha \mid \langle \alpha, \beta \rangle \in C \text{ for some } \beta\} \text{ and } \beta_0 = \sup\{\beta \mid \langle \alpha, \beta \rangle \in C \text{ for some } \alpha\}.$$

Then $\alpha_0 < \beta_0 < \omega_1$. If $\gamma > \beta_0$, then we have

$$\{U \in \mathcal{U} \mid (\gamma, \omega_1) \in U\} = \{[0, \alpha] \times (\alpha, \omega_1] \mid \alpha \ge \gamma\}.$$

For any $\xi \geq \gamma$, $[0,\xi] \times (\xi,\omega_1]$ contains no points of C. Hence $\langle \gamma,\omega_1 \rangle \notin \operatorname{St}(C,\mathcal{U})$.

Hence, the space $\omega_1 \times (\omega_1 + 1)$ is a countably compact but not strictly starcompact. In addition, we also have that $\omega_1 \times (\omega_1 + 1)$ is not strictly 2-star-Lindelöf (see Remark 4.10 below).

Moreover we obtain the following example.

Example 4.3. There exists a star-Lindelöf completely regular space that is strictly $1\frac{1}{2}$ -star-Lindelöf but not ω_1 -compact.

Proof. Let ω be a countable discrete space and \mathcal{A} be a maximal almost disjoint family (m.a.d.family, for short) of infinite subsets of ω . Put $\Psi = \omega \cup \mathcal{A}$. Topologize Ψ by letting ω be an open subspace of Ψ and defining a local base $\mathcal{N}(x)$ at each $x \in \mathcal{A}$ by $\mathcal{N}(x) =$ $\{\{x\} \cup (x \setminus F) \mid F \in [x]^{<\omega}\}$. This space is called a Ψ -space ([4]). Then it is known that Ψ is a separable completely regular space which is 2-starcompact but neither $1\frac{1}{2}$ -starcompact nor ω_1 -compact ([1],[7]).

Since Ψ is separable, Ψ is star-Lindelöf. Moreover, Ψ is strictly $1\frac{1}{2}$ -star-Lindelöf by Theorem 2.4.

Now, we construct the following spaces so as to obtain a $1\frac{1}{2}$ -star-Lindelöf space that is not strictly 2-star-Lindelöf.

For a completely regular space X and an infinite cardinal τ with $cf(\tau) > \omega$, the space

$$N_{\tau}X = ((\tau + 1) \times \beta X) \setminus (\{\tau\} \times (\beta X \setminus X))$$

is called the *Noble plank*. By [7], $N_{\tau}X$ is 2-starcompact, and furthermore, $N_{\tau}X$ is $1\frac{1}{2}$ -starcompact if $\tau > cf(\tau) > \ell(X) > \omega$.

Example 4.4. There exists a $1\frac{1}{2}$ -star-Lindelöf completely regular space that is neither star-Lindelöf nor strictly 2-star-Lindelöf.

Proof. Let D be a discrete space of size ω_1 . Then the Noble plank $N_{\omega_2}D$ is $1\frac{1}{2}$ -star-Lindelöf but not star-Lindelöf ([7]). We show that the Noble plank $N_{\omega_2}D$ is not strictly 2-star-Lindelöf.

Define $\mathcal{U} = \{[0, \alpha) \times \beta D \mid \alpha < \omega_2\} \cup \{(\omega_2 + 1) \times \{d\} \mid d \in D\}$ and $A = \{\omega_2\} \times D$. Then \mathcal{U} is an open cover of $N_{\omega_2}D$ and we have $\operatorname{St}^2(A, \mathcal{U}) = N_{\omega_2}D$. However, no countable subset B of A satisfies $\operatorname{St}^2(B, \mathcal{U}) = N_{\omega_2}D$. Hence $N_{\omega_2}D$ is not strictly 2-star-Lindelöf.

For later use, we also have the another example (see Remark 4.10).

Example 4.5. There exists a $1\frac{1}{2}$ -star-Lindelöf completely regular space that is not strictly 2-star-Lindelöf.

Proof. Let $\Psi = \omega \cup A$ be the Ψ -space constructed form a m.a.d.family $A = \{a_{\lambda} \mid \lambda < 2^{\omega}\}$ of infinite subsets of ω . Let D be a discrete space of size 2^{ω} . Denote $D = \{y_{\lambda} \mid \lambda < 2^{\omega}\}$. Define $X = \Psi \times A(D)$, where A(D) is the one-point compactification of D.

