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Abstract. Let X be a Banach space, and L(X) be the space of bounded linear
operators from X into X. B1[X] denotes the closed unit ball of X, and S1[X] is
unit sphere of X. An element T ∈ S1[L(X)] is called extreme operator if there is no
A ∈ L(X) such that ‖T ± A‖ ≤ 1. The set of extreme points of S1[X] will be denoted by
ext(S1[X]). T ∈ S1[L(X)] is called nice if T ∗(ext(S1[L(X∗)]) ⊆ ext(S1[L(X∗)]). The
object of this paper is to give simpler proofs of old results and present new results on
extreme operators of S1[L(�p)]. We introduce the concept of k-extreme points. Further,
we characterize the nice operators on most of the classical function and sequence spaces.
Nice compact operators on �p−spaces are characterized.

I. Introduction. Let X be a Banach space. The closed unit ball of X will be denoted
by B1[X ] , and the unit sphere by S1[X ]. An element x ∈ S1[X ] is called an extreme point
of B1[X ] if whenever x = 1

2 (y + z), with y and z in S1[X ], then x = y = z. The space of
bounded linear operators on X will be denoted by L(X), and the compact ones by K(X).
Extreme elements of S1[L(X)] are called extreme operators. An operator T ∈ L(X) is
called nice if the set of extreme points of B1[X∗] is an invariant set for T ∗.

Lp(I), 1 ≤ p < ∞, denotes the Banach space of p-Bochner integrable functions (equiv-
alence classes) defined on the unit interval, with the usual classical norm. Similarly, �p

denotes the Banach space of p-summable sequences, with the usual classical norm. The
space of continuous functions on a compact set Ω, with the uniform norm is denoted by
C(Ω).

The problem of characterizing the extreme operators of L(X) is an old and deep one.

The spaces L(Lp(I)), L(�p) and L(C(Ω)) did have the major part of the study of extreme
operators. Extreme operators of L(�2) and L(L2)) were characterized by Kadison [8 ].
Blumenthal, Lindenstrauss, and Phelps [ 1], studied the extreme operators of L(C(Ω)).
Extreme operators of L(�1) were characterized by Sharir [ 13]. Characterizing the extreme
operators of L(�p)) and L(Lp(I)) for p �= 2 turned out to be a difficult one, and still an
problem. Many papers have been written on the problem. We refer to Grzaslewicz [4 ] ,
Kan [ 9], and Khalil [ 10], for results on extreme operators of L(�p)) p �= 2. For results on
positive extreme operators we refer to Grzaslewicz [ 5], and Drury [3 ]. Extreme operators
of K(�p) were discussed by Grzaslewicz [6 ], Hennefeld [7 ], and Rues and Stegall [12 ]. In
this paper, we give a new class of extreme operators of L(Lp(I)), p �= 2 and give simple
proof of the result in [4 ].

Nice operators were introduced by Sharir [13 ]. Werener [14 ], and Choy [2 ] investigated
nice operators on certain function spaces. In this paper, we characterize nice operators on
some function spaces.

Through out this paper, �p = {(xn) :
∑ |xn|p < ∞}, 1 ≤ p < ∞, and �∞ = {(xn) :

sup |xn| < ∞} are the classical sequence spaces with respective norms: ‖x‖p = (
∑ |xn|p) 1

p ,
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and ‖x‖∞ = sup |xn| . I denotes the unit interval with the Lebesgue measure, and Lp(I) is
the space of Lebesgue measurable functions(equivalence classes) f such that

∫ |f(t)|p dt <

∞, 1 ≤ p < ∞. The p-norm of f is (
∫ |f(t)|p dt)

1
p . The space of continuous functions on I

is denoted by C(I), with ‖f‖∞ = sup |f(t)| . N denotes the set of natural numbers.
II. Nice Operators.

Let X and Y be Banach spaces and L(X, Y ) be the space of bounded linear operators
from X into Y . X∗ is the dual of X . The closed unit ball of X is denoted by B1[X ]. By
the Alaoglu Theorem and the Krein-Milman Theorem, B1[X∗] is the closed convex hull of
its extreme points. An operator T ∈ L(X, Y ) is called nice if T ∗ maps the extreme points
of B1[Y ∗] into the extreme points of B1[X∗]. Nice operators were introduced by Sharir[13
] and were investigated by many authors. We refer to [2 ] and [ 14] for some results on
nice operators. In this section we present some results on nice operators in certain function
spaces. It easy to prove [13 ], that the class of nice operators form a subclass of extreme
operators. For convenience We divide this section into two subsections.

