INTUITIONISTIC FUZZY d-ALGEBRAS

YOUNG BAE JUN, HEE SIK KIM AND DALL SUN YOO

Received November 1, 2006

ABSTRACT. The intuitionistic fuzzification of a *d*-algebra is considered, and related results are investigated. The notion of equivalence relations on the family of all intuitionistic fuzzy *d*-algebras of a *d*-algebra is introduced, and then some properties are discussed. The concept of intuitionistic fuzzy topological *d*-algebras is introduced, and some related results are obtained.

1. Introduction

Y. Imai and K. Iséki ([7]) and K. Iséki ([8]) introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [5, 6], Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They showed that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim ([14]) introduced a new notion, called a d-algebra, which is another generalization of BCK-algebras, and investigated relations between d-algebras and BCK-algebras. In [11], Y. B. Jun, J. Neggers and H. S. Kim introduced the notions of fuzzy d-subalgebra, fuzzy d-ideal, fuzzy d^{\sharp} -ideal and fuzzy d^* -ideal, and investigate relations among them. They also discussed d-ideals in d-algebras (see [13]). The concept of a fuzzy set, which was introduced in [16], provides a natural framework for generalizing many of the concepts of general topology to what might be called fuzzy topological spaces. D. H. Foster (cf. [4]) combined the structure of a fuzzy topological spaces with that of a fuzzy group, introduced by A. Rosenfeld (cf. [15]), to formulate the elements of a theory of fuzzy topological groups. In 1993, Y. B. Jun ([9]) combined the structure of a fuzzy topological spaces with that of a fuzzy BCKalgebras to formulate the elements of a theory of fuzzy topological BCK-algebras. Y. B. Jun and H. S. Kim [10] introduced the concept of fuzzy topological d-algebras of d-algebras and applied some of Foster's results on homomorphic images and inverse images to fuzzy topological d-algebras. After the introduction of fuzzy sets by L. A. Zadeh [16], several researchers were conducted on the generalizations of the notion of fuzzy sets. The idea of intuitionistic fuzzy set was first published by K. T. Atanassov [1], as a generalization of the notion of fuzzy sets. In this paper, using the Atanassov's idea, we establish the notion of intuitionistic fuzzy d-algebras, equivalence relations on the family of all intuitionistic fuzzy d-algebras, and intuitionistic fuzzy topological d-algebras which are a generalization of the notion of fuzzy topological *d*-algebras, initiated by Jun and Kim [10]. We investigate several properties, and show that the *d*-homomorphic image and preimage of an intuitionistic fuzzy topological d-algebra is an intuitionistic fuzzy topological d-algebra.

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03F55, 03E72.

Key words and phrases. Intuitionistic fuzzy d-algebra, intuitionistic fuzzy topological d-algebra.

2. Preliminaries

Definition 2.1 (see [14]). A *d*-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

- $(\mathbf{I}) \quad x \ast x = 0,$
- (II) 0 * x = 0,
- (III) x * y = 0 and y * x = 0 imply x = y

for all x, y, z in X. A non-empty subset N of a d-algebra X is called a d-subalgebra of X if $x * y \in N$ for any $x, y \in N$. A mapping $\alpha : X \to Y$ of d-algebras is called a d-homomorphism if $\alpha(x * y) = \alpha(x) * \alpha(y)$ for all $x, y \in X$.

Definition 2.2 (see [1]). An *intuitionistic fuzzy set* (IFS for short) D in X is an object having the form

$$D = \{ \langle x, \mu_D(x), \gamma_D(x) \rangle \mid x \in X \}$$

where the functions $\mu_D : X \to [0, 1]$ and $\gamma_D : X \to [0, 1]$ denote the degree of membership (namely $\mu_D(x)$) and the degree of nonmembership (namely $\gamma_D(x)$) of each element $x \in X$ to the set D, respectively, and $0 \le \mu_D(x) + \gamma_D(x) \le 1$ for each $x \in X$.

For the sake of simplicity, we shall use the notation $D = \langle x, \mu_D, \gamma_D \rangle$ instead of $D = \{\langle x, \mu_D(x), \gamma_D(x) \rangle \mid x \in X\}$. Let f be a mapping from a set X to a set Y. If

$$B = \{ \langle y, \mu_B(y), \gamma_B(y) \rangle \mid y \in Y \}$$

is an IFS in Y, then the *preimage* of B under f, denoted by $f^{-1}(B)$, is the IFS in X defined by

$$f^{-1}(B) = \{ \langle x, f^{-1}(\mu_B)(x), f^{-1}(\gamma_B)(x) \rangle \mid x \in X \}_{2}$$

and if $D = \{ \langle x, \mu_D(x), \gamma_D(x) \rangle \mid x \in X \}$ is an IFS in X, then the *image* of D under f, denoted by f(D), is the IFS in Y defined by

$$f(D) = \{ \langle y, f_{\sup}(\mu_D)(y), f_{\inf}(\gamma_D)(y) \rangle \mid y \in Y \},\$$

where

$$f_{\sup}(\mu_D)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu_D(x), & \text{if } f^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise,} \end{cases}$$

and

$$f_{\inf}(\gamma_D)(y) = \begin{cases} \inf_{x \in f^{-1}(y)} \gamma_D(x), & \text{if } f^{-1}(y) \neq \emptyset, \\ 1, & \text{otherwise,} \end{cases}$$

for each $y \in Y$ (see Çoker [3]).