At first, it is easy to see that X is $1\frac{1}{2}$ -star-Lindelöf since $\omega \times A(D)$ is Lindelöf and dense in X.

Next, we prove that X is not strictly 2-star-Lindelöf. Define an open cover of X by

$$\mathcal{U} = \left\{ \Psi \times \{y_{\lambda}\} \, | \, \lambda < 2^{\omega} \right\} \cup \left\{ \{n\} \times A(D) \, | \, n \in \omega \right\} \\ \cup \left\{ (\{a_{\lambda}\} \cup a_{\lambda}) \times (A(D) \setminus \{y_{\lambda}\}) \, | \, \lambda < 2^{\omega} \right\}.$$

Put $A = \{ \langle a_{\lambda}, y_{\lambda} \rangle | \lambda < 2^{\omega} \}$. We have that $\operatorname{St}^{2}(A, \mathcal{U}) = X$. Let B be an arbitrary countable subset of A. Take a $\lambda_{0} < 2^{\omega}$ such that $\langle a_{\lambda_{0}}, y_{\lambda_{0}} \rangle \notin B$. Then we can show that $\langle a_{\lambda_{0}}, y_{\lambda_{0}} \rangle \notin \operatorname{St}^{2}(B, \mathcal{U})$. Hence X is not strictly 2-star-Lindelöf.

Let \mathbb{R}^* be the real line \mathbb{R} with the topology

 $\mathcal{T}_c = \{ U \subset \mathbb{R} \mid \mathbb{R} \setminus U \text{ is a countable subset of } \mathbb{R} \}.$

Then \mathbb{R}^* is not strictly starcompact because it is not countably compact. And clearly \mathbb{R}^* is strictly $1\frac{1}{2}$ -starcompact. Note that \mathbb{R}^* is a T_1 -space which is not Hausdorff. We cannot

construct a strictly $1\frac{1}{2}$ -starcompact Hausdorff space which is not strictly starcompact yet.

It is known that the Tychonoff plank $T = (\omega_1 + 1) \times (\omega + 1) \setminus \{\langle \omega_1, \omega \rangle\}$ is $1\frac{1}{2}$ -starcompact ([1],[7]), whereas we show it is not even strictly 2-starcompact.

Example 4.6. The Tychonoff plank T is $1\frac{1}{2}$ -starcompact but not strictly 2-starcompact.

Proof. Define $\mathcal{U} = \{[0, \alpha) \times (\omega + 1) \mid \alpha < \omega_1\} \cup \{(\omega_1 + 1) \times \{n\} \mid n < \omega\}$. Then \mathcal{U} is an open cover of T. For every $n < \omega$, we have $\operatorname{St}((\omega_1, n), \mathcal{U}) = (\omega_1 + 1) \times \{n\}$ since $(\omega_1 + 1) \times \{n\}$ is the only element of \mathcal{U} containing $\langle \omega_1, n \rangle$. Then we have $\operatorname{St}^2(\langle \omega_1, n \rangle, \mathcal{U}) = (\omega_1 \times (\omega + 1)) \cup \{\langle \omega_1, n \rangle\}$. Hence, the subset $A = \{\omega_1\} \times \omega$ of T satisfies $\operatorname{St}(A, \mathcal{U}) = T$.

Take a finite subset F of A arbitrarily. Then $\operatorname{St}^2(F, U) \neq T$, and hence T is not strictly 2-starcompact.

H.Ohta pointed out that the Tychonoff plank T is not strictly star-Lindelöf. He proved the fact by showing that the Tychonoff plank T contained the closed subspace $((\omega_1 + 1) \times \{0\}) \cup (\omega_1 \times \{\omega\})$ which is not strictly star-Lindelöf. We apply the idea to the following stronger result.

Example 4.7. The Tychonoff plank T is not strictly 2-star-Lindelöf.

