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ABSTRACT. We address an optimal portfolio selection problem of maximizing so we call CVaR
(Conditional Value-at-Risk) based Sharpe ratio of return rate of portfolio, which is defined as the
ratio of the expected excess return to CVaR. The Sharpe ratio defined as the ratio of expected excess
return to standard deviation, the most common traditional performance measure, takes standard
deviation as a risk measure, however, its has been received a lot of criticisms. In our CVaR based
Sharpe ratio, the standard deviation is replaced by CVaR, which is a remarkable coherent risk measure
which overcomes essential defects of standard deviation. Although our new performance measure is
expected to enlarge the applicable area of practical investment problems for which the original Sharpe
ratio is not suitable, however, we should device effective computational methods to solve optimal
portfolio selection problems with very large number of investment opportunities.

In order to deal with rather complicated non-concave objective function, which comes from the
introduction of CVaR, in this paper, we propose a Genetic Algorithm (GA) approach. The paper
briefly reviews the literature in the area of application of Genetic Algorithms to financial problems,
and then details the development of Genetic Algorithm for portfolio selection. In order to evaluate
CVaR for each portfolio, by utilizing the results of Rockafellar and Uryasev (2000), we introduce an
auxiliary decision variable to obtain a tractable concave maximization problem. Furthermore, if we
estimate or approximate required expected values by sampling methods or historical data, we can
reduce this concave maximization problem to an LP (Linear Programming) problem. Therefore, our
problem could be solved by GA which incorporates LP for evaluating values of CVaR. Numerical
experiments from real Japanese financial data are conducted to test our approach to conclude that,
by suitable choice of probability parameter of three evolution operation, we could effectively solve
optimal selection problems with practical sizes.

1 Introduction The measure of improving the investment performance, which is called Sharpe Ratio,
was presented by W.Sharpe[1952]. Sharpe ratio is the ratio of the average excess return to the variance
of the return of portfolio. Using the risk factor-variance, the risk of portfolio investment can be measured
by calculating the variance of the return of portfolio. However, variance can describe the risk completely
only in the normal world. It means that risk can be presented by variance in the case of the expect
return of portfolio following the normal distribution. Value-at-Risk(VaR), a widely used performance
measure, can solve the problem: what is the maximum loss with a specified confidence level? In most
cases, approaches to calculate VaR rely on linear approximation of risks and assume the joint normal (or
log-normal) distribution of the underlying market parameters. Although VaR is a very popular measure
of risk, it has undesirable mathematical characteristics such as lack of subadditivity ! and convexity
[Artzner et al.1997,1999]. VaR is coherent only when it is based on the standard deviation of normal
distributions (VaR is proportional to the standard deviation for a normal distribution). Furthermore,
VaR is difficult to optimize when it is calculated from scenarios. In that case, VaR is a non-convex,

non-smooth function of positions, and it has multiple local extreme 2.

2000 Mathematics Subject Classification. JEL classification: G11; G12; D81.
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1For example, VaR associated with a combination of two portfolios can be deemed greater than the sum of the risks of
the individual portfolios.
2Mauser and Rosen[1999] and McKay and Keeger[1996] showed that VaR can be ill-behaved as a function of portfolio
positions and can exhibit multiple local extreme, which can be a major handicap in trying to determine an optimal mix of
positions or even the VaR of a particular mix.
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As an alternative measure, Conditional Value-at-Risk(CVaR), being also called mean excess loss,
mean shortfall, or tail VaR, is commonly considered to be more consistent measure of risk than VaR
3. PAlug[2000] proved that CVaR is a coherent risk measure with the following properties : transition-
equivalent, positively homogeneous, convex, monotonic w.r.t. stochastic dominance of order 1, and
monotonic w.r.t. monotonic of order 2. Because of the coherent of CVaR, some researcher use CVaR to
solve the optimization problem and other problems in the field of financing engineering. For example,
a simple description of the approach for minimization of CVaR and optimization problems with CVaR
constrains were addressed in the review paper by Uryasev[2000]. Although CVaR has not become a
standard in the finance industry, CVaR is increasingly used in the insurance industry 4. Bucay and
Rosen[1999] used CVaR in credit risk evaluations. Andersson and Uryasev[1999] had research on the
application of CVaR methodology to evaluate credit risk. The conditional expectation constrains and
integrated chance constrains were described by Prekopa[1995].