3. Intuitionistic Fuzzy *d*-algebras

Definition 3.1. Let X be a d-algebra. An IFS $D = \langle x, \mu_D, \gamma_D \rangle$ in X is called an *intuitionistic fuzzy d-algebra* if it satisfies:

$$\mu_D(x * y) \ge \min\{\mu_D(x), \mu_D(y)\} \text{ and } \gamma_D(x * y) \le \max\{\gamma_D(x), \gamma_D(y)\}$$

for all $x, y \in X$.

Example 3.2. (1) Consider a *d*-algebra $X = \{0, a, b, c\}$ with the following Cayley table:

*	0	a	b	c
0	0	0	0	0
a	a	0	0	b
b	b	b	0	0
c	c	c	c	0

Let $D = \langle x, \mu_D(x), \gamma_D(x) \rangle$ be an IFS in X defined by $\mu_D(0) = \mu_D(a) = 0.8, \ \mu_D(b) =$ $\mu_D(c) = 0.3$, and $\gamma_D(0) = \gamma_D(a) = 0.03$, $\gamma_D(b) = \gamma_D(c) = 0.08$. Then $D = \langle x, \mu_D, \gamma_D \rangle$ is an intuitionistic fuzzy d-algebra.

(2) Consider a *d*-algebra $X = \{0, a, b, c\}$ with the following Cayley table:

*	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	b	0	0
c	c	c	a	0

Let $D = \langle x, \mu_D, \gamma_D \rangle$ be an IFS in X defined by $\mu_D(0) = \mu_D(a) = \mu_D(c) = t_1, \ \mu_D(b) = t_2,$ and $\gamma_D(0) = \gamma_D(a) = \gamma_D(c) = s_1, \ \gamma_D(b) = s_2$, where $t_1 > t_2, \ s_1 < s_2$, and $s_i + t_i \in [0, 1]$ for i = 1, 2. Then $D = \langle x, \mu_D, \gamma_D \rangle$ is an intuitionistic fuzzy d-algebra.

In what follows, let X denote a d-algebra unless otherwise specified.

Proposition 3.3. If an IFS $D = \langle x, \mu_D, \gamma_D \rangle$ in X is an intuitionistic fuzzy d-algebra of X, then $\mu_D(0) \ge \mu_D(x)$ and $\gamma_D(0) \le \gamma_D(x)$ for all $x \in X$.

Proof. Let $x \in X$. Then $\mu_D(0) = \mu_D(x * x) \ge \min\{\mu_D(x), \mu_D(x)\} = \mu_D(x)$ and $\gamma_D(0) = \gamma_D(x * x) \le \max\{\gamma_D(x), \gamma_D(x)\} = \gamma_D(x).$

Theorem 3.4. If $\{D_i \mid i \in \Lambda\}$ is an arbitrary family of intuitionistic fuzzy d-algebras of X, then $\cap D_i$ is an intuitionistic fuzzy d-algebra of X, where $\cap D_i = \{\langle x, \wedge \mu_{D_i}(x), \vee \gamma_{D_i}(x) \rangle \mid i \leq n \}$ $x \in X$.

Proof. Let $x, y \in X$. Then

$$\wedge \mu_{D_i}(x * y) \ge \wedge (\min\{\mu_{D_i}(x), \, \mu_{D_i}(y)\}) = \min\{\wedge \mu_{D_i}(x), \, \wedge \mu_{D_i}(y)\}$$

and

$$\forall \gamma_{D_i}(x * y) \leq \forall (\max\{\gamma_{D_i}(x), \gamma_{D_i}(y)\}) = \max\{\forall \gamma_{D_i}(x), \forall \gamma_{D_i}(y)\}.$$

Hence $\cap D_i = \langle x, \wedge \mu_{D_i}, \vee \gamma_{D_i} \rangle$ is an intuitionistic fuzzy *d*-algebra of *X*.

Theorem 3.5. If an IFS $D = \langle x, \mu_D, \gamma_D \rangle$ in X is an intuitionistic fuzzy d-algebra of X, then so is $\Box D$, where $\Box D = \{ \langle x, \mu_D(x), 1 - \mu_D(x) \rangle \mid x \in X \}.$

Proof. It is sufficient to show that $\bar{\mu}_D$ satisfies the second condition in Definition 3.1. Let $x, y \in X$. Then

$$\bar{\mu}_D(x * y) = 1 - \mu_D(x * y) \le 1 - \min\{\mu_D(x), \mu_D(y)\}$$

= max{1 - \mu_D(x), 1 - \mu_D(y)}
= max{\bar{\mu_D(x), \bar{\mu_D(y)}}.

Hence $\Box D$ is an intuitionistic fuzzy *d*-algebra of *X*.

Theorem 3.6. If an IFS $D = \langle x, \mu_D, \gamma_D \rangle$ in X is an intuitionistic fuzzy d-algebra of X, then the sets

$$X_{\mu} := \{ x \in X \mid \mu_D(x) = \mu_D(0) \}$$
 and $X_{\gamma} := \{ x \in X \mid \gamma_D(x) = \gamma_D(0) \}$

are d-subalgebras of X.

