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ON STRICTLY STAR-LINDELÖF SPACES
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Abstract. In this paper, we introduce new properties of topological spaces defined by
stars of coverings, which are called strict star-Lindelöfness and strict starcompactness.
Following the fundamental studies on star covering properties by E.K.van Douwen,
G.M.Reed, A.W.Roscoe and I.J.Tree ([1]), there have been several related studies (see
M.V.Matveev [7], [8], [9], for survey). Star-Lindelöf spaces have many nice proper-
ties. However, star-Lindelöfness is not preserved by closed subspaces ([7]). We define
strict star-Lindelöfness to modify this defect and still so as to keep possible properties
of star-Lindelöfness. Furthermore, we investigate relationships among these covering
properties and give various examples.

1. Introduction and preliminaries. In this paper, all spaces are assumed to be T1.
For a cover U of a space X and a subset A of X ,

St(A,U) =
⋃

{U ∈ U |U ∩ A �= ∅}

is called a star of A (with respect to U). Define St0(A,U) = A, St1(A,U) = St(A,U)
and Stn+1(A,U) = St(Stn(A,U),U) for n ∈ N. For a singleton A = {x}, we usually write
St(x,U) instead of St({x},U).

W.M.Fleischman [3] defined the following notion of starcompact spaces and studied its
properties.

Definition 1.1 ([3]). A space X is starcompact if for every open cover U of X , there exists
a finite subset F of X such that St(F,U) = X .

He proved in [3] that starcompactness is equivalent to countable compactness in the class
of regular spaces. It was informed in [3] that R.S.Houston afterwards showed the equivalence
in the class of Hausdorff spaces.

The following notion of star-Lindelöf spaces is defined by S.Ikenaga [5] originally under
the name of ω-star spaces, the present term was given by E.K.van Douwen, G.M.Reed,
A.W.Roscoe and I.J.Tree [1].

Definition 1.2 ([1]). A space is star-Lindelöf if for every open cover U of X , there exists
a countable subset A of X such that St(A,U) = X .

We call such notions of topological spaces defined by taking stars of coverings star
covering properties.

Later, E.K.van Douwen, G.M.Reed, A.W.Roscoe and I.J.Tree [1] established the funda-
mentals of star covering properties. Subsequently, there have been several related studies.
M.V.Matveev [7], [8], [9] presented a nice exposition of star covering properties which con-
tain many significant results. Among star covering properties, star-Lindelöfness has so far
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most appeared in the related studies. Many covering properties are preserved by closed
subspaces, while star-Lindelöfness is not the case ([7]).

The aim of this paper is to introduce the following new notion of spaces, called strictly
star-Lindelöf spaces, which will be shown to have possible properties of star-Lindelöf spaces
so as to improve the above defect on closed heredity.

Definition 1.3. A space X is strictly star-Lindelöf if for every open cover U of X and for
every subset A of X satisfying St(A,U) = X there exists a countable subset B of A such
that St(B,U) = X .

We also define the following notion, called strictly starcompact spaces, which is related
to starcompact spaces.

Definition 1.4. A space X is strictly starcompact if for every open cover U of X and for
every subset A of X satisfying St(A,U) = X there exists a finite subset F of A such that
St(F,U) = X .

We investigate properties of strictly star-Lindelöf spaces in Section 2., and strictly star-
compact spaces in Section 3.. In Section 4. various examples on strictly star-Lindelöf spaces
and other related spaces will be given.

We denote N 1
2

= {n + 1
2 |n ∈ N ∪ {0}} and Ñ = N ∪ N 1

2
∪ {0} following [7], and other

notations and terminology are as in [2].

2. Strictly star-Lindelöf spaces. In this section, we consider strict star-Lindelöfness.
To begin with, we recall the definition of k-star-Lindelöfness.

For k ∈ N ∪ {0}, a space X is k-star-Lindelöf if for every open cover U of X , there
exists a countable subset A of X such that Stk(A,U) = X . A space X is k 1

2 -star-Lindelöf
if for every open cover U of X , there exists a countable subcollection V of U such that
Stk(

⋃
V ,U) = X . Moreover, a space X is ω-star-Lindelöf if for every open cover U of X ,

there exist an n ∈ N and a countable subset A of X such that Stn(A,U) = X . Note that
1
2 -star-Lindelöfness and 1-star-Lindelöfness are precisely Lindelöfness and star-Lindelöfness,
respectively ([7]).