Rockafellar R.T.and S.Uryasev[2000] presented that minimizing CVaR of a portfolio is closely related
to minimizing VaR, simultaneous VaR can be calculated by minimizing of CVaR. And they also pointed
that similar to the Markowitz mean-variance approach, CVaR can be used in return-risk analysis. They
calculated a portfolio with a specified return and minimal CVaR. Alternatively, it was tried to constrain
CVaR and to find a portfolio with maximal return by Palmquist,J., Uryasev,S., and P.Krokhmal[1999],
rather than constraining the variance, specify several CVaR constraints simultaneously with various
confidence levels. At the same time, numerical algorithms to solve the minimization problem of CVaR
are able to make use of special mathematical features in the portfolio and can readily be combined with
analytical or simulation-based methods. The uncertainty is modelled by scenarios and a finite family of
scenarios is selected as an approximation. The problem can even be reduced to one linear programming
5

However, in order to create a powerful risk management tool, we should face risk and return, simul-
taneously. Risk and return are always a couple of conflict. Many former researches, such as Rockafellar
R.T. and S.Uryasev[2000], Palmquist, J.,Uryasev,S., and P.Krokhmal[1999], and so on, focused on this
problem but most of them emphasized one side, in other words, they omitted the mutual effect of the
two items 6. If we would like to investigate the mutual effect of them, a new method must be proposed.
The new objective function must include both risk and return.

Then this new objective function should be written just a little bit the same as the Sharpe Ratio, but
different from that, this is the ratio of the average excess return to CVaR. In this function, numerator
is return and denominator is risk. Maximum objective function means there is rather large return while
fairly small risk is obtained. This optimization considers both return and risk, of which changes will
effect the final result. Both return and risk are function of independent variable x;, “which implies that
between them there are clear relationships. Because both numerator and denominator consist of x;, this
objective function is not linear function of them. So solution of this function cannot rely on linear theory.
New method must be introduced.

Because of large numbers of the unknown, it is rather difficult to establish a series of equations to
obtain theoretical solution of optimization problem. For this reason, to establish computational method
to achieve proper solution without any limitation of the unknown is always magnetic challenge.

Here, we present a joint computational method to deal with the non-linear objective function. The
joint computational method is that linear programming and genetic algorithms are be used together.
The capital markets have numerous areas with potential applications for soft computing techniques.
Given this potential and the impetus on the technologies during the last decade, a number of studies
have focused on capital market application and in many cases have showed better performance than
competing approaches. Among these the one that was found to be of greatest use is the application of

3 Artzner at al.[1997)] and Embrechts et al.[1999].

4see Embrechts et al.[1997].

5Zenios[1996] and Ziemba and Mulvey[1998]

6Tn the paper of Rockafellar R.T. and S.Uryasev [2000], it is obviously that return is fixed and at the same time only
optimizes risk.

"x; is the weight of one instrument in a portfolio



OPTIMAL PORTFOLIO SELECTION BY CVAR BASED SHARPE RATIO 1231

genetic algorithms in portfolio optimization problems.

The substantial analysis in this paper by using the joint computational method will be conducted.
We calculated the optimal investment weight and the optimal number of securities in risky investment
by using the computational method. The process of simulation will be given in detail in the section 6 of
our paper.

The paper is organized as follows. In Section 2, we explain what is downside risk measures-VaR and
CVaR; Sample approach will be presented in Section 3; we introduce the joint computational method to
deal with the optimization problem in section 4; in section 5, substantial analysis will be given; in section
6, empirical analysis will be given, we will give a conclusion.