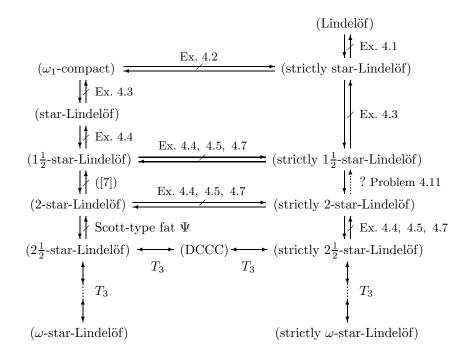
Proof. For each $\alpha < \omega_1$, set $U_{\alpha} = ([0, \alpha] \times [2, \omega]) \cup \{ \langle \alpha + 1, 1 \rangle \}$ and $V_{\alpha} = \{ \langle \alpha + 1, 0 \rangle, \langle \alpha + 1, 1 \rangle \}$. Let $A = (\omega_1 + 1) \times \{0\}$ and $W = (\omega_1 + 1) \times [1, \omega)$. Define $\mathcal{U} = \{U_{\alpha} \mid \alpha < \omega_1\} \cup \{V_{\alpha} \mid \alpha < \omega_1\} \cup \{A, W\}$. Then \mathcal{U} is an open cover of T and we have that $\operatorname{St}^2(A, \mathcal{U}) = T$.

Let *B* be a countable subset of *A*. Set $\beta_0 = \sup\{\beta \mid \langle \beta, 0 \rangle \in B \setminus \{\omega_1\}\}$. Then we have $\operatorname{St}^2(\langle \beta_0 + 1, \omega \rangle, \mathcal{U}) = W \cup (\bigcup\{V_\gamma \mid \beta_0 + 1 \leq \gamma < \omega_1\}) \cup (\bigcup\{U_\alpha \mid \alpha < \omega_1\})$ because $\operatorname{St}(\langle \beta_0 + 1, \omega \rangle, \mathcal{U}) = \bigcup\{U_\gamma \mid \beta_0 + 1 \leq \gamma < \omega_1\}$. Hence $\operatorname{St}^2(\langle \beta_0 + 1, \omega \rangle, \mathcal{U}) \cap B = \emptyset$. Therefore *T* is not strictly 2-star-Lindelöf.

Moreover, under $2^{\omega_1} = 2^{\omega}$, the Scott-type fat Ψ -space is a $2\frac{1}{2}$ -star-Lindelöf completely regular space which is not 2-star-Lindelöf ([7]). Then this space is strictly $2\frac{1}{2}$ -star-Lindelöf but not strictly 2-star-Lindelöf. On the other hand, under CH, the Scott-type fat Ψ -space is a $2\frac{1}{2}$ -starcompact completely regular space which is not 2-starcompact ([1], [10]). Then this space is a strictly $2\frac{1}{2}$ -starcompact space that is not strictly 2-starcompact.

Here, we give the following diagrams which illustrate relationships among star covering properties discussed above.

In the diagrams, the symbols $a \to b$ and $a \not\to b$ mean that a implies b, and a does not necessarily imply b, respectively. We list corresponding counterexamples by the side of the symbols $a \to b$.



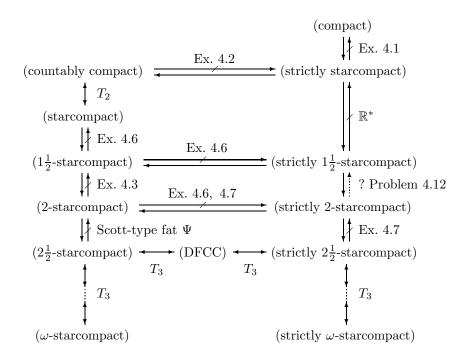


DIAGRAM 2

At the last of this section, we give remarks on examples which are given above.

Remark 4.8. As to subspaces, closed subspaces of strictly k-star-Lindelöf spaces are not necessarily strictly k-star-Lindelöf for every $k \in \widetilde{\mathbb{N}}$ with $k \geq 1\frac{1}{2}$. For, the Ψ -space, constructed from a m.a.d.family \mathcal{A} of uncountably many infinite subsets of ω , is k-star-Lindelöf for every $k \geq 1\frac{1}{2}$ by Example 4.3. However, the subspace \mathcal{A} does not satisfy the DCCC since \mathcal{A} is uncountable discrete and closed in Ψ . Therefore \mathcal{A} is not strictly k-star-Lindelöf for every $k \in \widetilde{\mathbb{N}}$ with $k \geq 1\frac{1}{2}$.