Just like k-star-Lindelöfness, we define the following notions of spaces that are weaker
than strict star-Lindelöfness.

Definition 2.1. Let X be a space and k ∈ N ∪ {0}.
(1) X is strictly k-star-Lindelöf if for every open cover U of X and every subset A of X

satisfying Stk(A,U) = X , there exists a countable subset B of A such that Stk(B,U) = X .
(2) X is strictly k 1

2 -star-Lindelöf if for every open cover U of X and every subcollection
V of U satisfying Stk(

⋃
V ,U) = X , there exists a countable subcollection W of V such that

Stk(
⋃
W ,U) = X .

(3) X is strictly ω-star-Lindelöf if for every open cover U of X , there exists an n ∈ N

such that for every subset A of X satisfying Stn(A,U) = X , there exists a countable subset
B of A such that Stn(B,U) = X .

Obviously, strict 1
2 -star-Lindelöfness and strict 1-star-Lindelöfness are precisely Lin-

delöfness and strict star-Lindelöfness, respectively.
By Definition 2.1, it is clear that every strictly k-star-Lindelöf space is k-star-Lindelöf

for every k ∈ Ñ, and every strictly ω-star-Lindelöf space is ω-star-Lindelöf.
Furthermore, for every k ∈ N we have that every strictly k-star-Lindelöf space is strictly

k 1
2 -star-Lindelöf, and every strictly k 1

2 -star-Lindelöf space is strictly (k + 1)-star-Lindelöf
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(see Diagram 1 in Section 4.).

Now, recall that a space X satisfies the discrete countable chain condition (DCCC, for
short) if every discrete collection of non-empty open sets in X is countable ([1]).

Here, we consider properties of strictly k-star-Lindelöf spaces. At first, similarly to
the case of k-star-Lindelöfness ([7]), we have the following relations between strict k-star-
Lindelöfness and the DCCC.

Theorem 2.2. For a regular space X, the following are equivalent.
(a) X is strictly 2 1

2 -star-Lindelöf.
(b) X is strictly k-star-Lindelöf for every k ∈ Ñ with k ≥ 3.
(c) X is strictly ω-star-Lindelöf.
(d) X satisfies the DCCC.

Proof. The implications (a) ⇒ (b) and (b) ⇒ (c) are trivial.
(c) ⇒ (d) : This follows from the fact that every ω-star-Lindelöf regular space satisfies

the DCCC ([7]).
(d) ⇒ (a) : Suppose that X is regular but not strictly 2 1

2 -star-Lindelöf. Then there
exist an open cover U of X and a subcollection V of U such that St2(

⋃
V ,U) = X and

St2(
⋃

A,U) �= X for any countable subcollection A of V .
Let α < ω1. Suppose that a subset {xβ |β < α} of X and a subcollection {Uβ |β < α}

of V satisfying xβ ∈ X \ St2(
⋃

γ<β Uγ ,U) are given for every β < α. By the assumption
above, we can take xα ∈ X \ St2(

⋃
β<α Uβ,U). Then there exists a Uα ∈ V such that

xα ∈ St2(Uα,U). Set W = {Uα |α < ω1}. Then one can show that W is an uncountable
discrete collection consisting of non-empty open sets in X . Therefore X does not satisfy the
DCCC.

Now, a space X is ω1-compact if every uncountable subset of X has an accumulation
point. Every countably compact space and every Lindelöf space are ω1-compact, and every
ω1-compact space is star-Lindelöf.

The following theorem shows that strictly star-Lindelöf spaces are located between Lin-
delöf spaces and ω1-compact spaces.

Theorem 2.3. Every strictly star-Lindelöf space is ω1-compact.

Proof. Suppose that X is not ω1-compact. Then there exists an uncountable subset A of
X with no accumulation points. For each a ∈ A, take a neighborhood Ua of a so that
Ua ∩ A = {a}, and define U = {Ua | a ∈ A} ∪ {X \ A}. Then U is an open cover of X .
Pick x0 ∈ X \A arbitrarily. We have St(A∪ {x0},U) = X , but no countable subset B of A
satisfies St(B ∪ {x0},U) = X . Thus X is not strictly star-Lindelöf.