2 VaR and CVaR Let r denote a random variable denoting a return rate of an asset or a portfolio
of assets. Value at Risk (VaR) of 7 with confidence level 5 € [0,1], denoted VaRg[r], is defined as the
negative of (1 — )—quantile of 7;

VaRg[r] = —inf{r e R:P(F

)
(1) = sup{fueR:P(—7>u

<r)=>1
> u) >

)15}

Conditional Value at Risk (CVaR) of 7 with confidence level 3 € [0, 1], denoted CVaRg[r], is then
defined as follows:

1-p
2) CVaR4[7] = ﬁ /0 VaR, [flda.
It can be shown that
(3)  CVaR[f) = =B [~Fi~7 = VaRs[f]] — VaRo[f] {P (-7 = VaRs[i) ~ (1= B)}

where E[Y; A] denotes the partial expectation of a random variable Y on an event A; that is E[Y;a]; =
E[Y'14]. Although this expression is somewhat complex, if

(4) P (> VaR[i]) = 1 - 6,
then the second term vanishes and it becomes

) CVaRs[f] = =B (7%~ > VaRalfl] = B[] ~ 7 > VaRaf].

Average Value at Risk (AVaR), Expected Shortfall (ES), Tail Conditional Expectation (TCE), and others
are similar concepts, not few researchers prefer one of these terms to CVaR, but these become identical
when the above condition holds (whose sufficient condition is the continuity of cumulative distribution
function (cdf) of 7).

A very useful characterization is obtained by Pflug (2000), Uryasev (2000), Rockafellar and Uryasev
(2000, 2001). Let us introduce a function:

(6) Fs(a;7) :=a+ ﬁﬂi [(-F—a)], acR,

then the following theorem holds (for a real number ¢ € R, (¢)* := max{c, 0} is the positive part of c).

Theorem 1

(1) CVaRglr] coincides with the minimum of function Fjg(-;7):

(7) CVaRg[r] = min{Fps(a;7) : a € R}.
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(2) The minimum of function Fg(-;7) is attained at when the variable is equal to VaRg[r]:

(8) min{Fs(a:7) : a € R} = Fs (VaRy[f()):7).

(3) Fp(a;7) is convex both in a € R and 7.

This is particularly useful when we must consider the minimization of CVaRg[r(x)] of return rate
n
(9) H@) =7 o= T
i=1

of portfolio & over a convex constraint set X C R™. According to the definition of CVaRg[r ()], for every
evaluation of objective function at & € X, we must evaluate the values in the order:

(10) (1) VaRg[r(z)] = (2) CVaRg[r(z)],

but these are tremendous tasks. The following theorem implies that the evaluation and minimization of

CVaRg[r(x)] can be done by the joint minimization of function F(a;7(x)) with respect to the original
decision variable € X and an auxiliary variable a € R.

Theorem 2
(1)

(11) min{CVaRg[r(z)] : € € X} = min{Fs(a;7(x)) :a € R; x € X}.

(2) For z* € X,
(12) min{CVaRg[r(x)] : ¢ € X} = CVaRg[r(z")]
if and only if

(13) min{Fg(a;7(x)) : a € R; & € X} = Fg (VaRg[r(z")];7(z")) .

(3) Fs(a;7(x)) is convex both in a € R and « € X.

Accordingly, the original convex programming problem with n + 1 decision variables;

(14) Minimize ~CVaRg[r(z)]
subject to x € X,
could be reduced to the following convex programming problem with n 4+ 1 decision variables;

Minimize  Fg(a;7(x)) :=a+ ﬁﬂ*} [(=7(x) —a)T]
(15) subject to a € R;

x e X,

which is more tractable than the original problem.
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3 Algorithms for Optimization of Excess Return-CVaR Genetic Algorithm is a problem-solving
technique that evolves solution an nature does, rather than looking for solutions in a more principled
manner. This makes it an apt procedure that can be used for portfolio selection problem. Portfolio
optimization and selection is a complex task because of the following major problems:

e The availability of a wide range and variety of opportunities to choose from. These include various
securities among of debt, equity, option, stock, etc;

e Proportion to be invested in each of selected assets. The problem of choosing a major component
of the total investment so as to minimize the risk of the investment and maximize the return of
that at the same time.

e Timing of transaction based on the market movements. This leads to a complex decision that the
investor has to take as to when he should buy and when should he sell;

e The constraints and objectives of the investors, like growth, regular income, tax to be paid, liquidity,
etc;

e In addition to the above four problems, stocks markets are more volatile, have less depth and are
less transparent which would turn the investment decision process into herculean task.