(A) Nice Operators On Function Spaces
In this subsection we characterize nice operators and nice compact operators on the

function space C(I), the space of continuous functions on a compact interval I. Further, we
give a necessary condition for an operator on C(I, X), the space of all continuous functions
on the compact interval I with values in the Banach space X , to be nice. We Let M(I )
denote the space of all regular Borel measures on I, which equals the dual of C(I)

Theorem 2.1. Let T ∈ S1[C(I)]. Then the following are equivalent.
(i) T is nice.
(ii) There exists a continuous surjective function ϕ : I −→ I, such that Tf = f ◦ϕ

for all f ∈ C(I).
Proof. (i) −→ (ii). Let T be nice. Then T ∗ : C(I)∗ −→ C(I)∗ preserves extreme

points of the unit ball of C(I)∗ = M(I) . But the extreme points of the unit ball of M(I)
are the unit point mass measures. That is ext(S1[M(I)]) = {δt : t ∈ I}, where δt(f) = f(t).
Hence T ∗(δt) = δs for some s ∈ I. Define ϕ : I −→ I, φ(t) = s. Now

f(s) =< δs, f >=< T ∗(δt), f >=< δt, T f >= Tf(t).
But f(s) = f ◦ φ(t). Hence Tf(t) = f ◦ ϕ(t).
The continuity of ϕ follows from the continuity of f ◦ ϕ for all continuous functions f

on I.

(ii) −→ (i). Let T (f) = f ◦ϕ. Then < T ∗(δt), f >=< δt, T f >= f ◦ϕ(t) = f(s),
where s = ϕ(t). Hence

< T ∗(δt), f >= f(s) =< δs, f >

Since this is true for all f ∈ C(I), it follows that T ∗(δt) = δs.

Now, let us study the nice operators on C(I, X), the space of all continuous functions
on the compact interval I with values in the Banach space X. For f ∈ C(I, X), ‖f‖ =
sup{‖f(t)‖ : t ∈ I}.

Theorem 2.2. Let T ∈ S1[L(C(I, X))], and A ∈ S1[L(X, X)] be nice. If There
exists a continuous surjective function ϕ : I −→ I, such that ( Tf)(t) = A(f(ϕ(t)) for all
f ∈ C(I, X), then T is nice.

Proof. It is known that C(I, X) = C(I)
∨⊗ X, the completed injective tensor product

of C(I) with X. We refer to [11 ] for the basic properties of tensor products of Banach
spaces. However, for any two Banach spaces X and Y , the projective tensor product of the

duals, X∗ ∧⊗ Y ∗, is contained in the dual of (X
∨⊗ Y ) [12 ]. So M(I)

∧⊗ X∗ ⊆ (C(I)
∨⊗ X)∗.

Further, ext(S1[(C(I)
∨⊗ X)∗] = ext(S1[M(I)) ⊗ ext(S1[X ]) [12 ]. So the extreme points of
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S1[(C(I)
∨⊗ X)∗] has the form δt ⊗ x∗, with x∗ extreme in S1[X ].

Now,
< T ∗(δt ⊗ x∗), f >=< δt ⊗ x∗, T f >=< A(f(ϕ(t)), x∗ >=< f(ϕ(t),A∗x∗ >=< δϕ(t) ⊗

A∗x∗, f > . Since this is true for all f ∈ C(I, X), it follows that T ∗(δt ⊗x∗) = δϕ(t) ⊗A∗x∗.
But by assumption, A is nice. Hence A∗x∗ is extreme. Consequently, T ∗ preserves extreme
points, and T is nice.

As for compact nice operators on C(I) we have the following.
Theorem 2.3. Let T ∈ K(C(I), C(I)), with ‖T ‖ = 1. The following are equivalent.

(i) T is nice
(ii) T ∗ = 1 ⊗ δt for some t ∈ I.

Proof. Clearly if T ∗ = 1 ⊗ δt, then T ∗(δs) =< δs, 1 > δt = δt, and T is nice.
Now, Assume that T is nice. Since T is compact, T ∗ is compact, and so T ∗ has separable

range. Thus range of T ∗ has at most countable number of δ,s
t . So one can write T ∗ in the

form: T ∗ =
∞∑

n=1
gi⊗δti with gi ∈ C(I). So T ∗(δt) is some δti . So, for any t ∈ I, there exists j

such that gj(t) = 1 and gk(t) = 0 for any k �= j. Since gi ∈ C(I), it follows that there exists
gtm such that gtm(t) = 1 for all t ∈ I and gs = 0 for all s �= tm. Hence T ∗ = 1 ⊗ δt.This
ends the proof.