The converse of Theorem 2.3 need not be true (see Example 4.2 below).
It is known that every separable space is star-Lindelöf ([7]). Here we have the following

theorem in the case of strictly k-star-Lindelöf spaces.

Theorem 2.4. Every separable space is strictly 1 1
2 -star-Lindelöf.

Proof. Let X be a separable space and D a countable dense subset of X . Let U be an
open cover of X and V a subcollection of U satisfying St(

⋃
V ,U) = X . For each x ∈ X ,

there exist a Vx ∈ V and a Ux ∈ U such that x ∈ Ux and Vx ∩ Ux �= ∅. Then we can
take dx ∈ D ∩ (Vx ∩ Ux) for every x ∈ X . Put D′ = {dx |x ∈ X}. Then D′ is a countable
subset of D satisfying St(D′,U) = X . Denote D′ = {dn |n ∈ N}. For each dn ∈ D′, choose
a Vn ∈ {Vx |x ∈ X} so that dn ∈ Vn. Define W = {Vn |n ∈ N}. Then W is a countable
subcollection of V satisfying St(

⋃
W ,U) = X . Therefore, X is strictly 1 1

2 -star-Lindelöf.
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On the other hand, we cannot conclude that every separable space is strictly star-Lindelöf
(see Example 4.3).

It is known that every open Fσ-set of a star-Lindelöf space is star-Lindelöf ([7]). Con-
cerning strictly star-Lindelöf spaces, we have

Theorem 2.5. Every Fσ-set of a strictly star-Lindelöf space is strictly star-Lindelöf.

Proof. Let X be a strictly star-Lindelöf space and Y =
⋃

n∈N
Hn an Fσ-set of X , where Hn

is a closed set in X for every n ∈ N.
Let U be an open cover of Y and A a subset of Y satisfying St(A,U) = Y . For each

U ∈ U , take an open set VU in X so that VU ∩ Y = U . Set V = {VU |U ∈ U , U ∩ A �= ∅}.
If

⋃
V = X , notice that St(A,V) = X . Since X is strictly star-Lindelöf, there exists a

countable subset B of A such that St(B,V) = X . Then, we have St(B,U) ⊃ St(B,V)∩Y =
Y .

Suppose
⋃
V �= X . Then, fix n ∈ N. Note that Vn = V ∪{X \Hn} is an open cover of X .

Choose x0 ∈ X \
⋃
V and put A′ = A ∪ {x0}. Then A′ satisfies St(A′,Vn) = X . Since X is

strictly star-Lindelöf, there exists a countable subset B′
n of A′ such that St(B′

n,Vn) = X . Let
Bn = B′

n \{x0}. Then Bn is a countable subset of A satisfying St(Bn,U) ⊃ St(Bn,V)∩Y ⊃
Hn.

Let us set B =
⋃

n∈N
Bn. Then B is a countable subset of A, and we have

St(B,U) =
⋃
n∈N

St(Bn,U) ⊃
⋃
n∈N

Hn = Y.

Therefore Y is strictly star-Lindelöf.

As opposed to star-Lindelöfness, we have

Corollary 2.6. Every closed subspace of a strictly star-Lindelöf space is also strictly star-
Lindelöf.

On the other hand, strict k-star-Lindelöfness is not necessarily preserved by closed sub-
spaces for every k ∈ Ñ with k ≥ 1 1

2 (see Section 4.).
A subset A of a space X is called a cozero-set if there is a continuous function f : X → R

such that A = {x ∈ X | f(x) �= 0}.

Corollary 2.7. Every cozero-set of a strictly star-Lindelöf space is also strictly star-Lindelöf.

It is also known that every continuous image of a star-Lindelöf space is star-Lindelöf
([5],[7]). Likewise, we have

Theorem 2.8. Every continuous image of a strictly star-Lindelöf space is also strictly star-
Lindelöf.

Proof. Let X be a strictly star-Lindelöf space, Y a space and f : X → Y a continuous
mapping from X onto Y .

Let U be an open cover of Y and A a subset of Y satisfying St(A,U) = Y . Put V =
{f−1(U) |U ∈ U}. Then V is an open cover of X satisfying St(f−1(A),V) = X . Since X
is strictly star-Lindelöf, there is a countable subset B of f−1(A) such that St(B,V) = X .
Then f(B) is countable and f(B) ⊂ A. We have St(f(B),U) = Y . Thus Y is strictly
star-Lindelöf.
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3. Strictly starcompact spaces. Next, we consider properties of strictly starcompact
spaces. We recall the definition of k-starcompactness.