In this paper, we employ measure of risk and return which are given by the excess expect return and
CVaR(Conditional Value-at-Risk) of the portfolio respectively. The ”Risk-Adjusted Return” is the mea-
sure that we improved to evaluate the worth of each portfolio. The objective we made will be taken as
the fitness function for dynamic portfolio selection and will be dealt with the following method.

3.1 Genetic Algorithms Genetic Algorithms (GA) are search algorithms, inspired by the biological
evolution that mimics the operation in natural genetics, to search for the optimal solution in a search
space which is defined as a region containing infinite number of points where each point represents a
feasible solution, which is marked by its fitness value. One mainly method are designed to efficiently
search for attractive solutions to large and complex problems. The search proceeds in survival-of-the-
fitness fashion by gradually manipulating a population of potential problem solutions until the superior
ones dominate the population. That is done by selecting solution with a higher fitness value in every
iteration. This is motivated by a hope that the new population will be better than the old one.
The steps in genetic algorithm are detailed below:

e Initialize a population

e Evaluate each chromosome

e Apply elitist selection; carry on the best individuals to the next generation
e Selection chromosomes for reproduction

e Apply crossover operator for reproduction at crossover probability rate P,
e Apply mutation operator for reproduction at mutation probability rate P,
e Apply inversion operator for reproduction at inversion probability rate P;
e Evaluate the new chromosomes

e If the termination condition is satisfied, retain the best solution; if not, carry the elite to the next
generation.
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Holland’s Algorithm has six steps naming—Creation, Evaluation, Selection, Crossover and Mutation and
Inversion. Each chromosomes fitness value is evaluated at this step by using an objective function. This
mathematical function maps a particular solution to a single number that is the measure of the solution’s
worth.

This evaluation process is repeated in each iteration (generation) whereby each individual string in
the current population is evaluated using this measure of fitness. The probability of an element being
selected to remain in the new population is directly proportional to the fitness of the string of the
structure. New off-springs are generated from the current population (parents) to pass them on to the
next generation population. This process is called Selection. There is a constant improvement in the
fitness over the generations. Evolution provides a powerful and effective recipe for solving problems and
creating strategies in an unpredictable environment. Fitness landscapes demonstrate how evolutionary
search creates robustness and adaptability through constant experimentation, parallel search , and mix
of adaptive walks and long jumps.

Crossover operator is used to generate two new strings (off springs) for the next generation by com-
bining the cross-selections of the two individual strings (parents) of the current generation. The operator
generates a cut-point depending on the fitness of the strings. Based on the position of the cut-point,
the part of the string occurring before the cut-point in the first parent and that part occurring after the
cut-point in the second parent are combined to form the new offspring. Hence, it also serves as a sieve
to eliminate low fitness structures. In GAs, the role of mutation operator is to emulate the behavior of
nature by introducing diversity into the population. Mutation makes random changes to the chromo-
somes. The number of mutations in a generation is controlled by a Mutation Rate Parameter, which is
defined as the ratio of new individuals produced in the generation, by mutation, to the total size of the
population. Crossover of the solution generally improves the solution but gets stuck at the local optima.
But to reach a global optimum value, mutations have to be incorporated.

3.2 Sampling Approach Let

(16) d'=(dj,-,dy)" o d™ = (L dy)T ERT

be a sample of data with size m € Z, 4, which are drawn from the population of random vector
(17) 7=, ).

Then, natural unbiased estimator of

(18) T= (1, ,Tn) €R"
is given by
(19) 7o L idj

= :

Jj=1
or,
=S 1 ¢ & -

(20) ”'_Ezl“ i=1,--- n.

j:

Furthermore, a natural unbiased estimator of mean
(21) Fx)=7'z, zcX

of random return rate 7¥(x) = 7' x of portfolio x € X is given by

T
— 1

(22) T(x) =< — E d iy x=— E dj—l—a:7 zeX.
m m
i=1 i=1
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On the other hand, in order to estimate

