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Abstract. In this paper, we study the weak convergence of Mann’s type iteration
procedure and the existence of nonexpansive retractions for commutative semigroups
in Banach spaces which satisfy Opial’s condition. Further, we introduce an implicit
iteration procedure for nonexpansive semigroups and then prove a strong convergence
theorem for the nonexpansive semigroups in general Banach spaces.

1. Introduction

Let C be a nonempty closed convex subset of a Banach space E and let T be a nonex-
pansive mapping of C into itself, that is,

‖Tx − Ty‖ ≤ ‖x − y‖
for all x, y ∈ C. Mann [21] introduced the following iteration procedure for approximating
fixed points of a nonexpansive self-mapping T on a nonempty, closed, convex subset C of a
Hilbert space H :

x1 ∈ C, xn+1 = αnxn + (1 − αn)Txn for each n = 1, 2, . . . ,

where {αn} is a sequence in [0, 1]. Later, Reich [25] studied this iteration procedure in
a uniformly convex Banach space whose norm is Fréchet differentiable and obtained that
if T has a fixed point and {αn} satisfies

∑∞
n=0 αn(1 − αn) = ∞, then the sequence {xn}

converges weakly to a fixed point of T . Shimizu and Takahashi [27, 28] introduced the first
iteration procedure for finding common fixed points of families of nonexpansive mappings
and obtained convergence theorems for the families. In [2], Atsushiba and Takahashi con-
sidered the following iteration procedure of Mann’s type for approximating common fixed
points of two nonexpansive mappings in a Banach space:

x1 ∈ C, xn+1 = αn xn + (1 − αn)
1
n2

n−1∑
i,j=0

SiT jxn for each n = 1, 2, . . . ,

where {αn} is a sequence in [0, 1] and S, T are nonexpansive mappings from C into itself.
Atsushiba and Takahashi [1] also studied an iteration procedure of Mann’s type for approx-
imating common fixed points for a family {T (t) : t ∈ S} of nonexpansive mappings in a
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Hilbert space H :

x1 ∈ C, xn+1 = αn xn + (1 − αn)Tµnxn for each n = 1, 2, . . . ,(1)

where {αn} is a sequence in [0, 1], {µn} is a sequence of means on the set N of positive
integers and Tµnxn is the unique point in C satisfying 〈Tµnxn, y〉 = (µn)s〈T (s)xn, y〉 for
all y in H (see also [5]). Recently, Suzuki [30] proved the weak convergence of the itera-
tion procedure of Mann’s type for approximating common fixed points for two commuting
nonexpansive mappings in a Banach space which satisfies Opial’s condition (see also [31]).

On the other hand, Xu and Ori [37] studied the following implicit iteration procedure
for finite nonexpansive mappings T1, T2, . . . , Tr in a Hilbert space: x0 = x ∈ C and

xn = αnxn−1 + (1 − αn)Tnxn(2)

for every n = 1, 2, . . . , where {αn} is a sequence in (0, 1) and Tn = Tn+r for all n ∈ N. Then,
they established a weak convergence. Sun, He and Ni [29] studied the iterations defined by
(2) and proved strong convergence of the iterations in a uniformly convex Banach space,
requiring one mapping Ti in the family to be semi-compact.

In this paper, we study the weak convergence of Mann’s type iteration procedure and
the existence of nonexpansive retractions for commutative semigroups in Banach spaces
which satisfy Opial’s condition. Further, we introduce an implicit iteration procedure for
nonexpansive semigroups and then prove a strong convergence theorem for the nonexpansive
semigroups in general Banach spaces.

2. Preliminaries and notations

Throughout this paper, we denote by N = {1, 2, 3, . . .} and Z
+ = {0, 1, 2, 3, . . .} the set of

all positive integers and the set of all nonnegative integers, respectively. We also denote by R

and R
+ the set of all real numbers and and the set of all positive real numbers, respectively.

Let E be a real Banach space. We denote by Br the closed ball {x ∈ E : ‖x‖ ≤ r}. A
Banach space E is said to be strictly convex if ‖x + y‖/2 < 1 for each x, y ∈ B1 with
x �= y, and it is said to be uniformly convex if for each ε > 0, there exists δ > 0 such that
‖x + y‖/2 ≤ 1 − δ for each x, y ∈ B1 with ‖x − y‖ ≥ ε. It is well-known that a uniformly
convex Banach space is reflexive and strictly convex (see [36]).

Let C be a closed convex subset of a Banach space and let T be a mapping from C into
itself. We denote by F (T ) the set {x ∈ C : x = Tx}. We also denote by I the identity
mapping. We denote by N(C) the set of all nonexpansive mappings from C into itself. We
know from [9] that if C is a nonempty closed convex subset of a strictly convex Banach
space, then F (T ) is convex for each T ∈ N(C). Let E∗ be the dual space of a Banach
space E. The value of x∗ ∈ E∗ at x ∈ E will be denoted by 〈x, x∗〉. We write xn → x
(or lim

n→∞xn = x) to indicate that the sequence {xn} of vectors converges strongly to x.