For k ∈ N ∪ {0}, a space X is k-starcompact if for each open cover U of X , there exists
a finite subset F of X such that Stk(F,U) = X . A space X is k 1

2 -starcompact if for each
open cover U of X , there exists a finite subcollection V of U such that Stk(

⋃
V ,U) = X .

Moreover, a space X is ω-starcompact if for every open cover U of X , there exist an n ∈ N

and a finite subset A of X such that Stn(A,U) = X . Note that 1
2 -starcompactness and

1-starcompactness are precisely compactness and starcompactness, respectively ([7]).
Now, we define the following notions of spaces that are related to strict starcompactness.

Definition 3.1. Let X be a space and k ∈ N ∪ {0}.
(1) X is strictly k-starcompact if for every open cover U of X and every subset A of X

satisfying Stk(A,U) = X , there exists a finite subset F of A such that Stk(F,U) = X .
(2) X is strictly k 1

2 -starcompact if for every open cover U of X and every subcollection
V of U satisfying Stk(

⋃
V ,U) = X , there exists a finite subcollection A of V such that

Stk(
⋃
A,U) = X .

(3) X is strictly ω-starcompact if for every open cover U of X , there exists an n ∈ N

such that for every subset A of X satisfying Stn(A,U) = X , there exists a finite subset F
of A such that Stn(F,U) = X .

In particular, strict 1
2 -starcompactness and strict 1-starcompactness are precisely com-

pactness and strict starcompactness, respectively.
It follows from Definition 3.1 that every strictly k-starcompact space is k-starcompact

for every k ∈ Ñ, and every strictly ω-starcompact space is ω-starcompact.
In addition, every strictly k-starcompact space is clearly strictly k-star-Lindelöf, and

every strictly ω-starcompact space is strictly ω-star-Lindelöf.
Furthermore, for every k ∈ N we have that every strictly k-starcompact space is strictly

k 1
2 -starcompact, and every strictly k 1

2 -starcompact space is strictly (k+1)-starcompact (see
Diagram 2 in Section 4.).

Now, recall that a space X satisfies the discrete finite chain condition (DFCC, for short)
if every discrete collection of non-empty open sets in X is finite ([1]). Similarly to the case of
k-starcompact spaces ([7]), we have the following relations between strict k-starcompactness
and the DFCC.

Theorem 3.2. For a regular space X, the following are equivalent.
(a) X is strictly 2 1

2 -starcompact.
(b) X is strictly k-starcompact for every k ∈ Ñ with k ≥ 3.
(c) X is strictly ω-starcompact.
(d) X satisfies the DFCC.

It is known that every countably compact Lindelöf space is compact. The following result
seems to be interesting in itself; the proof are easy and omitted.

Theorem 3.3. A space X is strictly starcompact if and only if X is countably compact and
strictly star-Lindelöf.

Strictly starcompact spaces have the following properties similar to strictly star-Lindelöf
spaces. Proofs are similar to the case of strictly star-Lindelöf spaces.

Theorem 3.4. Every closed subspace of a strictly starcompact space is also strictly star-
compact.

Theorem 3.5. Every continuous image of a strictly starcompact space is also strictly star-
compact.
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4. Examples. In this section, we list various examples on strictly k-star-Lindelöf spaces
and strictly k-starcompact spaces.

Let an infinite ordinal τ have the order topology. The symbol βX is the Stone-Čech
compactification of a completely regular space X .

To begin with, we give an example of a strictly star-Lindelöf space which is not Lindelöf.
It shows the gap between strict 1

2 -star-Lindelöfness and strict 1-star-Lindelöfness.

Example 4.1. The space ω1 is strictly starcompact (and hence strictly star-Lindelöf).

Proof. Let U be an open cover of ω1 and A a subset of ω1 satisfying St(A,U) = ω1. For each
α ∈ ω1, there exist a Uα ∈ U and a γα < ω1 such that (γα, α] ⊂ Uα. If A is not cofinal in
ω1, A itself is countable. Hence we can assume that A is cofinal in ω1. By the pressing-down
lemma ([6]), there exist an α0 < ω1 and a cofinal subset C of ω1 such that γα < α0 for
every α ∈ C.