(23) CVaRg(x) = CVaRg[r(x)] = min{Fg(a;7(x)) : a € R}, =€ X,
we use the final representation to obtain
(24) CVaRj(x) := min {Fﬁﬁx)) a€ R} . weX,

where

) T — Hz( )*] 0eR zex.

i=1

Accordingly, the objective function of Q(z) to be maximized, is now estimated as

(F(@) — rp) [Falasi(@)) = (F(@) —ry) /Fala;i(w)),
L= T 1 [1 T +
_ j J
= EZd x—ry /mm(a—i—mlEZ(—d w—a) ])
j=1 i=1
1o~ T _ 1 ¢
— EZdJ r—ry /mln(d-f—mZUj),
j=1 i=1
(26) aeR; ze X,
where we introduced auxiliary variables u = (uy, -+ ,u,) € R™:
, +
(27) uj = (—d]Ta:—a) , j=1,--- m.

Collecting the above results, through a sampling method, we can approximate the problem Q(z) by
the following max-min problem with n + m + 1 decision variables a € R; © = (z1,---,2,)" € R";
w=(up, -, Uy) €R™

1~ T 1 &
Maximize E Zdj T—Tf /min <Cl + m Z?@)
— j=1 =1
(28) [Q(=)] subject to a € R;
x e X;
u; > —dij—a; u; >0, j=1,---,m.

The above minimization problem will be solved by Linear Programming(LP), but the whole max-min
problem will be solve by the joint computational method.

3.3 the Algorithm of the Joint Computational Method Simulation Algorithm is showed at
following:

Algorithm 1 (Joint computational method)

Step 0: (Initialization)
generate an initial z;,7 = 1,... ,28 by GA and calculate a based on (28),(29) and (30) by LP solver;
Generate initial group at random: X (0) := (x1, 2, ..., Z). The initial group is called population,
and the population consist of the number of individual, which is called string. The number of string
is population size. The different objective functions are, the size of population based on objective
function are different. The population size of our simulation under the advanced Sharpe Ratio is
200, which means there are 200 strings. We use the 200 strings to express x;,z = 1, ..., 28.
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step 1:

get a group of z;,i =1,...,28 and «;

step 2:

calculate the initial ratio of the excess average return to CVaR;

step 3:

save the solution of the initial ratio;

step 4:
repeat from step.0 to step.3;

step 5.

get the optimal z;,7 =1,...,28 and find out the optimal « at the same time;
step 6.

output the optimal solutions of z;,i = 1,...,28. and a.

4 Substantial Analysis In this section, we try to apply the new performance measure, CVaR-based
Sharpe ratio, to a (virtual) risky investment on stock indexes constructed of stocks traded at the Tokyo
Stock Exchange. In the empirical analysis, we use joint computational methods (Genetic Algorithm and
Linear Programming )approach to derive an optimal portfolio of maximizing the CVaR—based Sharpe
ratio. The optimal weights 7,7 = 1,---,n, and the optimal number K of risky securities included in the
optimal investment are found out. At the same time, we can show that the CVaR-based Sharpe ration,
i.e., the ratio of mean excess return to CVaR is useful for improving and evaluating the performance of
portfolios. The empirical analysis can also prove how effectively Genetic algorithm(GA) works.

We construct an optimal portfolio consisting of risky assets, which maximizes the CVaR-based Sharpe
ratio, by using the NIKKEI indexes, and prove the usefulness of the new measure. The monthly stock
return data of various types of industries from January 1995 to December 2003 are used. We look these
28 types of industry indexes as 28 kinds of risky securities. At first, we give 9—year average return rates
in Table 1 calculated by 9-year monthly returns’ data. We also define #; in order, i = 1,---,28, for
example, the mean excess return of building industry is r3, and the weight of the building industry in
the portfolio investment is 3. The joint computational calculations are carried out based on Algorithm
by using LP solver of MATLAB 6.5 and Visual C computer language on a 2.60 GHz Pentium 4 machine.