Similarly, xn ⇀ x (or w- lim
n→∞xn = x) will symbolize weak convergence. For any element z

and any set A, we denote the distance between z and A by d(z, A) = inf{‖z − y‖ : y ∈ A}.
We say that a Banach space E satisfies Opial’s condition [23] if for each sequence {xn}

in E with xn ⇀ x,
lim

n→∞
‖xn − x‖ < lim

n→∞
‖xn − y‖

for each y ∈ E with y �= x. We know that if the duality mapping x 
→ {x∗ ∈ E∗ : 〈x, x∗〉 =
‖x‖2 = ‖x∗‖2} from E into E∗ is single-valued and weakly sequentially continuous, then
E satisfies Opial’s condition. In particular, each Hilbert space and the sequence spaces �p

with 1 < p < ∞ satisfy Opial’s condition (see [17, 23]). Although an Lp-space with p �= 2
does not usually satisfy Opial’s condition, each separable Banach space can be equivalently
renormed so that it satisfies Opial’s condition (see [12, 23]).
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Let S be a commutative semigroup with identity. In this case, (S,≤) is a directed system
when the binary relation ≤ on S is defined by a ≤ b if and only if there is c ∈ S with a+c = b.
Let B(S) be the Banach space of all bounded real-valued functions on S with supremum
norm. For s ∈ S and f ∈ B(S), we define an element rsf in B(S) by (rsf)(t) = f(s + t)
for each t ∈ S. Let X be a subspace of B(S) with 1 ∈ X . An element µ in X∗ is said to be
a mean on X if ‖µ‖ = µ(1) = 1. As is well known, µ is a mean on X if and only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s)

for each f ∈ X ; see also [36]. We often write µt(f(t)) instead of µ(f) for µ ∈ X∗ and
f ∈ X . Let X be rs-invariant, i.e., rs(X) ⊂ X for each s ∈ S. A mean µ on X is said to be
invariant if µ(rsf) = µ(f) for each s ∈ S and f ∈ X . We know that if S is a commutative
semigroup and µ is an invariant mean on X , then

lim
s∈S

f(s) ≤ µ(f) ≤ lim
s∈S

f(s)

for each f ∈ X ; see [33, 36] for more details. A sequence {µn} of means on X is said to
be asymptotically invariant if µn − r∗sµn → 0 for each s ∈ S, in the sense of the weak-star
topology, where r∗s is the adjoint operator of rs [14, 20]. Let E be a Banach space, let X be
a subspace of B(S) with 1 ∈ X and let µ be a mean on X . Let f be a mapping from S into
E such that {f (t) : t ∈ S} is contained in a weakly compact convex subset of E and the
mapping t 
→ 〈f(t), x∗〉 is in X for each x∗ ∈ E∗. We know from [14, 32] that there exists a
unique element x0 ∈ E such that 〈x0, x

∗〉 = µt〈f(t), x∗〉 for all x∗ ∈ E∗. Following [14], we
denote such x0 by

∫
f(t) dµ(t) or fµ. We know that fµ is contained in co{f (t) : t ∈ S} (for

example see [15, 16, 32]). Let C be a nonempty closed convex subset of a Banach space E.
A family S = {T (t) : t ∈ S} is said to be a nonexpansive semigroup on C if it satisfies the
following:
(1) For each t ∈ S, T (t) is a nonexpansive mapping from C into itself;
(2) T (t + s) = T (t)T (s) for each t, s ∈ S.
We denote by F (S) the set of common fixed points of S, i.e., F (S) =

⋂
t∈S F (T (t)). Let

S = {T (t) : t ∈ S} be a nonexpansive semigroup on C such that for each x ∈ C, {T (t)x :
t ∈ S} is contained in a weakly compact convex subset of C. Let X be a subspace of B(S)
with 1 ∈ X such that the mapping t 
→ 〈T (t)x, x∗〉 is in X for each x ∈ C and x∗ ∈ E∗,
and let µ be a mean on X . Following [26], we also write Tµx instead of

∫
T (t)xdµ(t) for

x ∈ C. We remark that Tµ is nonexpansive on C and Tµx = x for each x ∈ F (S); for more
details, see [36].

For a nonempty subset D of S, we define the characteristic function ID by

ID(t) =

{
1, t ∈ D,

0, t /∈ D.
(3)

The following lemma is used in the proof of Proposition 3.4.