Because A is cofinal in ω1, there is a ξ ∈ A with α0 < ξ such that γα < α0 < ξ for any
α ∈ C ∩ (ξ, ω1). Then for every β ∈ (ξ, ω1), we can take an η ∈ C so that ξ < β < η. Thus
there exists a U ∈ U such that β, ξ ∈ (γη, η] ⊂ U . Hence β ∈ St(ξ,U). Therefore, we have
St(ξ,U) ⊃ (ξ, ω1).

Moreover, for each γ ≤ ξ there is an aγ ∈ A such that γ ∈ St(aγ ,U). Then {St(aγ ,U) | γ ≤
ξ} is an open cover of [0, ξ]. Since [0, ξ] is compact, we can take finitely many γ1, . . . , γn ≤ ξ
so that {St(aγi ,U) | i = 1, · · · , n} covers [0, ξ]. Let F = {aγi | i = 1, . . . , n} ∪ {ξ}. Then F is
a finite subset of A satisfying St(F,U) = ω1. Hence ω1 is strictly starcompact.

Therefore, the space ω1 is also an example of a non-compact strictly starcompact space.

Example 4.2. The space ω1 × (ω1 + 1) is ω1-compact but not strictly star-Lindelöf.

Proof. Define

U = {[0, α] × (α, ω1] |α < ω1} ∪ {ω1 × ω1}

and

A = {〈α, β〉 ∈ ω1 × (ω1 + 1) |α < β < ω1}.

Then U is an open cover of ω1 × (ω1 + 1) and we have St(A,U) = ω1 × (ω1 + 1).
Let C be an arbitrary countable subset of A. Define

α0 = sup{α | 〈α, β〉 ∈ C for some β} and β0 = sup{β | 〈α, β〉 ∈ C for some α}.

Then α0 < β0 < ω1. If γ > β0, then we have

{U ∈ U | (γ, ω1) ∈ U} = {[0, α] × (α, ω1] |α ≥ γ}.

For any ξ ≥ γ, [0, ξ] × (ξ, ω1] contains no points of C. Hence 〈γ, ω1〉 �∈ St(C,U).

Hence, the space ω1 × (ω1 + 1) is a countably compact but not strictly starcompact. In
addition, we also have that ω1 × (ω1 + 1) is not strictly 2-star-Lindelöf (see Remark 4.10
below).

Moreover we obtain the following example.

Example 4.3. There exists a star-Lindelöf completely regular space that is strictly 1 1
2 -

star-Lindelöf but not ω1-compact.
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Proof. Let ω be a countable discrete space and A be a maximal almost disjoint family
(m.a.d.family, for short) of infinite subsets of ω. Put Ψ = ω ∪ A. Topologize Ψ by letting
ω be an open subspace of Ψ and defining a local base N (x) at each x ∈ A by N (x) =
{{x} ∪ (x \ F ) |F ∈ [x]<ω}. This space is called a Ψ-space ([4]). Then it is known that Ψ
is a separable completely regular space which is 2-starcompact but neither 1 1

2 -starcompact
nor ω1-compact ([1],[7]).

Since Ψ is separable, Ψ is star-Lindelöf. Moreover, Ψ is strictly 1 1
2 -star-Lindelöf by

Theorem 2.4.

Now, we construct the following spaces so as to obtain a 1 1
2 -star-Lindelöf space that is

not strictly 2-star-Lindelöf.
For a completely regular space X and an infinite cardinal τ with cf(τ) > ω, the space

NτX = ((τ + 1) × βX) \ ({τ} × (βX \ X))

is called the Noble plank. By [7], NτX is 2-starcompact, and furthermore, NτX is 1 1
2 -

starcompact if τ > cf(τ) > �(X) > ω.

Example 4.4. There exists a 1 1
2 -star-Lindelöf completely regular space that is neither

star-Lindelöf nor strictly 2-star-Lindelöf.

Proof. Let D be a discrete space of size ω1. Then the Noble plank Nω2D is 1 1
2 -star-Lindelöf

but not star-Lindelöf ([7]). We show that the Noble plank Nω2D is not strictly 2-star-
Lindelöf.

Define U = {[0, α) × βD |α < ω2} ∪ {(ω2 + 1) × {d} | d ∈ D} and A = {ω2} × D. Then
U is an open cover of Nω2D and we have St2(A,U) = Nω2D. However, no countable subset
B of A satisfies St2(B,U) = Nω2D. Hence Nω2D is not strictly 2-star-Lindelöf.