The ”aff” in Table 1 means the industry of agriculture, forestry and fisheries. The Flow Chart of he
Genetic algorithm model is given in Figure 1. The steps in the flowchart are explianed below:

e Initialize the population-The program randomly generates initialize the population according with
the objective function.

e Evaluate each individual or chromosome-each individual is evaluated for fitness based on the ob-
jective function and restriction.

e Apply elitist selection-Based on the fitness, the good genes are selected for crossover, mutation and
inversion.

e Two chromosomes having highest fitness are selected for reproduction; crossover mutation and
inversion are performed on the selection process.

e The newly generated chromosomes through crossover mutation and inversion are agian evaluated
for fitness as in step 2 and the process is repeated till termination criteria-number of generations is
satisfied or no further improvement is achieved.

e The program displays the best solutions in order of fitness finally achieved.
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Figure 1: Flow chart of GA.
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Table 1: Expected Rate of Return on Each Industry’s from Jan. 1995 to Dec. 2003

type of industry type of industry T
aff (rq) —0.756 | mining (r2) —0.519
building (r3) —0.537 | grocery (ra) —0.14
fiber manufacture (r5) —0.27 | valve.paper (rg) —0.19
medicament (r7) 0.288 | oil.coal (rg) —0.07
rubble (r9) 0.22 | glass.soil.stone (rig) —0.08
steel (r11) —0.20 | nonferrous metal (712) —0.16
hardware (r3) —0.21 | machinery (r14) —0.11
electric manufacture (r15) 0.35 | transport application (r1¢) 0.51
precision instrument (ri7) 0.675 | others instrument (r1g) 0.06
commerce (r19) —0.05 | finance.insurance (r2) —0.56
real estate (ro1) 0.17 | transport (ro2) —0.06
shipping (r23) 0.38 | airlift (r24) —-1.21
warehouse (rg5) —0.24 | IT (rg) 0.26
electricity.gas (ra7) 0.08 | service (rag) —0.21

Then, for the 5— values 0.99, 0.95, 0.90, we calculate the 3—VaR and f—CVaR of the optimal portfolio
x* 8. The outcomes will be showed from Table 2 to Table 4. At the same time we obtain the optimal
number of securities in risky investment and the time of the outcome in different times of circulating
genetic process with different 3 value at Table 2, Table 3 and Table 4°.

The probability of Inversion is 90/200; the probability of Crossover is 100/200; and the probability
of Mutation is 10/200. All of these dates should be set before run the GA programming and all these
settings influence the times of rotating the GA process and the speed of convergence. Here, we give all
the settings by experience and test. The flow chart of programming will be showed at figure 1.

At all tables, ¢t means the times of the iterations process of evaluate P(T) .

From the table 2, we can find that the times of the iterations process of evaluate P(T) is increasing,
the outcomes of —VaR, g—CVaR, the maximum values become to converge. One basic implication
of modern portfolio theory is that investors hold well-diversified portfolios. However, there is empirical
evidence that individual investors typically hold only a small number of securities. Szego(1980) who
emphasizes the point that the returns and risk of a large size portfolio tends to conceal significant
singularities or near-singularities, so that enlarging the portfolio beyond the limited diversification size
may be superfluous. Our outcome just prove that.

From table 2 to table 4, we can find that the more the times of iterations are, the more convergent
outcome will be, not only the maximum value, but also the optimal value of x, and if the times of iterations
are increased to 350 times or more, the maximum value and the optimal value of x are stable. With
different (-values, the outcomes about z*, the maximum value, 3—CVaR and g—VaR are different. As
the definitions ensure that the f—VaR is never larger than the —CVaR, we get the result that portfolios
with low CVaR must have low VaR as well.

No direct relationship but indirect relationships between the times of iterations and the initial setting
including the possibility of the process of mutation, crossover and inversion can be got. That is, with
higher the possibility we set and smaller the iterations is. It will cause the outcome convergent faster,
but our calculation time turns to be longer. Consequently, it is possible that errors happen before we get
the outcome.