Lemma 2.1. Let S be a commutative semigroup with identity. Let k ∈ N and let A1, A2, . . . , Ak

be subsets of S. Let X be a subspace of B(S) with 1 ∈ X such that IA1 , IA2 , · · · , IAk
are

contained in X. Put D =
⋂k

j=1 Aj and put

α =
k∑

j=1

µt(IAj (t)) − (k − 1).

where µ is an invariant mean on X. Suppose α > 0. Then,

µ(ID) ≥ α
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holds and
{s ∈ S : s ≥ p} ∩ D �= ∅

for each p ∈ S.

Proof. Let µ be an invariant mean on B(S). ¿From D =
⋂k

j=1 Aj , we have

ID(t) ≥
k∑

j=1

IAj (t) − (k − 1)

for all t ∈ S and hence

µt(ID(t)) ≥ µt

⎛
⎝ k∑

j=1

IAj (t) − (k − 1)

⎞
⎠

=
k∑

j=1

µ(IAj ) − (k − 1) = α > 0.(4)

Since µ is an invariant mean, we have µt(ID(t)) = µt(ID(t + s)) for any s ∈ S. Fix p ∈ S.
Then, it follows from (4) that

µt(ID(t + p)) ≥ α > 0.

Hence, we obtain
{t + p : t ∈ S} ∩ D �= ∅.

Since p ∈ S is arbitrary,
{t ∈ S : t ≥ p} ∩ D �= ∅

holds for each p ∈ S.

The following theorem was proved by Edelstein and O’Brien [13].

Theorem 2.2 ([13]). Let E be a Banach space which satisfies Opial’s condition and let C
be a nonempty weakly compact convex subset of E. Let T be a nonexpansive mapping of C
into itself. Let x ∈ C and let {xn} be the sequence defined by

x1 = x, xn+1 = αxn + (1 − α)Txn for each n ∈ N,

where α is a constant number in (0, 1). Then {xn} converges weakly to a fixed point of T .

3. Lemmas

Let C be a nonempty closed convex subset of a Banach space E. Throughout the rest of
this paper, we assume that S is a commutative semigroup with identity, S = {T (t) : t ∈ S}
is a nonexpansive semigroup on C, and X is a subspace of B(S) with 1 ∈ X such that
it is rs-invariant for each s ∈ S, and the functions t 
→ 〈T (t)x, x∗〉 and t 
→ ‖T (t)x − y‖
are contained in X for each x, y ∈ C and x∗ ∈ E∗. We will call such a subspace X of
B(S) S-stable. We know the following lemma (for example see [18, 22]). For the sake of
completeness, we provide a proof.

Lemma 3.1. Let C be a nonempty bounded closed convex subset of a Banach space E
and let S = {T (t) : t ∈ S} be a nonexpansive semigroup on C. Let X be a subspace of
B(S) which is S-stable. For an invariant mean µ on X and z ∈ C with Tµz = z, put
L0 = µt‖T (t)z − z‖. Then, ‖T (t)z − z‖ ≤ L0 holds for each t ∈ S.



WEAK AND STRONG CONVERGENCE THEOREMS 1279

Proof. Since µ is an invariant mean on X , for each t ∈ S, we have

‖T (t)z − z‖ = ‖T (t)z − Tµz‖ = sup
x∗∈S(E∗)

|〈T (t)z − Tµz, x∗〉|

= sup
x∗∈S(E∗)

|µs〈T (t)z − T (s)z, x∗〉|

≤ sup
x∗∈S(E∗)

µs(‖T (t)z − T (s)z‖‖x∗‖)

= µs‖T (t)z − T (s)z‖.
Putting g(s) = ‖T (t)z − T (s)z‖ for each s ∈ S, we have (rtg)(s) = ‖T (t)z− T (s + t)z‖ and
hence

µs‖T (t)z − T (s)z‖ = µ(g) = µ(rtg)

= µs(‖T (t)z − T (s + t)z‖) ≤ µs(‖z − T (s)z‖) = L0.

So, we have ‖T (t)z − z‖ ≤ L0 holds for each t ∈ S.

Let C be a nonempty bounded closed convex subset of a Banach space E and let S =
{T (t) : t ∈ S} be a nonexpansive semigroup on C. For z ∈ C, f ∈ E∗ and a, b ∈ R, let us
define two subsets of S as follows

A(z, f, a) = {s ∈ S : 〈T (s)z − z, f〉 ≤ a}
and

B(z, b) = {s ∈ S : ‖T (s)z − z‖ ≥ b}.
We will call a subspace X of B(S) S-admissible if X is S-stable and contains IA(z,f,a) and
IB(z,b) for all z ∈ C, f ∈ E∗ and a, b ∈ R. Occasionally, we use IA(f,a) and IB(b) instead of
IA(z,f,a) and IB(z,b), respectively.