Proof. Let $x, y \in X_{\mu}$. Then $\mu_D(x) = \mu_D(0) = \mu_D(y)$, and so

$$\mu_D(x * y) \ge \min\{\mu_D(x), \, \mu_D(y)\} = \mu_D(0).$$

By using Proposition 3.3, we know that $\mu_D(x * y) = \mu_D(0)$ or equivalently $x * y \in X_\mu$. Now let $x, y \in X_{\gamma}$. Then

$$\gamma_D(x * y) \le \max\{\gamma_D(x), \gamma_D(y)\} = \gamma_D(0)$$

and by applying Proposition 3.3 we conclude that $\gamma_D(x * y) = \gamma_D(0)$ and hence $x * y \in X_{\gamma}$.

Definition 3.7. Let $D = \langle x, \mu_D, \gamma_D \rangle$ be an IFS in X and let $t \in [0, 1]$. Then the set

$$U(\mu_D, t) := \{x \in X \mid \mu_D(x) \ge t\} \text{ (resp. } L(\gamma_D, t) := \{x \in X \mid \gamma_D(x) \le t\}$$

is called a μ -level t-cut (resp. γ -level t-cut) of D.

Theorem 3.8. If an IFS $D = \langle x, \mu_D, \gamma_D \rangle$ in X is an intuitionistic fuzzy d-algebra of X, then the μ -level t-cut and γ -level t-cut of D are d-subalgebras of X for every $t \in [0, 1]$ such that $t \in \text{Im}(\mu_D) \cap \text{Im}(\gamma_D)$, which are called a μ -level d-subalgebra and a γ -level d-subalgebra respectively.

Proof. Let $x, y \in U(\mu_D, t)$. Then $\mu_D(x) \ge t$ and $\mu_D(y) \ge t$. It follows that $\mu_D(x * y) \ge \min\{\mu_D(x), \mu_D(y)\} \ge t$ so that $x * y \in U(\mu_D, t)$. Hence $U(\mu_D, t)$ is a *d*-subalgebra of *X*. Now let $x, y \in L(\gamma_D, t)$. Then $\gamma_D(x * y) \le \max\{\gamma_D(x), \gamma_D(y)\} \le t$ and so $x * y \in L(\gamma_D, t)$. Therefore $L(\gamma_D, t)$ is a *d*-subalgebra of *X*.

Theorem 3.9. Let $D = \langle x, \mu_D, \gamma_D \rangle$ be an IFS in X such that the sets $U(\mu_D, t)$ and $L(\gamma_D, t)$ are d-subalgebras of X. Then $D = \langle x, \mu_D, \gamma_D \rangle$ is an intuitionistic fuzzy d-algebra of X.

Proof. Assume that there exist $x_0, y_0 \in X$ such that $\mu_D(x_0 * y_0) < \min\{\mu_D(x_0), \mu_D(y_0)\}$. Let

$$t_0 := \frac{1}{2} \Big(\mu_D(x_0 * y_0) + \min\{\mu_D(x_0), \, \mu_D(y_0)\} \Big).$$

Then $\mu_D(x_0 * y_0) < t_0 < \min\{\mu_D(x_0), \mu_D(y_0)\}\)$ and so $x_0 * y_0 \notin U(\mu_D, t_0)$, but $x_0, y_0 \in U(\mu_D, t_0)$. This is a contradiction, and therefore

$$\mu_D(x*y) \ge \min\{\mu_D(x), \, \mu_D(y)\}$$

for all $x, y \in X$. Now suppose that

$$\gamma_D(x_0 * y_0) > \max\{\gamma_D(x_0), \gamma_D(y_0)\}$$

for some $x_0, y_0 \in X$. Taking

$$s_0 := \frac{1}{2} \Big(\gamma_D(x_0 * y_0) + \max\{\gamma_D(x_0), \gamma_D(y_0)\} \Big),$$

then $\max\{\gamma_D(x_0), \gamma_D(y_0)\} < s_0 < \gamma_D(x_0 * y_0)$. It follows that $x_0, y_0 \in L(\gamma_D, s_0)$ and $x_0 * y_0 \notin L(\gamma_D, s_0)$, a contradiction. Hence

$$\gamma_D(x * y) \le \max\{\gamma_D(x), \gamma_D(y)\}$$

for all $x, y \in X$. This completes the proof.

Theorem 3.10. Any d-subalgebra of X can be realized as both a μ -level d-subalgebra and a γ -level d-subalgebra of some intuitionistic fuzzy d-algebra of X.

Proof. Let S be a d-subalgebra of X and let μ_D and γ_D be fuzzy sets in X defined by

$$\mu_D(x) := \begin{cases} t, & \text{if } x \in S, \\ 0, & \text{otherwise,} \end{cases}$$

and

$$\gamma_D(x) := \begin{cases} s, & \text{if } x \in S, \\ 1, & \text{otherwise,} \end{cases}$$

for all $x \in X$ where t and s are fixed numbers in (0, 1) such that t + s < 1. Let $x, y \in X$. If $x, y \in S$, then $x * y \in S$. Hence $\mu_D(x * y) = \min\{\mu_D(x), \mu_D(y)\}$ and $\gamma_D(x * y) = \max\{\gamma_D(x), \gamma_D(y)\}$. If at least one of x and y does not belong to S, then at least one of

 $\mu_D(x)$ and $\mu_D(y)$ is equal to 0, and at least one of $\gamma_D(x)$ and $\gamma_D(y)$ is equal to 1. It follows that

$$\mu_D(x * y) \ge 0 = \min\{\mu_D(x), \, \mu_D(y)\},\$$

$$\gamma_D(x * y) \le 1 = \max\{\gamma_D(x), \, \gamma_D(y)\}.$$

Hence $D = \langle x, \mu_D, \gamma_D \rangle$ is an intuitionistic fuzzy *d*-algebra of *X*. Obviously, $U(\mu_D, t) = S = L(\gamma_D, s)$. This completes the proof.