(B) Nice Operators On Sequence spaces.
In this subsection we study nice operators and nice compact operators on the classical

sequence spaces including �1, �p and c0.
Theorem 2.4. Let F ∈ K(�p, �p), the following are equivalent.

(i) F is nice.
(ii) There exists two isometries F1 ∈ L(�p) and F2 ∈ L(�p∗

) such that F ∗ = F1 ⊗ F2

or F ∗ = F2 ⊗ F1 .
Proof. (ii) =⇒ (i). The dual of the compact operators on �p is the nuclear operators

on �p∗
. But the extreme points of the nuclear operators on �p∗

are the atoms x ⊗ y , [12
], with ‖x‖ = ‖y‖ = 1. Clearly F ∗( x ⊗ y) = F1(x) ⊗ F2(y) which is extreme. Similarly if
F ∗ = F2 ⊗ F1.

(i) =⇒ (ii). Since F is nice, then F ∗ preserves the extreme points of �p
∧⊗ �p∗

. Hence
, [12 ], F ∗ preserves the atoms: x ⊗ y. Consequently, [15 ], for each x ∈ �p and y ∈ �p∗

there exists z ∈ �p and w ∈ �p∗
such that F ∗(x ⊗ y) = z ⊗ w( or = w ⊗ z). Further,

‖F ∗(x ⊗ y)‖ = ‖z ⊗ w‖ .
Define F1 ∈ L(�p) as F1(x) = z, and F2 ∈ L(�p∗

) as F2(y) = w. Using a similar argument
as in [15 ], we get Fi are well defined linear isometric operators, and F ∗ = F1 ⊗ F2 or
F ∗ = F2 ⊗ F1.

Another nice result on nice compact operators is the following.
Theorem 2.5. There are no nice operators in K(X, c0) for any Banach space X.

Proof. Every T ∈ K(X, c0) has a representation T =
∞∑

n=1
x∗

n ⊗ δn, with x∗
n ∈ X∗ and

‖x∗
n‖ −→ 0 [16 ]. If T is nice, then T ∗(ext(B1(�1)) ⊆ ext(B1(�1). But T ∗ =

∞∑

n=1
δn ⊗ x∗

n

and the extreme points of the unit ball of �1 are the δ,s
n . Hence, T ∗(δn) = x∗

n, which is not
extreme for large n. Hence T is not nice.

A similar type result is the following.
Theorem 2.6. There are no nice operators in L(�1, �p).

Proof. It is known [11 ], that L(�1, �p) = (�1
∧⊗ �p∗

)∗ = (�1(�p∗
))∗ = �∞(�p). Hence

L(�1, �p) = {T = (fn) : fn ∈ �p, ∀n ∈ N, sup ‖fn‖ < ∞}. In such a case, ‖T ‖ = sup ‖fn‖ .
Further, for x = (xn) ∈ �1, Tx =

∑
xnfn, and for g = (yn) ∈ �p∗

, T ∗g = (zn), where zn =
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< g, fn > .
Now, if T is nice, then T ∗ maps extB1(�p∗

) into extB1(�∞). But in such a case, T ∗(δn)
must be an extreme point of the unit ball of �∞. This means |< T ∗(δn), δm >| = 1 for all m.
Consequently, |< δm, fn >| = 1 for all n and m. But that contradicts the fact that fn ∈ �p.
So T cant be extreme.

As for operators on �1, we have the following result.
Theorem 2.7. Let T ∈ S1(L(�1, �1)) with T = (fn), fn ∈ �1 ∀n ∈ N and ‖T ‖ =

sup ‖fn‖ . Then the following are equivalent.
(i) T is nice.
(ii) T = (±δϕ(n)), where ϕ : N −→ N.

Proof. (i) −→ (ii). Assume T is nice, and f1 = (a11, a12, a13, ...)̇. Choose x1 =
(1, 1, 1, ...) ∈ extB1(�∞) and set T ∗x1 = (z1, z2, z3, ...), with zn =< x1, fn > . Since T
is nice, T ∗x1 ∈ extB1(�∞). Hence |zn| =

∣
∣< x1, fn >

∣
∣ = 1. In particular

∣
∣< x1, f1 >

∣
∣ = 1.