Lemma 3.2. Let C be a nonempty bounded closed convex subset of a Banach space E
and let S = {T (t) : t ∈ S} be a nonexpansive semigroup on C. Let X be a subspace of
B(S) which is S-admissible. Let µ be an invariant mean on X. Suppose that Tµz = z
for some z ∈ C. Put L0 = µt‖T (t)z − z‖. Fix p ∈ S and f ∈ E∗ such that ‖f‖ = 1 and
〈T (p)z−z, f〉 = ‖T (p)z−z‖. Let δ be a positive real number satisfying ‖T (p)z−z‖ ≥ L0−δ.
Then,

µ(IA(f,ε)) ≥ ε

ε + δ
holds for all ε > 0.

Proof. Let s ∈ S with s ≥ p. There exists p1 such that s = p + p1. By Lemma 3.1, we have

‖T (s)z − T (p)z‖ ≤ ‖T (p1)z − z‖ ≤ L0

and hence

〈T (s)z − z, f〉 = 〈T (s)z − T (p)z, f〉+ 〈T (p)z − z, f〉
= 〈T (s)z − T (p)z, f〉+ ‖T (p)z − z‖
≥ −|〈T (s)z − T (p)z, f〉|+ ‖T (p)z − z‖
≥ −‖f‖‖T (s)z − T (p)z‖+ ‖T (p)z − z‖
≥ −L0 + L0 − δ = −δ.

We also have

〈Tµz − z, f〉 = 〈Tµz, f〉 − 〈z, f〉
= (µ)t〈T (t)z, f〉 − 〈z, f〉 = (µ)t〈T (t)z − z, f〉.(5)
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On the other hand, for s ∈ S with s ≥ p, we obtain

〈T (s)z − z, f〉 = IS\A(f,ε)(s)〈T (s)z − z, f〉 + IA(f,ε)(s)〈T (s)z − z, f〉
≥ ε · IS\A(f,ε)(s) − δ · IA(f,ε)(s)

≥ ε · (IS(s) − IA(f,ε)(s)) − δ · IA(f,ε)(s)

= ε · IS(s) − (ε + δ) IA(f,ε)(s) = ε − (ε + δ) IA(f,ε)(s).(6)

Then, it follows from (5) and (6) that

〈Tµz − z, f〉 = (µ)t〈T (t)z − z, f〉
= µt(〈T (t + p)z − z, f〉)
≥ µ(ε − (ε + δ)IA(f,ε)) = ε − (ε + δ) · µ(IA(f,ε)).

¿From Tµz = z, we have

µ(IA(f,ε)) ≥ ε

ε + δ
.

Lemma 3.3. Let C be a nonempty bounded closed convex subset of a Banach space E and
let S = {T (t) : t ∈ S} be a nonexpansive semigroup on C. Let X be a subspace of B(S)
which is S-admissible. Let µ be an invariant mean on X. Suppose that Tµz = z for some
z ∈ C. Then,

µ(IB(L0−ε)) = 1
holds for all ε > 0.

Proof. We fix ε > 0 and η ∈ R
+ with 1

2 < η < 1 and put

δ =
ε(1 − η)

2η
.

We note that 0 < δ < ε
2 . Put L0 = µp‖T (p)z − z‖ and d = lim p ‖T (p)z − z‖. Then, we

have d ≥ L0. By the definition of d, there exists p ∈ S such that ‖T (p)z − z‖ ≥ d − δ. So,
it follows that

‖T (p)z − z‖ ≥ d − δ ≥ L0 − δ.

Fix f ∈ E∗ with
‖f‖ = 1 and 〈T (p)z − z, f〉 = ‖T (p)z − z‖.

Let µ be an invariant mean on X . So, by Lemma 3.2, we have

µ(IA(f,ε/2)) ≥ ε/2
ε/2 + δ

= η.(7)

If u + p ∈ A(f, ε/2), then we have

‖T (u)z − z‖ ≥ ‖T (u + p)z − T (p)z‖
≥ 〈T (p)z − T (u + p)z, f〉
= 〈T (p)z − z, f〉 + 〈z − T (u + p)z, f〉
= ‖T (p)z − z‖ + 〈z − T (u + p)z, f〉 = ‖T (p)z − z‖ − 〈T (u + p)z − z, f〉
≥ L0 − δ − ε

2
≥ L0 − ε

and hence u ∈ B(L0 − ε). Therefore, IB(L0−ε)(u) ≥ IA(f,ε/2)(u + p) for all u ∈ S. So, by
(7), we obtain

µu

(
IB(L0−ε)(u)

)
≥ µu

(
IA(f,ε/2)(u + p)

)
= µu

(
IA(f,ε/2)(u)

)
≥ η.
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Since η is arbitrary, we have the desired result.