Remark 4.9. The idea in Ohta's proof stated above also suggests that the topological sum $\omega_1 \oplus (\omega_1 + 1)$ is not strictly $1\frac{1}{2}$ -star-Lindelöf. Hence a topological sum of a strictly star-Lindelöf space and a compact space is not even strictly $1\frac{1}{2}$ -star-Lindelöf. Furthermore, the proof of Example 4.7 shows that $\omega_1 \oplus (\omega_1 + 1) \oplus (\omega_1 + 1)$ is not strictly 2-star-Lindelöf. Therefore a topological sum of a strictly star-Lindelöf space and a compact space is not even strictly 2-star-Lindelöf.

Remark 4.10. Concerning product spaces, Example 4.2 shows that a product of a strictly star-Lindelöf (respectively, strictly starcompact) space and a compact space need not be strictly star-Lindelöf (respectively, strictly starcompact). Moreover, Example 4.5 shows that a product of a strictly $1\frac{1}{2}$ -star-Lindelöf (respectively, strictly 2-star-Lindelöf) space and a compact space need not be strictly $1\frac{1}{2}$ -star-Lindelöf (respectively, strictly 2-star-Lindelöf).

Furthermore, by a similar argument in the proof of Example 4.7, we can show that neither $\omega_1 \times (\omega + 1)$ nor $\omega_1 \times (\omega_1 + 1)$ are strictly 2-star-Lindelöf strictly $1\frac{1}{2}$ -star-Lindelöf. Therefore, a product of a strictly star-Lindelöf space with a separable metric space is not even strictly 2-star-Lindelöf.

The following problems are not solved yet.

Problem 4.11. Does there exist a strictly 2-star-Lindelöf space which is not strictly $1\frac{1}{2}$ -star-Lindelöf?

Problem 4.12. Does there exist a strictly 2-starcompact space which is not strictly $1\frac{1}{2}$ -starcompact?

5. Concluding remarks. As we mentioned above, strict star-Lindelöfness is not necessarily preserved by taking topological sums. Accordingly, we introduce the following notion of spaces with possible properties of strictly star-Lindelöf spaces so as to be preserved by taking topological sums.

Definition 5.1. A space X satisfies the condition (*) if for each open cover \mathcal{U} of X, there exists an open refinement \mathcal{V} of \mathcal{U} such that every subset A of X satisfying $\operatorname{St}(A, \mathcal{V}) = X$ contains a countable subset B of A satisfying $\operatorname{St}(B, \mathcal{V}) = X$.

Then we easily have that every strictly star-Lindelöf space satisfies the condition (*), and every space satisfying the condition (*) is ω_1 -compact.

We can show that the condition (*) is preserved by taking a topological sum of countably many spaces satisfying the condition (*).

Proposition 5.2. If $\{X_n | n \in \mathbb{N}\}$ is a countable family of spaces satisfying the condition (*), then $\bigoplus_{n \in \mathbb{N}} X_n$ also satisfies the condition (*).

We conclude this paper with the following example.

Recall that the Tychonoff plank T is not even strictly 2-star-Lindelöf (see Example 4.7).

Example 5.3. The Tychonoff plank T satisfies the condition (*).

Proof. Let \mathcal{U} be an open cover of T. For every $\langle \alpha, n \rangle \in T \setminus ((\{\omega_1\} \times \omega) \cup (\omega_1 \times \{\omega\}))$, take a $U_{\alpha,n} \in \mathcal{U}$ so that $\langle \alpha, n \rangle \in U_{\alpha,n}$. Then we can choose a $\beta_{\alpha} < \alpha$ so that $\langle \alpha, n \rangle \in (\beta_{\alpha}, \alpha] \times \{n\} \subset U_{\alpha,n}$. Put $V_{\alpha,n} = (\beta_{\alpha}, \alpha] \times \{n\}$.

For every $n < \omega$, pick a $U_n \in \mathcal{U}$ so that $\langle \omega_1, n \rangle \in U_n$. We can take an $\alpha_n < \omega_1$ such that $\langle \omega_1, n \rangle \in (\alpha_n, \omega_1] \times \{n\} \subset U_n$. Put $V_n = (\alpha_n, \omega_1] \times \{n\}$ for each $n < \omega$. Now, define $\xi = \sup\{\alpha_n \mid n < \omega\}$. Then $\xi < \omega_1$.