Theorem 3.11. Let α be a d-homomorphism of a d-algebra X into a d-algebra Y and B an intuitionistic fuzzy d-algebra of Y. Then $\alpha^{-1}(B)$ is an intuitionistic fuzzy d-algebra of X.

Proof. For any $x, y \in X$, we have

$$\begin{array}{rcl} \mu_{\alpha^{-1}(B)}(x*y) &=& \mu_B(\alpha(x*y)) = \mu_B(\alpha(x)*\alpha(y)) \\ &\geq& \min\{\mu_B(\alpha(x)), \mu_B(\alpha(y))\} \\ &=& \min\{\mu_{\alpha^{-1}(B)}(x), \mu_{\alpha^{-1}(B)}(y)\} \end{array}$$

and

$$\begin{aligned} \gamma_{\alpha^{-1}(B)}(x*y) &= \gamma_B(\alpha(x*y)) = \gamma_B(\alpha(x)*\alpha(y)) \\ &\leq \max\{\gamma_B(\alpha(x)), \gamma_B(\alpha(y))\} \\ &= \max\{\gamma_{\alpha^{-1}(B)}(x), \gamma_{\alpha^{-1}(B)}(y)\}. \end{aligned}$$

Hence $\alpha^{-1}(B)$ is an intuitionistic fuzzy *d*-algebra in *X*.

Theorem 3.12. Let α be a d-homomorphism of a d-algebra X onto a d-algebra Y. If $D = \langle x, \mu_D, \gamma_D \rangle$ is an intuitionistic fuzzy d-algebra of X, then $\alpha(D) = \langle y, \alpha_{\sup}(\mu_D), \alpha_{\inf}(\gamma_D) \rangle$ is an intuitionistic fuzzy d-algebra of Y.

Proof. Let $D = (x, \mu_D, \gamma_D)$ be an intuitionistic fuzzy topological *d*-algebra in X and let $y_1, y_2 \in Y$. Noticing that

$$\{x_1 * x_2 \mid x_1 \in \alpha^{-1}(y_1) \text{ and } x_2 \in \alpha^{-1}(y_2)\} \subseteq \{x \in X \mid x \in \alpha^{-1}(y_1 * y_2)\},\$$

we have

$$\begin{aligned} &\alpha_{\sup}(\mu_D)(y_1 * y_2) \\ &= \sup\{\mu_D(x) \mid x \in \alpha^{-1}(y_1 * y_2)\} \\ &\geq \sup\{\mu_D(x_1 * x_2) \mid x_1 \in \alpha^{-1}(y_1) \text{ and } x_2 \in \alpha^{-1}(y_2)\} \\ &\geq \sup\left\{\min\{\mu_D(x_1), \mu_D(x_2)\} \mid x_1 \in \alpha^{-1}(y_1) \text{ and } x_2 \in \alpha^{-1}(y_2)\right\} \\ &= \min\left\{\sup\{\mu_D(x_1) \mid x_1 \in \alpha^{-1}(y_1)\}, \sup\{\mu_D(x_2) \mid x_2 \in \alpha^{-1}(y_2)\}\right\} \\ &= \min\{\alpha_{\sup}(\mu_D)(y_1), \alpha_{\sup}(\mu_D)(y_2)\} \end{aligned}$$

and

$$\begin{aligned} &\alpha_{\inf}(\gamma_D)(y_1 * y_2) \\ &= \inf\{\gamma_D(x) \mid x \in \alpha^{-1}(y_1 * y_2)\} \\ &\leq \inf\{\gamma_D(x_1 * x_2) \mid x_1 \in \alpha^{-1}(y_1) \text{ and } x_2 \in \alpha^{-1}(y_2)\} \\ &\leq \inf\{\max\{\gamma_D(x_1), \gamma_D(x_2)\} \mid x_1 \in \alpha^{-1}(y_1) \text{ and } x_2 \in \alpha^{-1}(y_2)\}\} \\ &= \max\{\inf\{\gamma_D(x_1) \mid x_1 \in \alpha^{-1}(y_1)\}, \inf\{\gamma_D(x_2) \mid x_2 \in \alpha^{-1}(y_2)\}\} \\ &= \max\{\alpha_{\inf}(\gamma_D)(y_1), \alpha_{\inf}(\gamma_D)(y_2)\}. \end{aligned}$$

Hence $\alpha(D) = \langle y, \alpha_{\sup}(\mu_D), \alpha_{\inf}(\gamma_D) \rangle$ is an intuitionistic fuzzy *d*-algebra in *Y*. Let $\Omega(X)$ denote the family of all intuitionistic fuzzy *d*-algebras of *X* and let $t \in [0, 1]$. Define binary relations \sim_{μ} and \sim_{γ} on $\Omega(X)$ as follows:

$$A\sim_{\mu}B\Leftrightarrow U(\mu_{A},\,t)=U(\mu_{B},\,t)\,\,\text{and}\ \ A\sim_{\gamma}B\Leftrightarrow L(\gamma_{A},\,t)=L(\gamma_{B},\,t),$$

respectively, for $A = \langle x, \mu_A, \gamma_A \rangle$ and $B = \langle x, \mu_B, \gamma_B \rangle$ in $\Omega(X)$. Then clearly \sim_{μ} and \sim_{γ} are equivalence relations on $\Omega(X)$. For any $A = \langle x, \mu_A, \gamma_A \rangle \in \Omega(X)$, let $[A]_{\mu}$ (resp. $[A]_{\gamma}$) denote the equivalence class of $A = \langle x, \mu_A, \gamma_A \rangle$ modulo \sim_{μ} (resp. \sim_{γ}), and denote by $\Omega(X) / \sim_{\mu}$ (resp. $\Omega(X) / \sim_{\gamma}$) the collection of all equivalence classes of A modulo \sim_{μ} (resp. \sim_{γ}), i.e.,

$$\Omega(X)/\sim_{\mu}:=\{[A]_{\mu} \mid A = \langle x, \mu_A, \gamma_A \rangle \in \Omega(X)\}$$