Proposition 3.4. Let C be a nonempty bounded closed convex subset of a Banach space
E and let S = {T (t) : t ∈ S} be a nonexpansive semigroup on C. Let X be a subspace of
B(S) which is S-admissible. Let µ be an invariant mean on X. Suppose that Tµz = z for
some z ∈ C. Let L0 = µp‖T (p)z − z‖ and let t ∈ S. Then, there exists sequences {pn} in
S and {fn} in E∗ such that

pn+1 ≥ pn + t,

‖T (pn)z − z‖ ≥ L0 − 1
3n+1

,

〈T (pn)z − z, f�〉 ≤ 2�+1

3�+1
for all � = 1, 2, . . . , n − 1

and

‖fn‖ = 1 and 〈T (pn)z − z, fn〉 = ‖T (pn)z − z‖ for all n ∈ N.

Proof. ¿From L0 = µt‖T (t)z − z‖, there exists p1 ∈ S such that

‖T (p1)z − z‖ ≥ L0 − 1
32

.

Take f1 ∈ E∗ with ‖f1‖ = 1 and 〈T (p1)z − z, f1〉 = ‖T (p1)z − z‖. By Lemma 3.2, we have

µ(IA(f1,( 2
3 )2)) ≥

(
2
3

)2/(2
3

)2

+
(

1
3

)2

=
22

22 + 1
.

Putting A1 = B(L0 − 1
32+1 ) and A2 = A

(
f1,
(

2
3

)2) in Lemma 2.1, we have that

α = µ(IA1) + µ(IA2) − 1 = µ(IB(L0−( 1
3 )3)) + µ(IA(f1,( 2

3 )2)) − 1

≥ 1 +
22

22 + 1
− 1 > 0.

So, it follows from Lemma 2.1 that

{s ∈ S : s ≥ p1 + t} ∩ B

(
L0 − 1

33

)
∩ A

(
f1,

(
2
3

)2
)

�= ∅.

This implies that there exists p2 ∈ S with p2 ≥ p1 + t such that

‖T (p2)z − z‖ ≥ L0 − 1
33

and 〈T (p2)z − z, f1〉 ≤ 22

32
.

Let us prove Proposition 3.4 by induction. Suppose pk ∈ S and fk ∈ E∗ are known. By
Lemmas 3.2 and 3.3, we have

µ(IB(L0−( 1
3 )k+2)) +

k∑
�=1

µ(IA(f�,( 2
3 )�+1)) − k

≥ 1 +
k∑

�=1

2�+1

2�+1 + 1
− k

≥ 1 +
k∑

�=1

2�+1 − 1
2�+1

− k

= 1 +
k∑

�=1

−1
2�+1

>
1
2

> 0.
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So it follows from Lemma 2.1 that

{s ∈ S : s ≥ pk + t} ∩ B

(
L0 − 1

3k+2

)
∩

k⋂
�=1

A

(
f�,

(
2
3

)�+1
)

�= ∅,

i.e, there exists pk+1 ≥ pk + t such that ‖T (pk+1)z − z‖ ≥ L0 − 1
3k+2 and

〈T (pk+1)z − z, f�〉 ≤ 2�+1

3�+1

for all l = 1, 2, . . . , k. Take fk+1 ∈ E∗ with

‖fk+1‖ = 1 and 〈T (pk+1)z − z, fk+1〉 = ‖T (pk+1)z − z‖.
It follows from Lemma 3.2 that

µ(IA(fk+1,( 2
3 )k+2)) ≥

2k+2

2k+2 + 1
.

This completes the proof.

4. Weak Convergence Theorems

In this section, we first show that for a weakly compact convex subset C of a Banach
space with Opial’s condition, the fixed point set of a commutative semigroup of nonexpansive
mappings in C is precisely the fixed point set of the nonexpansive mapping determined by
an invariant mean.

Theorem 4.1. Let E be a Banach space which satisfies Opial’s condition and let C be a
nonempty weakly compact convex subset of E. Let S = {T (t) : t ∈ S} be a nonexpansive
semigroup on C. Let X be a subspace of B(S) which is S-admissible. Let {µα} be an
asymptotically invariant net of means on X. If z ∈ C, then the following are equivalent:

(i) z is a common fixed point of S = {T (t) : t ∈ S};
(ii) Tµz = z for some invariant mean µ on X;
(iii) {Tµαz} converges weakly to z.

Proof. It is clear that (i) implies (ii) and that (i) implies (iii).
We prove that (ii) implies (i). Put L0 = µs‖T (s)z − z‖ and let t ∈ S. By Proposition

3.4, there exists sequences {pn} in S and {fn} ⊂ E∗ such that

pn+1 ≥ pn + t,

‖T (pn)z − z‖ ≥ L0 − 1
3n+1

,

〈T (pn)z − z, f�〉 ≤ 2�+1

3�+1
for all � = 1, 2, . . . , n − 1

and

‖fn‖ = 1 and 〈T (pn)z − z, fn〉 = ‖T (pn)z − z‖ for all n ∈ N.