Hence
|∑ a1m| = 1...........................(∗)
We claim that for all n, either a1n = 1, or a1n = 0 and

∑

m�=n

a1m = 0. Indeed, let

us choose n0 and x2 = (1, 1, 1, ...,−1, 1, 1, ...), where −1 appears in the nth
0 -coordinate.

Clearly, x2 ∈ ext(B1(�∞)). Thus T ∗(x2) ∈ ext(B1(�∞)). Let T ∗(x2) = (w1, w2, w3, ...). So
wn =< x2, fn > for all n. Further, being an extreme point of B1(�∞), we have |wn| = 1 for
all n. In particular |w1| = 1, so

∣
∣< x2, f1 >

∣
∣ = 1. Hence∣

∣
∣
∣
∣
−a1n0 +

∑

m�=n0

a1m

∣
∣
∣
∣
∣
= 1...............................(∗∗).

It follows from (∗) and (∗∗), that

|∑ a1m| = 1 =

∣
∣
∣
∣
∣
−a1n0 +

∑

m�=n0

a1m

∣
∣
∣
∣
∣
.

Consequently, either∑
a1m = −a1n0 +

∑

m�=n0

a1m

or∑
a1m = a1n0 −

∑

m�=n0

a1m.

In the first case, a1n0 = 0, while in the second case,
∑

m�=n0

a1m = 0 and |a1n0 | = 1. So we

have proved that for f1 = (a11, a12, a13, ...)̇, and for all n, either a1n = 0, or |a1n| = 1 and∑

m�=n0

a1m = 0.

Now, we prove that there is a unique k such that a1k �= 0. Notice that if a1m = 0 for all
m, then T ∗x1 /∈ ext(B1(�∞)), where x1 = (1, 1, 1, ....) ∈ ext(B1(�∞)). So there is at least
one k with a1k �= 0. Thus by the above argument, |a1k| = 1, and

∑

m�=k

a1m = 0. Such k is

unique. Indeed, if a1s �= 0,with s �= k, then again |a1s| = 1, and
∑

m�=s

a1m = 0. But then

‖f1‖ =
∑ |a1m| ≥ |a1k| + |a1s| = 2. This cant be true since ‖f1‖ ≤ ‖T ‖ = 1. Hence k is

unique, and f1 ∈ ext(B1(�1)). Similarly, we can prove fn ∈ ext(B1(�1)) for all n > 1.
(ii) −→ (i). Clear.
The following theorem is an immediate corollary to Theorem 2.7.
Theorem 2.8. T ∈ B1(L(�1)) is nice if and only if T is extreme.
III. Extreme Operators In L(�p).

Let T ∈ S[L(�p)]. T is an extreme operator if whenever T = 1
2 (A + B), with A and

B in B1[L(�p)], then T = A = B. This is equivalent to saying there is no S ∈ B1[L(�p)] such
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that ‖T ± S‖ ≤ 1. While extreme operators in L(�2) are isometries and co-isometries [8 ],
this is not the case for L(�p) 1 ≤ p < ∞. In [ 4], a class of operators which are not isometries
and not co-isometries were introduced. Such operators were of the form T = δi ⊗ y, with
‖y‖ = 1 and supp(y) = N. A different class of extreme operators in L(�p) were introduced
in [10 ]. Such operators were of the form T =

∑
δik

⊗ yk, with ∪
k
supp(yk) = N. The first

result in this section is a simple proof for the above mentioned results.
Theorem 3.1([4 ]). Let T = δi ⊗ y, with supp(y) = N. If ‖y‖p = 1, for 1 < p < ∞,

then T is an extreme operator in L(�p)
Proof. If possible assume T is not extreme. So there exists S such that ‖T ± S‖ ≤ 1.

Put J = T + S. Since ‖T (δi)‖ = ‖y‖ = 1, it follows from the uniform convexity of �p that
Sδi = 0, and consequently J(δi) = y. Now, if there exists δk with k �= i such that Sδk �= 0,
then Jδk �= 0. Since supp(y) = N, then supp(Jδi)∩(Jδk) �= φ. It follows from Lemma 2.1 of
[7 ], that ‖J‖ > max{1, ‖Jδk‖} ≥ 1. This contradicts the assumption that ‖J‖ = 1. Hence
Sδj = 0 for all j, and T is extreme.