(resp. $\Omega(X)/\sim_{\gamma}:=\{[A]_{\gamma} \mid A = \langle x, \mu_A, \gamma_A \rangle \in \Omega(X)\}$)

Now let S(X) denote the family of all *d*-subalgebras of X and let $t \in [0, 1]$. Define maps α_t and β_t from $\Omega(X)$ to $S(X) \cup \{\emptyset\}$ by $\alpha_t(A) = U(\mu_A, t)$ and $\beta_t(A) = L(\gamma_A, t)$, respectively, for all $A = \langle x, \mu_A, \gamma_A \rangle \in \Omega(X)$. Then α_t and β_t are clearly well-defined.

Theorem 3.13. For any $t \in (0,1)$ the maps α_t and β_t are surjective from $\Omega(X)$ to $S(X) \cup \{\emptyset\}$.

Proof. Let $t \in (0,1)$. Note that $\mathbf{0}_{\sim} = \langle x, \mathbf{0}, \mathbf{1} \rangle$ is in $\Omega(X)$, where $\mathbf{0}$ and $\mathbf{1}$ are fuzzy sets in X defined by $\mathbf{0}(x) = 0$ and $\mathbf{1}(x) = 1$ for all $x \in X$. Obviously $\alpha_t(\mathbf{0}_{\sim}) = U(\mathbf{0}, t) = \emptyset = L(\mathbf{1}, t) = \beta_t(\mathbf{0}_{\sim})$. Let $G(\neq \emptyset) \in S(X)$. For $G_{\sim} = \langle x, \chi_G, \overline{\chi}_G \rangle \in \Omega(X)$, we have $\alpha_t(G_{\sim}) = U(\chi_G, t) = G$ and $\beta_t(G_{\sim}) = L(\overline{\chi}_G, t) = G$. Hence α_t and β_t are surjective. \Box

Theorem 3.14. The quotient sets $\Omega(X) / \sim_{\mu} and \Omega(X) / \sim_{\gamma} are equipotent to <math>S(X) \cup \{\emptyset\}$ for every $t \in (0, 1)$.

Proof. For $t \in (0,1)$ let α_t^* (resp. β_t^*) be a map from $\Omega(X) / \sim_{\mu}$ (resp. $\Omega(X) / \sim_{\gamma}$) to $S(X) \cup \{\emptyset\}$ defined by $\alpha_t^*([A]_{\mu}) = \alpha_t(A)$ (resp. $\beta_t^*([A]_{\gamma}) = \beta_t(A)$) for all $A = \langle x, \mu_A, \gamma_A \rangle \in \Omega(X)$. If $U(\mu_A, t) = U(\mu_B, t)$ and $L(\gamma_A, t) = L(\gamma_B, t)$ for $A = \langle x, \mu_A, \gamma_A \rangle$ and $B = \langle x, \mu_B, \gamma_B \rangle$ in $\Omega(X)$, then $A \sim_{\mu} B$ and $A \sim_{\gamma} B$; hence $[A]_{\mu} = [B]_{\mu}$ and $[A]_{\gamma} = [B]_{\gamma}$. Therefore the maps α_t^* and β_t^* are injective. Now let $G(\neq \emptyset) \in S(X)$. For $G_{\sim} = \langle x, \chi_G, \overline{\chi}_G \rangle \in \Omega(X)$, we have

$$\alpha_t^*([G_{\sim}]_{\mu}) = \alpha_t(G_{\sim}) = U(\chi_G, t) = G$$

and

$$\beta_t^*([G_{\sim}]_{\gamma}) = \beta_t(G_{\sim}) = L(\bar{\chi}_G, t) = G$$

Finally, for $\mathbf{0}_{\sim} = \langle x, \mathbf{0}, \mathbf{1} \rangle \in \Omega(X)$ we get

$$\alpha_t^*([\mathbf{0}_{\sim}]_{\mu}) = \alpha_t(\mathbf{0}_{\sim}) = U(\mathbf{0}, t) = \emptyset$$

and

$$\beta_t^*([\mathbf{0}_{\sim}]_{\gamma}) = \beta_t(\mathbf{0}_{\sim}) = L(\mathbf{1}, t) = \emptyset.$$

This shows that α_t^* and β_t^* are surjective, and we are done.

For any $t \in [0, 1]$, we define another relation \mathfrak{R}^t on $\Omega(X)$ as follows:

$$(A,B) \in \mathfrak{R}^t \Leftrightarrow U(\mu_A, t) \cap L(\gamma_A, t) = U(\mu_B, t) \cap L(\gamma_B, t)$$

for any $A = \langle x, \mu_A, \gamma_A \rangle$, $B = \langle x, \mu_B, \gamma_B \rangle \in \Omega(X)$. Then the relation \mathfrak{R}^t is also an equivalence relation on $\Omega(X)$.