Since C is weakly compact, there exists a subsequence {pnk
} of {pn} such that {T (pnk

)z}
converges weakly to some point u ∈ C. Fix � ∈ N. If nk > �, then

〈T (pnk
)z − z, f�〉 ≤ 2�+1

3�+1
.(8)

So, it follows from (8) that

〈u − z, f�〉 ≤ 2�+1

3�+1
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for all l ∈ N. Since

‖T (p�)z − u‖ = ‖f�‖‖T (p�)z − u‖
≥ 〈T (p�)z − u, f�〉
= 〈T (p�)z − z, f�〉 + 〈z − u, f�〉
= ‖T (p�)z − z‖ + 〈z − u, f�〉 = ‖T (p�)z − z‖ − 〈u − z, f�〉

≥ L0 − 1
3�+1

− 2�+1

3�+1

for all � ∈ N, we have

lim
k

‖T (pnk
)z − u‖ ≥ L0.(9)

Suppose z �= u. Since E satisfies Opial’s condition, by Lemma 3.1 and (9), we have

lim
k

‖T (pnk
)z − z‖ ≤ L0

≤ lim
k

‖T (pnk
)z − u‖ < lim

k
‖T (pnk

)z − z‖.

This is a contradiction. So, we have z = u. For each � ≥ 2, we obtain p� ≥ p1 + t ≥ t. So,
there exists tk ∈ S such that pnk

= tk + t. Then, it follows from Lemma 3.1 that

‖T (pnk
)z − T (t)z‖ = ‖T (tk + t)z − T (t)z‖

≤ ‖T (tk)z − z‖ ≤ L0

and hence

lim
k

‖T (pnk
)z − T (t)z‖ ≤ L0.(10)

Suppose T (t)z �= u. Since E satisfies Opial’s condition, by (9) and (10), we have

lim
k

‖T (pnk
)z − T (t)z‖ ≤ L0

≤ lim
k

‖T (pnk
)z − u‖

< lim
k

‖T (pnk
)z − T (t)z‖.

This is a contradiction. Hence, T (t)z = u. We remark that t ∈ S is arbitrary. Hence, we
have z = T (t)z = u for all t ∈ S. Therefore, (i) and (ii) are equivalent.

We prove that (iii) implies (ii). Let µ be a cluster point of {µα} in the weak∗ topology.
Then, we know that [36] that µ is an invariant mean on X . Without loss of generality, we
may assume that {µα} converges to µ in the weak∗ topology. So, we have

〈Tµαz, x∗〉 = µα〈T (t)z, x∗〉 → µ〈T (t)z, x∗〉 = 〈Tµz, x∗〉(11)

for each x∗ in E∗. We obtain from (iii) that

〈Tµαz, x∗〉 → 〈z, x∗〉
for each x∗ in E∗. Then, it follows that Tµz = z.

For a similar result, see Lau, Miyake and Takahashi [19]. Now, we prove a weak con-
vergence theorem for a commutative semigroup in a Banach space which satisfies Opial’s
condition.
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Theorem 4.2. Let E be a Banach space which satisfies Opial’s condition and let C be a
nonempty weakly compact convex subset of E. Let S = {T (t) : t ∈ S} be a nonexpansive
semigroup on C. Let X be a subspace of B(S) which is S-admissible. Let µ be an invariant
mean on X. Let x ∈ C and let {xn} be the sequence defined by

x1 = x, xn+1 = αxn + (1 − α)Tµxn for each n ∈ N,

where α is a constant number in (0, 1). Then {xn} converges weakly to a point of F (S).

Proof. By Theorem 2.2, {xn} converges weakly to a fixed point z0 of Tµ. Then, it follows
from Theorem 4.1 that z0 ∈ F (S). This is a completes the proof.

Remark 4.3. In Theorems 4.1 and 4.2, we may replace “E satisfies Opial’s condition” with
the following condition: for each weakly convergent sequences {xn} in C which converges
weakly to x,

lim
n→∞

‖xn − x‖ < lim
n→∞

‖xn − y‖
for each y ∈ C with y �= x. We note that the above condition is satisfied in the case that
C is compact (see [23, 31, 30]). So, we have the following theorem (It was obtained in [22],
see also [6]).

Theorem 4.4 ([22]). Let C be a nonempty compact convex subset of a Banach space E.
Let S = {T (t) : t ∈ S} be a nonexpansive semigroup on C. Let X be a subspace of B(S)
which is S-admissible. Let {µα} be an asymptotically invariant net of means on X. If
z ∈ C, then the following are equivalent:

(i) z is a common fixed point of S = {T (t) : t ∈ S};
(ii) Tµz = z for some invariant mean µ on X;
(iii) there exists a subnet {Tµαβ

z} of {Tµαz} converging strongly to z;
(iv) lim

α
‖Tµαz − z‖ = 0 holds.