For normed spaces X and Y, we write X ⊕
p

Y to denote the set {x + y : x ∈ X, y ∈ Y,

and ‖x + y‖p = ‖x‖p + ‖y‖p .
Now, we prove the following result.
Theorem 3.2. Let T ∈ S[L(�p)], and E = {i : ‖T δi‖ = 1}. If there exists j ∈ N \ E

such that ‖T δj‖ < 1 with supp(Tδi)∩ supp(Tδj) = φ for all i ∈ Ec, then T is not extreme.
Proof. N = E

.∪ (N \ E). Being a disjoint union, this gives a decomposition of �p =
�p(E) ⊕

p
�p(N \ E). By Lemma 2.1 of [ 7] we have supp(Tδi)∩ supp(Tδj) = φ for all

i �= j, whenever i or j is in E. Thus {T δi : i ∈ E} is a p-orthonormal set in �p. Let

H =
−−−−−−−−−−−−−−−−−−−−−

span{T δi : i ∈ E} . Let x ∈ �p(E). Then x =
∑

i∈E

aiδi, and ‖Tx‖p =

‖∑ aiTδi‖p =
∑ |ai|p = ‖x‖p . Hence T : �p(E) −→ H is an isometry, and so T |�p(E) is

an extreme operator.

Now, let Y =
−−−−−−−−−−−−−−−−−−−−

span{T δi : i ∈ N \ E} . Then Range(T ) = H ⊕
p

Y, noting that by

Lemma 2.1 of [ 7],
supp(T δi)∩ supp(T δj) = φ, for i ∈ E, and j ∈ Ec. Thus T has the decomposition

T = T1 + T2 : �p(E) + �p(Ec) −→ H + Y,
and T is extreme if and only if both T1 and T2 are extreme. But T2 can be decomposed

into:
T2 = T21 + T22 : [δj ] ⊕

p
�p(Ec\{j}) −→ [Tδj] ⊕

p
W, which follows from the assumption

that supp(T δi)∩ supp(T δj) = φ for all i ∈ Ec.
Once again, T2 is extreme if and only if both T21 and T22 are extreme . But T21 :

[δj ] −→ [Tδi] is not extreme since ‖T21‖ < 1. Thus T can,t be extreme. This ends the proof.

Now we prove a positive result for extreme operators. Here �p
2 = (R2, ‖(x, y‖ = (|x|p +

|y|p) 1
p . For u = (x, y), we assume |x| �= |y|

Theorem 3.3. Let T = u∗ ⊗ u : �p
2 −→ �p

2, 2 < p < ∞, with u∗(u) = ‖u‖ = ‖u∗‖ = 1.
Then T is an extreme operator if and only if supp(u) = {1, 2}.

Proof. Assume supp(u) = {1, 2}, but if possible assume T is not extreme. Then
there exists S ∈ L(�p

2), with ‖S‖ = 1 such that ‖S ± T ‖ ≤ 1. Now �p
2 can be decomposed

as �p
2 = [u] ⊕ ker(u∗). Since �p

2 is uniformly convex, then S(u) = 0 and S∗u∗ = 0, so
[v] = ker(u∗) is an invariant subspace of S. Hence Sv = rv. With no loss of generality, we
can assume r = 1. Note that Tw = 0 for all w ∈ ker(u∗). Let z = au + bv ∈ B[�p

2]. Then
(S ± T )z = Tau + Sbv = au + bSv. Hence
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‖au + bSv‖p + ‖au − bSv‖p ≤ 2 ‖z‖p
.

Since 2 < p < ∞, we can use Clarkson inequalities to get
2 ‖au‖p + 2 ‖bSv‖p ≤ 2 ‖z‖ .
Consequently, ‖au‖ ≤ ‖z‖ . Further, since Sv = v, we get ‖bv‖ ≤ ‖z‖ . So both of the

subspaces [u] and [v] are 1-complemented. Hence, using Lemma 2.2 of [7 ], we must have
supp(u) ∩ supp(v) = φ. But by assumption on support of u, this is impossible. Hence T is
extreme.

Assume supp(u) = {1}. Then supp(u∗) = {1}. But then S = δ2⊗δ2 satisfies ‖S ∓ T ‖ ≤
1, and T is not extreme.