Theorem 3.15. For any $t \in (0,1)$, the map $\phi_t : \Omega(X) \to S(X) \cup \{\emptyset\}$ defined by $\phi_t(A) = \alpha_t(A) \cap \beta_t(A)$ for each $A = \langle x, \mu_A, \gamma_A \rangle \in \Omega(X)$ is surjective.

Proof. Let $t \in (0,1)$. For $\mathbf{0}_{\sim} = \langle x, \mathbf{0}, \mathbf{1} \rangle \in \Omega(X)$, we get

$$\phi_t(\mathbf{0}_{\sim}) = \alpha_t(\mathbf{0}_{\sim}) \cap \beta_t(\mathbf{0}_{\sim}) = U(\mathbf{0},t) \cap L(\mathbf{1},t) = \emptyset$$

For any $H \in \Omega(X)$, there exists $H_{\sim} = \langle x, \chi_H, \overline{\chi}_H \rangle \in \Omega(X)$ such that

$$\phi_t(H_{\sim}) = \alpha_t(H_{\sim}) \cap \beta_t(H_{\sim}) = U(\chi_H, t) \cap L(\bar{\chi}_H, t) = H.$$

This completes the proof.

Theorem 3.16. For any $t \in (0,1)$, the quotient set $\Omega(X)/\Re^t$ is equipotent to $S(X) \cup \{\emptyset\}$.

Proof. Let $t \in (0,1)$ and let $\phi_t^* : \Omega(X)/\Re^t \to S(X) \cup \{\emptyset\}$ be a map defined by $\phi_t^*([A]_{\Re^t}) =$ $\phi_t(A)$ for all $[A]_{\mathfrak{R}^t} \in \Omega(X)/\mathfrak{R}^t$. Assume that $\phi_t^*([A]_{\mathfrak{R}^t}) = \phi_t^*([B]_{\mathfrak{R}^t})$ for any $[A]_{\mathfrak{R}^t}, [B]_{\mathfrak{R}^t} \in \mathcal{O}(X)$ $\Omega(X)/\mathfrak{R}^t$. Then $\alpha_t(A) \cap \beta_t(A) = \alpha_t(B) \cap \beta_t(B)$, i.e., $U(\mu_A, t) \cap L(\gamma_A, t) = U(\mu_B, t) \cap U(\mu_B, t)$ $L(\gamma_B, t)$. Hence $(A, B) \in \mathfrak{R}^t$, and so $[A]_{\mathfrak{R}^t} = [B]_{\mathfrak{R}^t}$. Therefore ϕ_t^* is injective. Now for $\mathbf{0}_{\sim} = \langle x, \mathbf{0}, \mathbf{1} \rangle \in \Omega(X)$ we have

$$\phi_t^*([\mathbf{0}_{\sim}]_{\mathfrak{R}^t}) = \phi_t(\mathbf{0}_{\sim}) = \alpha_t(\mathbf{0}_{\sim}) \cap \beta_t(\mathbf{0}_{\sim}) = U(\mathbf{0}, t) \cap L(\mathbf{1}, t) = \emptyset.$$

For $H_{\sim} = \langle x, \chi_H, \bar{\chi}_H \rangle \in \Omega(X)$ we get

$$\phi_t^*([H_\sim]_{\mathfrak{R}^t}) = \phi_t(H_\sim) = \alpha_t(H_\sim) \cap \beta_t(H_\sim) = U(\chi_H, t) \cap L(\bar{\chi}_H, t) = H.$$

Thus ϕ_t^* is surjective. This completes the proof.

4. Intuitionistic Fuzzy Topological *d*-algebras

In [3], Coker generalized the concept of fuzzy topological space, first initiated by Chang [2], to the case of intuitionistic fuzzy sets as follows.

Definition 4.1 (see [3]). An *intuitionistic fuzzy topology* (IFT for short) on a nonempty set X is a family Φ of IFSs in X satisfying the following axioms:

(T1) $\mathbf{0}_{\sim}, \mathbf{1}_{\sim} \in \Phi$,

(T2) $G_1 \cap G_2 \in \Phi$ for any $G_1, G_2 \in \Phi$, (T3) $\bigcup_{i \in I} G_i \in \Phi$ for any family $\{G_i : i \in J\} \subseteq \Phi$.

In this case the pair (X, Φ) is called an *intuitionistic fuzzy topological space* (IFTS for short) and any IFS in Φ is called an *intuitionistic fuzzy open set* (IFOS for short) in X.

Definition 4.2 (see [3]). Let (X, Φ) and (Y, Ψ) be two IFTSs. A mapping $f: X \to Y$ is said to be *intuitionistic fuzzy coninuous* if the preimage of each IFS in Ψ is an IFS in Φ ; and f is said to be *intuitionistic fuzzy open* if the image of each IFS in Φ is an IFS in Ψ .

Definition 4.3. Let D be an IFS in an IFTS (X, Φ) . Then the *induced intuitionistic* fuzzy topology (IIFT for short) on D is the family of IFSs in D which are the intersection with D of IFOSs in X. The IIFT is denoted by Φ_D , and the pair (D, Φ_D) is called an intuitionistic fuzzy subspace of (X, Φ) .