Next, we prove the existence of nonexpansive retractions for a commutative semigroup
in a Banach space which satisfies Opial’s condition.

Theorem 4.5. Let E be a Banach space which satisfies Opial’s condition and let C be a
nonempty weakly compact convex subset of E. Let S = {T (t) : t ∈ S} be a nonexpansive
semigroup on C. Let X be a subspace of B(S) which is S-admissible. Let µ be an invariant
means on X. Then, there exists a nonexpansive retraction Q from C onto F (S) such that
Q = QT (t) = T (t)Q for all t ∈ S.

Proof. We shall first define a mapping Q of C into C. Let µ be an invariant mean on X
and let x ∈ C. Define a sequence {xn} by x1 = Tµx and

xn+1 =
1
2
xn +

1
2
Tµxn

for n ∈ N. By Theorem 4.2, {xn} converges weakly to a common fixed point z0 of S. We
note

xn =
1
2
xn−1 +

1
2
Tµxn−1 = (

1
2
I +

1
2
Tµ)xn−1 = · · · = (

1
2
I +

1
2
Tµ)n−1x1.

We put

Qx = w- lim
n→∞(

1
2
Tµ +

1
2
I)n−1Tµx = z0

where I is the identity mapping on C. For x, y ∈ C, we have∥∥∥∥
(

1
2
Tµ +

1
2
I

)n

Tµx −
(

1
2
Tµ +

1
2
I

)n

Tµy

∥∥∥∥ ≤ ‖x − y‖
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and hence

‖Qx − Qy‖ ≤ lim
n→∞

∥∥∥∥
(

1
2
Tµ +

1
2
I

)n

Tµx −
(

1
2
Tµ +

1
2
I

)n

Tµy

∥∥∥∥
≤ ‖x − y‖.

So, Q is nonexpansive. For x ∈ C and t ∈ S, we also have

‖TµT (t)x− Tµx‖ = sup
x∗∈S(E∗)

|(µ)s〈T (s)T (t)x, x∗〉 − (µ)s〈T (s)x, x∗〉|

= sup
x∗∈S(E∗)

|(µ)s〈T (s + t)x, x∗〉 − (µ)s〈T (s)x, x∗〉|

= sup
x∗∈S(E∗)

|(µ)s〈T (s)x, x∗〉 − (µ)s〈T (s)x, x∗〉|

= 0

and hence TµT (t)x = Tµx. Therefore, we also have QT (t)x = Qx for all x ∈ C and t ∈ S.
By the definition of Q, we obtain that Qx ∈ F (S) for all x ∈ C. We also obtain that Qz = z
for all z ∈ F (S) (see [36]). Hence, Q2x = Qx = T (t)Qx for all x ∈ C and t ∈ S. This
completes the proof.

5. Strong convergence of implicit iterations

In this section, we assume that S is a commutative semigroup. Let C be a nonempty
weakly compact convex subset of a Banach space E and let S = {T (s) : s ∈ S} be a
nonexpansive semigroup of C. We consider the following iteration procedure (see [37]):

x1 = x ∈ C, xn = αnxn−1 + (1 − αn)Tµnxn(12)

for every n ∈ N, where {αn} is a sequence in (0, 1).

Lemma 5.1 ([7]). Let C be a nonempty weakly compact convex subset of a Banach space
E and let S = {T (t) : t ∈ S} be a nonexpansive semigroup on C such that F (S) �= ∅. Let
X be a subspace of B(S) which is S-admissible. Let {µn} be a sequence of means on S and
let {αn} be a sequence of real numbers such that 0 < αn < 1 for every n ∈ N. Let x ∈ C
and let {xn} be the sequence defined by

x1 = x ∈ C, xn = αnxn−1 + (1 − αn)Tµnxn

for every n ∈ N. Then, ‖xn+1−w‖ ≤ ‖xn−w‖ and lim
n→∞‖xn−w‖ exists for each w ∈ F (S).

Using Lemma 5.1, we prove the following strong convergence theorem.

Theorem 5.2. Let C be a nonempty compact convex subset of a Banach space E and let
S = {T (t) : t ∈ S} be a nonexpansive semigroup on C. Let X be a subspace of B(S) which
is S-admissible. Let {µn} be a sequence of means on S which is asymptotically invariant
and let {αn} be a sequence of real numbers such that 0 < αn < 1 for every n ∈ N and
limn→∞ αn = 0. Let x ∈ C and let {xn} be the sequence defined by

x1 = x ∈ C, xn = αnxn−1 + (1 − αn)Tµnxn

for every n ∈ N. Then, {xn} converges strongly to an element of F (S).