For later use, we also have the another example (see Remark 4.10).

Example 4.5. There exists a 1 1
2 -star-Lindelöf completely regular space that is not strictly

2-star-Lindelöf.

Proof. Let Ψ = ω∪A be the Ψ-space constructed form a m.a.d.family A = {aλ |λ < 2ω} of
infinite subsets of ω. Let D be a discrete space of size 2ω. Denote D = {yλ |λ < 2ω}. Define
X = Ψ × A(D), where A(D) is the one-point compactification of D.

At first, it is easy to see that X is 1 1
2 -star-Lindelöf since ω×A(D) is Lindelöf and dense

in X .
Next, we prove that X is not strictly 2-star-Lindelöf. Define an open cover of X by

U =
{
Ψ × {yλ} |λ < 2ω

}
∪

{
{n} × A(D) |n ∈ ω

}
∪

{
({aλ} ∪ aλ) × (A(D) \ {yλ}) |λ < 2ω

}
.

Put A = {〈aλ, yλ〉 |λ < 2ω}. We have that St2(A,U) = X . Let B be an arbitrary countable
subset of A. Take a λ0 < 2ω such that 〈aλ0 , yλ0〉 �∈ B. Then we can show that 〈aλ0 , yλ0〉 �∈
St2(B,U). Hence X is not strictly 2-star-Lindelöf.

Let R
∗ be the real line R with the topology

Tc = {U ⊂ R | R \ U is a countable subset of R}.

Then R
∗ is not strictly starcompact because it is not countably compact. And clearly R

∗

is strictly 1 1
2 -starcompact. Note that R

∗ is a T1-space which is not Hausdorff. We cannot
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construct a strictly 1 1
2 -starcompact Hausdorff space which is not strictly starcompact yet.

It is known that the Tychonoff plank T = (ω1+1)×(ω+1)\{〈ω1, ω〉} is 1 1
2 -starcompact

([1],[7]), whereas we show it is not even strictly 2-starcompact.

Example 4.6. The Tychonoff plank T is 1 1
2 -starcompact but not strictly 2-starcompact.

Proof. Define U = {[0, α)× (ω + 1) |α < ω1} ∪ {(ω1 + 1)×{n} |n < ω}. Then U is an open
cover of T . For every n < ω, we have St((ω1, n),U) = (ω1+1)×{n} since (ω1+1)×{n} is the
only element of U containing 〈ω1, n〉. Then we have St2(〈ω1, n〉,U) = (ω1×(ω+1))∪{〈ω1, n〉}.
Hence, the subset A = {ω1} × ω of T satisfies St(A,U) = T .

Take a finite subset F of A arbitrarily. Then St2(F,U) �= T , and hence T is not strictly
2-starcompact.

H.Ohta pointed out that the Tychonoff plank T is not strictly star-Lindelöf. He proved
the fact by showing that the Tychonoff plank T contained the closed subspace ((ω1 + 1) ×
{0}) ∪ (ω1 × {ω}) which is not strictly star-Lindelöf. We apply the idea to the following
stronger result.

Example 4.7. The Tychonoff plank T is not strictly 2-star-Lindelöf.

Proof. For each α < ω1, set Uα = ([0, α]×[2, ω])∪{〈α+1, 1〉} and Vα = {〈α+1, 0〉, 〈α+1, 1〉}.
Let A = (ω1 + 1) × {0} and W = (ω1 + 1) × [1, ω). Define U = {Uα |α < ω1} ∪ {Vα |α <
ω1} ∪ {A, W}. Then U is an open cover of T and we have that St2(A,U) = T .

Let B be a countable subset of A. Set β0 = sup{β | 〈β, 0〉 ∈ B \ {ω1}}. Then we
have St2(〈β0 + 1, ω〉,U) = W ∪

( ⋃
{Vγ |β0 + 1 ≤ γ < ω1}

)
∪

( ⋃
{Uα |α < ω1}

)
because

St(〈β0 + 1, ω〉,U) =
⋃
{Uγ |β0 + 1 ≤ γ < ω1}. Hence St2(〈β0 + 1, ω〉,U) ∩ B = ∅. Therefore

T is not strictly 2-star-Lindelöf.