IV. Partially Extreme Points.
Let X be a Banach space and k be any natural number. An element x ∈ S1[X ] is

called k−extreme point if there is no y ∈ X such that ‖y‖ = 1
k , and ‖x ± y‖ = 1. Clearly

x is extreme if and only if x is k−extreme for all k ∈ N. In S1[�∞], the point ( 9
10 , 1) is

1−extreme, but it is not 1
10−extreme point. The number 1

k measures how far the point
from being extreme. In fact, if x ∈ S1[X ] is some k−extreme point, then 1

k = d(x,E) =
inf{‖x − e‖ : e ∈ E}, where E is the set of extreme points of S1[X ].

Theorem 4.1. Let T ∈ S1[L(�p
n)], 2 < p < ∞, such that T =

n∑

i=1

δi ⊗ wi, with

{w1, w2,w3,..., wn} be linearly independent. Then T is 1−extreme.
Proof. If possible assume that T is not 1−extreme. Then there exists S ∈ S1[L(�p

n)]
such that ‖T ± S‖ = 1. Being operators on a finite dimensional Banach space, both T and
S attain their norms. Hence there exists x, y ∈ S1[�p

n] such that ‖Tx‖ = ‖Sy‖ = 1. But

then ‖Ty ± Sy‖ ≤ 1. Since �p
n is uniformly convex, Ty = 0. So

n∑

i=1

< δi, y > wi = 0. Since

the w,s
i are independent, it follows that < δi, y >= 0 for all i = 1, 2, 3, ...n. But this implies

that y = 0. This contradicts the assumption on y. Hence T is 1−extreme.
In fact we prove a stronger result.

Theorem 4.2. Let T =
k∑

i=1

δi ⊗ ui, with ‖T ‖ = 1, {u1, u2, ...uk} independent, k ≤ n

and ∪
i
supp(ui) = {1, 2, 3, ...n}. Then T is 1− extreme operator in S1[L(�p

n)].

Proof. Assume if possible that T is not 1− extreme. Then there exists S ∈ S1[L(�p
n)]

such that ‖T ± S‖ = 1. Being operators on finite dimensional normed space, there exists
x, y ∈ S1[�p

n] such that ‖Tx‖ = ‖Sy‖ = 1. But then Ty = 0 = Sx. Since the u,s
i are in-

dependent, it follows that supp(y) ⊂ {k + 1, ..., n}, and so x and y have disjoint support.
Now, consider ‖(T + S)(x + y)‖p+‖(T − S)(x + y)‖p ≤ 2 ‖x + y‖p = 2(‖x‖p+‖y‖p).Hence,
‖Tx + Sy‖p + ‖Tx − Sy‖p ≤ 2 ‖x + y‖p = 2(‖x‖p + ‖y‖p) = 4.Since p > 2, we can use
Clarkson,s inequalities to get 2(‖Tx‖p + ‖Sx‖p) ≤ ‖Tx + Sy‖p + ‖Tx − Sy‖p ≤ 4 =
2(‖Tx‖p + ‖Sx‖p),since ‖x‖ = ‖Tx‖ = ‖Ty‖ = ‖y‖ . This implies that ‖Tx + Sy‖p +
‖Tx − Sy‖p = 2(‖Tx‖p + ‖Sx‖p).This can happen only if Tx, and Sy have disjoint sup-
port. which is not true since ∪

i
supp(ui) = {1, 2, 3, ...n}. Hence there is no such S, and so T

is 1−extreme.
We end This section by the following question.
Question1. Let T ∈ S1[L(�p

n)], such that T = u∗ ⊗ u, with u∗(u) = ‖u‖ = 1. Is T an
extreme operator if supp(u) = {1, 2, 3, ...n}?. Is T 1−extreme?.

V. Further Results.
Let X be any Banach space. We say X is extremal if every extreme operator T ∈

L(X, Y ∗) maps the extreme elements of X into the extreme elements of Y ∗. We say X is 1-
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decomposable if X∗ = X1⊕X2, with X1 extremal and ext(B1(X∗) = ext(B1(X1).Examples
of 1-decomposable spaces are �∞ and C(K) [17 ].

We give an example of an extremal Banach space.
Theorem 5.1. �1 is extremal.
Proof. Let Y be any Banach space, and T ∈ L(�1, Y ∗) be an extreme operator. Now,

L(�1, Y ∗) = (�1
∧⊗ Y )∗ = (�1(Y ))∗ = �∞(Y ∗). So any T ∈ L(�1, Y ∗) has the representation

T = (fn), f ∈ Y ∗, and ‖T ‖ = sup
n

‖fn‖ . Since T is extreme, each fn is extreme in B1(Y ∗).