Proof. By the definition of {xn}, we have

(xn − Tµnxn) = αn(xn−1 − Tµnxn).

So, it follows that

‖xn − Tµnxn‖ ≤ αn‖xn−1 − Tµnxn‖
≤ 2αnM,
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where M = supz∈C ‖z‖. So, by limn→∞ αn = 0, we have limn→∞ ‖Tµnxn − xn‖ = 0.
Since C is compact, there exists a convergent subsequence {xnk

} of {xn} such that {xnk
}

converges strongly to z ∈ C. Since

lim
k→∞

‖Tµnk
z − z‖ ≤ lim

k→∞
{‖Tµnk

z − Tµnk
xnk

‖ + ‖Tµnk
xnk

− xnk
‖ + ‖xnk

− z‖}

≤ lim
k→∞

{2‖z − xnk
‖ + ‖Tµnk

xnk
− xnk

‖} = 0,

we obtain lim n→∞ ‖Tµnz − z‖ ≤ limk→∞ ‖Tµnk
z − z‖ = 0. So, by Theorem 4.4, we have

z ∈ F (S). By Lemma 5.1, there exists limn→∞ ‖xn − z‖. Then, we obtain

lim
n→∞ ‖xn − z‖ = lim

k→∞
‖xnk

− z‖ = 0.

This completes the proof.

6. Applications

Throughout this section, we assume that C is a nonempty compact convex subset of a
Banach space E and {αn} is a sequence of real numbers such that 0 < αn < 1 for every
n ∈ N and limn→∞ αn = 0. Using Theorem 5.2, we can prove some strong convergence
theorems as in [36].

Theorem 6.1. Let T be a nonexpansive mapping from C into itself and let x ∈ C. Let
{xn} be the sequence defined by

x1 = x, xn = αnxn−1 + (1 − αn)
1

n + 1

n∑
i=0

T ixn

for every n ∈ N. Then {xn} converges strongly to a fixed point of T .

Theorem 6.2. Let T be as in Theorem 6.1 and let x ∈ C. Let {qn,m : n, m ∈ N} be
a sequence of real numbers such that qn,m ≥ 0,

∑∞
m=0 qn,m = 1 for each n ∈ N and

limn

∑∞
m=0 |qn,m+1 − qn,m| = 0. Let {xn} be the sequence defined by

x1 = x, xn = αnxn−1 + (1 − αn)
∞∑

m=0

qn,mT mxn

for each n ∈ N. Then {xn} converges strongly to a fixed point of T .

Theorem 6.3. Let T and U be commutative, nonexpansive mappings from C into itself
and let x ∈ C. Let {xn} be the sequence defined by

x1 = x, xn = αnxn−1 + (1 − αn)
1

(n + 1)2

n∑
i,j=0

T iU jxn

for each n ∈ N. Then {xn} converges strongly to a common fixed point of T and U .

Theorem 6.4. Let S = {T (t) : t ∈ [0,∞)} be a nonexpansive semigroup on C such that
the functions t 
→ 〈T (t)x, x∗〉 and t 
→ ‖T (t)x − y‖ are measurable for each x, y ∈ C and
x∗ ∈ E∗. Let x ∈ C and let {sn} be a sequence of positive real numbers with sn → ∞. Let
{xn} be the sequence defined by

x1 = x, xn = αnxn−1 + (1 − αn)
1
sn

∫ sn

0

T (t)xn dt

for each n ∈ N. Then {xn} converges strongly to a common fixed point of S.
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Theorem 6.5. Let S be as in Theorem 6.4 and let x ∈ C. Let {rn} be a sequence of
positive real numbers with rn → 0. Let {xn} be the sequence defined by

x1 = x, xn = αnxn−1 + (1 − αn) rn

∫ ∞

0

e−rntT (t)xn dt

for each n ∈ N. Then {xn} converges strongly to a common fixed point of S.

Theorem 6.6. Let S be as in Theorem 6.4 and let x ∈ C. Let {qn} be a sequence of
measurable functions from [0,∞) into itself such that

∫∞
0 qn(t) dt = 1 for each n ∈ N,

limn qn(t) = 0 for almost every t ≥ 0, limn

∫∞
0

|qn(t + s) − qn(t)| dt = 0 for all s ≥ 0
and there exists r ∈ L1

loc[0,∞) such that supn qn(t) ≤ r(t) for almost every t ≥ 0, where
r ∈ L1

loc[0,∞) means a restriction of r on [0, s] belongs to L1[0, s] for each s > 0. Let {xn}
be the sequence defined by

x1 = x, xn = αnxn−1 + (1 − αn)
∫ ∞

0

qn(t)T (t)xn dt

for each n ∈ N. Then {xn} converges strongly to a common fixed point of S.
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