Moreover, under 2ω1 = 2ω, the Scott-type fat Ψ-space is a 2 1
2 -star-Lindelöf completely

regular space which is not 2-star-Lindelöf ([7]). Then this space is strictly 2 1
2 -star-Lindelöf

but not strictly 2-star-Lindelöf. On the other hand, under CH, the Scott-type fat Ψ-space
is a 2 1

2 -starcompact completely regular space which is not 2-starcompact ([1], [10]). Then
this space is a strictly 2 1

2 -starcompact space that is not strictly 2-starcompact.

Here, we give the following diagrams which illustrate relationships among star covering
properties discussed above.

In the diagrams, the symbols a → b and a � b mean that a implies b, and a does not
necessarily imply b, respectively. We list corresponding counterexamples by the side of the
symbols a � b.
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(ω-star-Lindelöf) (strictly ω-star-Lindelöf)
�
�

�
�

�
�

�
�

T3 T3

(2 1
2 -star-Lindelöf) (strictly 2 1

2 -star-Lindelöf)(DCCC)� � � �

T3 T3

�
� �

�

(2-star-Lindelöf) (strictly 2-star-Lindelöf)� �Ex. 4.4, 4.5, 4.7� �
�([7]) ? Problem 4.11�

Scott-type fat Ψ Ex. 4.4, 4.5, 4.7

(1 1
2 -star-Lindelöf) (strictly 1 1

2 -star-Lindelöf)� �Ex. 4.4, 4.5, 4.7�
�Ex. 4.4

(star-Lindelöf)
�
�Ex. 4.3

(ω1-compact) (strictly star-Lindelöf)� �Ex. 4.2 �
�Ex. 4.1

Ex. 4.3

�

�

(Lindelöf)

Diagram 1

(ω-starcompact) (strictly ω-starcompact)
�
�

�
�

�
�

�
�

T3 T3

(2 1
2 -starcompact) (strictly 2 1

2 -starcompact)(DFCC)� � � �

T3 T3

�
� �

�

(2-starcompact) (strictly 2-starcompact)� �Ex. 4.6, 4.7� �
�Ex. 4.3 ? Problem 4.12�

Scott-type fat Ψ Ex. 4.7

(1 1
2 -starcompact) (strictly 1 1

2 -starcompact)� �Ex. 4.6�
�Ex. 4.6

(starcompact)
�
�T2

(countably compact) (strictly starcompact)� �Ex. 4.2 �
�Ex. 4.1

R
∗

�

�

(compact)

Diagram 2
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At the last of this section, we give remarks on examples which are given above.

Remark 4.8. As to subspaces, closed subspaces of strictly k-star-Lindelöf spaces are not
necessarily strictly k-star-Lindelöf for every k ∈ Ñ with k ≥ 1 1

2 . For, the Ψ-space, con-
structed from a m.a.d.family A of uncountably many infinite subsets of ω, is k-star-Lindelöf
for every k ≥ 1 1

2 by Example 4.3. However, the subspace A does not satisfy the DCCC
since A is uncountable discrete and closed in Ψ. Therefore A is not strictly k-star-Lindelöf
for every k ∈ Ñ with k ≥ 1 1

2 .

Remark 4.9. The idea in Ohta’s proof stated above also suggests that the topological sum
ω1 ⊕ (ω1 + 1) is not strictly 1 1

2 -star-Lindelöf. Hence a topological sum of a strictly star-
Lindelöf space and a compact space is not even strictly 1 1

2 -star-Lindelöf. Furthermore, the
proof of Example 4.7 shows that ω1 ⊕ (ω1 + 1) ⊕ (ω1 + 1) is not strictly 2-star-Lindelöf.
Therefore a topological sum of a strictly star-Lindelöf space and a compact space is not
even strictly 2-star-Lindelöf.

Remark 4.10. Concerning product spaces, Example 4.2 shows that a product of a strictly
star-Lindelöf (respectively, strictly starcompact) space and a compact space need not be
strictly star-Lindelöf (respectively, strictly starcompact). Moreover, Example 4.5 shows that
a product of a strictly 1 1

2 -star-Lindelöf (respectively, strictly 2-star-Lindelöf) space and a
compact space need not be strictly 1 1

2 -star-Lindelöf (respectively, strictly 2-star-Lindelöf).
Furthermore, by a similar argument in the proof of Example 4.7, we can show that

neither ω1 × (ω + 1) nor ω1 × (ω1 + 1) are strictly 2-star-Lindelöf strictly 1 1
2 -star-Lindelöf.