For every $\alpha < \omega_1$, pick a $U_{\alpha} \in \mathcal{U}$ so that $\langle \alpha, \omega \rangle \in U_{\alpha}$. Then there exist a $\beta_{\alpha} < \alpha$ and an $n_{\alpha} < \omega$ such that $\langle \alpha, \omega \rangle \in (\beta_{\alpha}, \alpha] \times (n_{\alpha}, \omega] \subset U_{\alpha}$. For each $\alpha < \omega_1$, set $V_{\alpha} = (\beta_{\alpha}, \alpha] \times (n_{\alpha}, \omega]$. By the pressing-down lemma ([6]), there exist an $\alpha_0 < \omega_1$, an $m_0 < \omega$ and a cofinal subset C of ω_1 such that $\beta_{\alpha} = \alpha_0$ and $n_{\alpha} = m_0$ for every $\alpha \in C$. Define

$$\mathcal{V} = \left\{ V_{\alpha,n} \mid \alpha < \omega_1, \ n < \omega \right\} \cup \left\{ V_n \mid n < \omega \right\} \cup \left\{ V_\alpha \mid \alpha \in [0, \alpha_0] \cup (C \cap (\alpha_0, \omega_1)) \right\}.$$

Then \mathcal{V} is an open refinement of \mathcal{U} . Let A be a subset of T such that $St(A, \mathcal{V}) = T$. Note that $V_{\gamma} = (\alpha_0, \gamma] \times (m_0, \omega]$ for every $\gamma \in C \cap (\alpha_0, \omega_1)$.

For every $n < \omega$, we have that V_n is the only member of \mathcal{V} containing $\langle \omega_1, n \rangle$. Hence for every $n < \omega$ there exists an $a_n \in A$ such that $a_n \in V_n$. Set $A_1 = \{a_n \mid n < \omega\}$. We have that $\operatorname{St}(A_1, \mathcal{V}) \supset (\xi, \omega_1] \times \omega$ for some $\xi < \omega_1$.

Here, for the $\alpha_0 + 1$ there exist a $\gamma_0 \in C \cap (\alpha_0, \omega_1)$ and an $x_0 \in A$ such that $\langle \alpha_0 + 1, \omega \rangle \in V_{\gamma_0}$ and $x_0 \in V_{\gamma_0}$. Then we have $\operatorname{St}(x_0, \mathcal{V}) \supset (\alpha_0, \omega_1) \times (m_0, \omega]$.

Let $\eta = \max\{\alpha_0, \xi\}$. Then $\eta < \omega_1$. Because $[0, \eta + 1] \times (\omega + 1)$ is a compact subset of T, there exists a finite subset A_2 of A such that $\operatorname{St}(A_2, \mathcal{V}) \supset [0, \eta + 1] \times (\omega + 1)$.

Therefore we have $St(A_1 \cup A_2 \cup \{x_0\}, \mathcal{V}) = T$, and hence T satisfies the condition (*).

References

- E.K. van Douwen, G.M. Reed, A.W. Roscoe and I.J. Tree, *Star covering properties*, Topology Appl., **39** (1993), 71–103.
- [2] R. Engelking, Genenral Topology, Heldermann Verlag, Berlin, (1989).
- [3] W.M. Fleischman, A new extension of countable compactness, Fund. Math., 67 (1970), 1–9.
- [4] L. Gillman and M. Jerison, Rings of continuous functions, New York, (1960).
- [5] S. Ikenaga, A class which contains Lindelöf spaces, separable spaces and countably compact spaces, Memories of Numazu College Technology, 18 (1983), 105–108.
- [6] K. Kunen, Set theory. An introduction to independence proofs, North-Holland, Amsterdam, (1980).
- [7] M.V. Matveev, A survey on star covering properties, Topology Atlas, preprint No.330, (1998).
- [8] M.V. Matveev, More on star covering properties, Topology Atlas, preprint No.363, (1998).
- [9] M.V. Matveev, More on star covering properties II, Topology Atlas, preprint No.431, (2000).
- B.M. Scott, Pseudocompact, metacompact spaces are compact, Topology Proc., 4 (1979), 577– 587.

Nara Women's University Secondary School, Higashikidera, Nara 630-8305, Japan *E-mail*: kawaguchi@cc.nara-wu.ac,jp