Definition 4.4. Let (D, Φ_D) and (B, Ψ_B) be intuitionistic fuzzy subspaces of IFTSs (X, Φ) and (Y, Ψ) , respectively, and let $f: X \to Y$ be a mapping. Then f is a mapping of D into B if $f(D) \subset B$. Furthermore, f is said to be relatively intuitionistic fuzzy continuous if for each IFS V_B in Ψ_B , the intersection $f^{-1}(V_B) \cap D$ is an IFS in Φ_D ; and f is said to be relatively intuitionistic fuzzy open if for each IFS U_D in Φ_D , the image $f(U_D)$ is an IFS in Ψ_B .

Proposition 4.5. Let (D, Φ_D) and (B, Ψ_B) be intuitionistic fuzzy subspaces of IFTSs (X, Φ) and (Y, Ψ) respectively, and let f be an intuitionistic fuzzy continuous mapping of X into Y such that $f(D) \subset B$. Then f is relatively intuitionistic fuzzy continuous mapping of D into B.

Proof. Let V_B be an IFS in Ψ_B . Then there exists $V \in \Psi$ such that $V_B = V \cap B$. Since f is intuitionistic fuzzy continuous, it follows that $f^{-1}(V)$ is an IFS in Φ . Hence

$$f^{-1}(V_B) \cap D = f^{-1}(V \cap B) \cap D = f^{-1}(V) \cap f^{-1}(B) \cap D = f^{-1}(V) \cap D$$

is an IFS in Φ_D . This completes the proof.

For any d-algebra X and any element $a \in X$ we use a_r denote the selfmap of X defined by $a_r(x) = x * a$ for all $x \in X$.

Definition 4.6. Let X be a d-algebra, Φ an IFT on X and D an intuitionistic fuzzy d-algebra with IIFT Φ_D . Then D is called an *intuitionistic fuzzy topological d-algebra* if for each $a \in X$ the mapping $a_r : (D, \Phi_D) \to (D, \Phi_D), x \mapsto x * a$, is relatively intuitionistic fuzzy continuous.

Theorem 4.7. Given d-algebras X and Y, and a d-homomorphism $\alpha : X \to Y$, let Φ and Ψ be the IFTs on X and Y respectively such that $\Phi = \alpha^{-1}(\Psi)$. If B is an intuitionistic fuzzy topological d-algebra in Y, then $\alpha^{-1}(B)$ is an intuitionistic fuzzy topological d-algebra in X.

Proof. Let $a \in X$ and let U be an IFS in $\Phi_{\alpha^{-1}(B)}$. Since α is an intuitionistic fuzzy continuous mapping of (X, Φ) into (Y, Ψ) , it follows from Proposition 4.5 that α is a relatively intuitionistic fuzzy continuous mapping of $(\alpha^{-1}(B), \Phi_{\alpha^{-1}(B)})$ into (B, Ψ_B) . Note that there exists an IFS V in Ψ_B such that $\alpha^{-1}(V) = U$. Then

$$\mu_{a_r^{-1}(U)}(x) = \mu_U(a_r(x)) = \mu_U(x*a) = \mu_{\alpha^{-1}(V)}(x*a)$$
$$= \mu_V(\alpha(x*a)) = \mu_V(\alpha(x)*\alpha(a))$$

and

$$\begin{aligned} \gamma_{a_r^{-1}(U)}(x) &= & \gamma_U(a_r(x)) = \gamma_U(x*a) = \gamma_{\alpha^{-1}(V)}(x*a) \\ &= & \gamma_V(\alpha(x*a)) = \gamma_V(\alpha(x)*\alpha(a)). \end{aligned}$$

Since B is an intuitionistic fuzzy topological d-algebra in Y, the mapping

$$b_r: (B, \Psi_B) \to (B, \Psi_B), \ y \mapsto y * b$$

is relatively intuitionistic fuzzy continuous for every $b \in Y$. Hence

$$\mu_{a_r^{-1}(U)}(x) = \mu_V(\alpha(x) * \alpha(a)) = \mu_V(\alpha(a)_r(\alpha(x)))$$

= $\mu_{\alpha(a)_r^{-1}(V)}(\alpha(x)) = \mu_{\alpha^{-1}(\alpha(a)_r^{-1}(V))}(x)$

and

$$\begin{aligned} \gamma_{a_r^{-1}(U)}(x) &= \gamma_V(\alpha(x) * \alpha(a)) = \gamma_V(\alpha(a)_r(\alpha(x))) \\ &= \gamma_{\alpha(a)_r^{-1}(V)}(\alpha(x)) = \gamma_{\alpha^{-1}(\alpha(a)_r^{-1}(V))}(x). \end{aligned}$$

Therefore $a_r^{-1}(U) = \alpha^{-1}(\alpha(a)_r^{-1}(V))$, and so

$$a_r^{-1}(U) \cap \alpha^{-1}(B) = \alpha^{-1}(\alpha(a)_r^{-1}(V)) \cap \alpha^{-1}(B)$$

is an IFS in $\Phi_{\alpha^{-1}(B)}$. This completes the proof.

Theorem 4.8. Given d-algebras X and Y, and a d-isomorphism α of X to Y, let Φ and Ψ be the IFTs on X and Y respectively such that $\alpha(\Phi) = \Psi$. If D is an intuitionistic fuzzy topological d-algebra in X, then $\alpha(D)$ is an intuitionistic fuzzy topological d-algebra in Y.