Therefore, a product of a strictly star-Lindelöf space with a separable metric space is not
even strictly 2-star-Lindelöf.

The following problems are not solved yet.

Problem 4.11. Does there exist a strictly 2-star-Lindelöf space which is not strictly 1 1
2 -

star-Lindelöf?

Problem 4.12. Does there exist a strictly 2-starcompact space which is not strictly 1 1
2 -

starcompact?

5. Concluding remarks. As we mentioned above, strict star-Lindelöfness is not neces-
sarily preserved by taking topological sums. Accordingly, we introduce the following notion
of spaces with possible properties of strictly star-Lindelöf spaces so as to be preserved by
taking topological sums.

Definition 5.1. A space X satisfies the condition (∗) if for each open cover U of X , there
exists an open refinement V of U such that every subset A of X satisfying St(A,V) = X
contains a countable subset B of A satisfying St(B,V) = X .

Then we easily have that every strictly star-Lindelöf space satisfies the condition (∗),
and every space satisfying the condition (∗) is ω1-compact.

We can show that the condition (∗) is preserved by taking a topological sum of countably
many spaces satisfying the condition (∗).

Proposition 5.2. If {Xn |n ∈ N} is a countable family of spaces satisfying the condition
(∗), then

⊕
n∈N

Xn also satisfies the condition (∗).

We conclude this paper with the following example.
Recall that the Tychonoff plank T is not even strictly 2-star-Lindelöf (see Example 4.7).

Example 5.3. The Tychonoff plank T satisfies the condition (∗).
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Proof. Let U be an open cover of T . For every 〈α, n〉 ∈ T \ (({ω1} × ω) ∪ (ω1 × {ω})),
take a Uα,n ∈ U so that 〈α, n〉 ∈ Uα,n. Then we can choose a βα < α so that 〈α, n〉 ∈
(βα, α] × {n} ⊂ Uα,n. Put Vα,n = (βα, α] × {n}.

For every n < ω, pick a Un ∈ U so that 〈ω1, n〉 ∈ Un. We can take an αn < ω1 such
that 〈ω1, n〉 ∈ (αn, ω1] × {n} ⊂ Un. Put Vn = (αn, ω1] × {n} for each n < ω. Now, define
ξ = sup{αn |n < ω}. Then ξ < ω1.

For every α < ω1, pick a Uα ∈ U so that 〈α, ω〉 ∈ Uα. Then there exist a βα < α and an
nα < ω such that 〈α, ω〉 ∈ (βα, α]×(nα, ω] ⊂ Uα. For each α < ω1, set Vα = (βα, α]×(nα, ω].
By the pressing-down lemma ([6]), there exist an α0 < ω1, an m0 < ω and a cofinal subset
C of ω1 such that βα = α0 and nα = m0 for every α ∈ C. Define

V =
{
Vα,n |α < ω1, n < ω

}
∪

{
Vn |n < ω

}
∪

{
Vα |α ∈ [0, α0] ∪ (C ∩ (α0, ω1))

}
.

Then V is an open refinement of U . Let A be a subset of T such that St(A,V) = T . Note
that Vγ = (α0, γ] × (m0, ω] for every γ ∈ C ∩ (α0, ω1).

For every n < ω, we have that Vn is the only member of V containing 〈ω1, n〉. Hence for
every n < ω there exists an an ∈ A such that an ∈ Vn. Set A1 = {an |n < ω}. We have that
St(A1,V) ⊃ (ξ, ω1] × ω for some ξ < ω1.

Here, for the α0 +1 there exist a γ0 ∈ C ∩(α0, ω1) and an x0 ∈ A such that 〈α0 +1, ω〉 ∈
Vγ0 and x0 ∈ Vγ0 . Then we have St(x0,V) ⊃ (α0, ω1) × (m0, ω].

Let η = max{α0, ξ}. Then η < ω1. Because [0, η + 1]× (ω + 1) is a compact subset of T ,
there exists a finite subset A2 of A such that St(A2,V) ⊃ [0, η + 1] × (ω + 1).

Therefore we have St(A1∪A2∪{x0},V) = T , and hence T satisfies the condition (∗).
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