But the extreme points of �1 are the δ,s
n , and T (δn) = fn. Hence �1 is extremal.

Now we prove the following result.
Theorem 5.2. Let X be a 1-decomposable Banach space, and Y be any other Banach

space. The following are equivalent:
(i) T ∈ B1(L(X, Y ) is nice.
(ii) T ∗ ∈ B1(L(Y ∗, X∗) is extreme.
Proof. Since (i) gives (ii) easily, we need only to show (ii) implies (i).
So, suppose T ∗ is extreme. Since X is 1-decomposable, X∗ = X1⊕X2, with X1 extremal

and ‖x1 + x2‖ = ‖x1‖+‖x2‖ for all x1 ∈ X1 and x2 ∈ X2. Further, extB1(X) = extB1(X1).
We claim that T ∗

1 , the restriction of T ∗ to X1, is extreme. Indeed, if this is not true, then
there exists S ∈ L(X1, Y

∗) such that S �= 0, and ‖T ∗
1 ± S‖ ≤ 1. Define S ∈ L(X∗, Y ∗) as

follows:
For x∗ = x1 + x2, S(x∗) = S1(x1). Now,
‖(T ∗ ± S)x∗‖ = ‖T ∗

1 x1 ± S1x1 + T ∗x2‖
≤ ‖T ∗

1 x1 ± S1x1‖ + ‖T ∗x2‖
≤ ‖x1‖ + ‖x2‖ = ‖x∗‖ .

Hence, T ∗ is not extreme, which contradicts (ii), and T ∗
1 is extreme. Since X1 is ex-

tremal, then T ∗(ext(B1(X1)) ⊆ ext(B1(Y ∗)). But ext(B1(X1) = ext(B1(X). Consequently
T is nice.

A nice consequence of the above theorem is
Corollary 5.3. Let X be any Banach space and T ∈ L(X.C(I)). Then T is nice if

and only if T ∗ is extreme.

Acknowledgment. This work was done while the first author was on sabbatical at
Princes Somaya University for Technology. The first author would like to thank PSUT for
the warm hospitality, and University of Jordan for the support. Further, we thank the
referee for his helpful comments.

References

[1] Blumenthal, R. Lindenstrauss, J. and Phelps, R. Extremal operators into C(K),
Pac.J.Math.15(1965)747-756.

[2] Choy, S. Extreme operators on function spaces., Illinois J. Math.33(1989)301-309.

[3] Drury, S. Extreme points for positive forms on, �p. Linear Algebra and Applications,
97(1987)219-228.

[4] Grzaslewicz, R. Extreme operators on 2-dimensional, �p spaces Colloq. Math. 44(1981)309-315.

[5] Grzaslewicz, R. Extreme positive operators on, �p. Illinois J. Math. 36(1992)208-232

[6] Grzaslewicz, R. Geometry of positive compact operators on �p. Acta.Math. Hung.93(1994)351-
360.

[7] Hennefeld, J. Compact extremal operators, Illinois J. Math. 22(1976)61-65.

[8] Kadison R. Isometries of operator algebras, Ann. Math. 54(1951)325-338.



1260 KHALIL R. AND SALIH A.

[9] Kan, C. A class of extreme Lp−contractions, Illinois J. Math. 30(1986)612-635.

[10] Khalil, R. A class of extreme contractions in L(�p)., Ann. di.Math.Para. App. 157(1988)245-
249.

[11] Light, W. and Cheney, W. Approximation in tensor product spaces., Lecture notes in math.
1169, New York 1985.

[12] Ruess, W. and Stegall , C. Extreme points in duals of operator spaces., Math. Ann.
261(1982)533-546.

[13] Sharir, M. Extremal structure in operator spaces., Trans. Amer. Math. Soc.189(1973)91-111.

[14] Werener, D. Extreme points in function spaces., Proc. Amer. Math. Soc.89(1983)598-600.

[15] Khalil, R. Isometries of Lp
∧⊗Lp , Tam.J.Math.16(1985)77-85,632

[16] Randtke, D. A compact operator characterization of �1. , Math. Ann. 208(1974) 1-8.

[17] Holmes, R.B. Geometric functional analysis and its application, Springer Verlag, New York,
1975.

Mathematics Department, University of Jordan, Amman- Jordan

roshdi@ju.edu.jo