Proof. It is sufficient to show that the mapping

$$b_r: (\alpha(D), \Psi_{\alpha(D)}) \to (\alpha(D), \Psi_{\alpha(D)}), y \mapsto y * b$$

is relatively intuitionistic fuzzy continuous for each $b \in Y$. Let U_D be an IFS in Φ_D . Then there exists an IFS U in Φ such that $U_D = U \cap D$. Since α is one-one, it follows that

$$\alpha(U_D) = \alpha(U \cap D) = \alpha(U) \cap \alpha(D)$$

which is an IFS in $\Psi_{\alpha(D)}$. This shows that α is relatively intuitionistic fuzzy open. Let $V_{\alpha(D)}$ be an IFS in $\Psi_{\alpha(D)}$. The surjectivity of α implies that for each $b \in Y$ there exists

 $a \in X$ such that $b = \alpha(a)$. Hence

$$\begin{split} \mu_{\alpha^{-1}(b_r^{-1}(V_{\alpha(D)}))}(x) &= \mu_{\alpha^{-1}(\alpha(a)_r^{-1}(V_{\alpha(D)}))}(x) = \mu_{\alpha(a)_r^{-1}(V_{\alpha(D)})}(\alpha(x)) \\ &= \mu_{V_{\alpha(D)}}(\alpha(a)_r(\alpha(x))) = \mu_{V_{\alpha(D)}}(\alpha(x)*\alpha(a)) \\ &= \mu_{V_{\alpha(D)}}(\alpha(x*a)) = \mu_{\alpha^{-1}(V_{\alpha(D)})}(x*a) \\ &= \mu_{\alpha^{-1}(V_{\alpha(D)})}(a_r(x)) = \mu_{a_r^{-1}(\alpha^{-1}(V_{\alpha(D)}))}(x) \end{split}$$

and

$$\begin{split} \gamma_{\alpha^{-1}(b_r^{-1}(V_{\alpha(D)}))}(x) &= \gamma_{\alpha^{-1}(\alpha(a)_r^{-1}(V_{\alpha(D)}))}(x) = \gamma_{\alpha(a)_r^{-1}(V_{\alpha(D)})}(\alpha(x)) \\ &= \gamma_{V_{\alpha(D)}}(\alpha(a)_r(\alpha(x))) = \gamma_{V_{\alpha(D)}}(\alpha(x)*\alpha(a)) \\ &= \gamma_{V_{\alpha(D)}}(\alpha(x*a)) = \gamma_{\alpha^{-1}(V_{\alpha(D)})}(x*a) \\ &= \gamma_{\alpha^{-1}(V_{\alpha(D)})}(a_r(x)) = \gamma_{a_r^{-1}(\alpha^{-1}(V_{\alpha(D)}))}(x). \end{split}$$

Therefore $\alpha^{-1}(b_r^{-1}(V_{\alpha(D)}) = a_r^{-1}(\alpha^{-1}(V_{\alpha(D)}))$. By hypothesis, the mapping $a_r: (D, \Phi_D) \to (D, \Phi_D), x \mapsto x * a$

is relatively intuitionistic fuzzy continuous and α is a relatively intuitionistic fuzzy continuous map: $(D, \Phi_D) \rightarrow (\alpha(D), \Psi_{\alpha(D)})$. Thus

$$\alpha^{-1}(b_r^{-1}(V_{\alpha(D)})) \cap D = a_r^{-1}(\alpha^{-1}(V_{\alpha(D)})) \cap D$$

is an IFS in Φ_D . Since α is relatively intuitionistic fuzzy open,

$$\alpha(\alpha^{-1}(b_r^{-1}(V_{\alpha(D)})) \cap D) = b_r^{-1}(V_{\alpha(D)}) \cap \alpha(D)$$

is an IFS in $\Psi_{\alpha(D)}$. This completes the proof.

References

- [1] K. T. Atanassov Intuitionistic fuzzy sets, Fuzzy sets and Systems 35 (1986), 87–96.
- [2] C. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl. **24** (1968), 182–190.
- [3] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81–89.
- [4] D. H. Foster, Fuzzy topological groups, J. Math. Anal. Appl. 67 (1979), 549-564.
- [5] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
- [6] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
- [7] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19–22.
- [8] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Academy 42 (1966), 26–29.
- [9] Y. B. Jun, Fuzzy topological BCK-algebras, Math. Japon. **38(6)** (1993), 1059–1063.
- [10] Y. B. Jun and H. S. Kim, On fuzzy topological d-ideals, Math. Slovaca 51(2) (2001), 167–173.
- [11] Y. B. Jun, J. Neggers and H. S. Kim, Fuzzy d-ideals of d-algebras, J. Fuzzy Math. 8(1) (2000), 123–130.
- [12] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, 1994.
- [13] J. Neggers, Y. B. Jun and H. S. Kim, On d-ideals in d-algebras, Math. Slovaca 49(3) (1999), 243-251.
- [14] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca **49(1)** (1999), 19–26.
- [15] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512–517.
- [16] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338–353.

H. S. KIM AND D. S. YOON , DEPARTMENT OF MATHEMATICS, HANYANG UNIVERSITY, SEOUL 133-791, KOREA

E-mail address: heekimdsyun@hanyang.ac.kr

Y. B. JUN, DEPARTMENT OF MATHEMATICS EDUCATION (AND RINS), GYEONGSANG NATIONAL UNIVER-SITY, CHINJU 660-701, KOREA

 $E\text{-}mail \ address: \texttt{skywineQgmail.com}$