When the possibility of crossover P, is too small, it is difficult to satisfy forward searching, when P, is
too large, it is easy to destroy the structure of the fitness solutions. Generally, the possibility of crossover

82* means the optimal solution by maximizing the ratio of excess return to CVaR, it is a vector
9The three calculations are followed the optimal possibility setting, that is, the probability of Inversion is 90/200; the

probability of Crossover is 100/200; and the probability of Mutation is 10/200.
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Table 2: the Maximization of R-CVaR, z*, VaRg and CVaRg Calculated by Genetic Algorithm(5=0.99,
R;=0.0005, P,=100/200, P,,=10/200, P,=90/200.)

x* t=50 t=100 t=150 t=200 =250 =300 t=350 =400 t=450 =500
1 0.010230 | 0.003175 | 0.005690 0 0 0 0 0 0 0
2 0.017903 | 0.001587 | 0.001422 | 0.002710 0 0 0 0 0 0
3 0.003836 0 0 | 0.002710 | 0.002865 0 0 0 0 0
4 0.016624 | 0.003175 | 0.004267 | 0.005420 | 0.005731 0 0 0 0 0
5 0.029412 | 0.006349 0 | 0.002710 0 0 0 0 0 0
Z6 0.014066 | 0.003175 | 0.002845 0 0 0 0 0 0 0
7 0.084399 | 0.174603 | 0.160740 | 0.056911 | 0.028653 | 0.007407 0 0 0 0
g 0.005115 0 | 0.005690 | 0.002710 0 0 0 0 0 0
g 0.035806 | 0.034921 | 0.018492 | 0.008130 | 0.020057 | 0.007407 0 0 0 0
10 0.003836 | 0.003175 | 0.005690 0 | 0.002865 0 0 0 0 0
11 0 0 | 0.002845 | 0.002710 0 0 0 0 0 0
T12 0.001279 | 0.001587 | 0.004267 | 0.002710 | 0.002865 | 0.007407 0 0 0 0
13 0 0 | 0.002845 | 0.005420 | 0.002865 0 0 0 0 0
T14 0.023018 0 | 0.004267 | 0.002710 | 0.005731 0 0 0 0 0
15 0.130435 | 0.174603 | 0.180654 | 0.062331 | 0.037249 | 0.007407 0 0 0 0
16 0.147059 | 0.174603 | 0.174964 | 0.338753 | 0.361032 | 0.007407 0 0 0 0
T17 0.159847 | 0.187302 | 0.176387 | 0.341463 | 0.363897 | 0.940741 0.8768 0.8768 0.8768 0.8768
18 0.005115 0 | 0.007112 0 0 0 0 0 0 0
19 0.007673 | 0.020635 | 0.021337 | 0.013550 0 | 0.007407 0 0 0 0
20 0.010230 | 0.004762 | 0.001422 | 0.002710 0 0 0 0 0 0
21 0.007673 | 0.009524 | 0.002845 | 0.002710 | 0.002865 0 0.1121 0.1121 0.1121 0.1121
22 0 | 0.011111 | 0.007112 0 0 0 0 0 0 0
23 0.001279 | 0.001587 | 0.021337 0 | 0.002865 0 0.0111 0.0111 0.0111 0.0111
24 0.001279 | 0.006349 0 0 0 0 0 0 0
25 0.028133 | 0.014286 | 0.004267 | 0.005420 | 0.002865 0 0 0 0 0
26 0.162404 | 0.161905 | 0.180654 | 0.127371 | 0.151862 0 0 0 0 0
o7 0.020460 0 | 0.001422 | 0.005420 | 0.002865 0 0 0 0 0
28 0.072890 | 0.004762 | 0.001422 | 0.005420 | 0.002865 0 0 0 0 0
max 0.0098 0.01121 0.01435 0.01525 0.01764 0.02121 | 0.02475 | 0.02475 | 0.02475 | 0.02475
CVaRg 13.2389 15.7681 17.2172 19.5232 21.2827 22.2691 | 24.8458 | 24.8458 | 24.8458 | 24.8458
VaRg 5.1061 6.2712 6.8976 7.9812 8.7652 9.6523 | 10.8443 | 10.8443 | 10.8443 | 10.8443
Time(s) 3 5 7 10 12 14 16 19 21 23
k 25 21 25 21 17 7 3 3 3 3
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Table 3: the Maximization of R-CVaR, z*, VaRg and CVaRg Calculated by Genetic Algorithm(5=0.95,
R;=0.0005, P,=100/200, P,,=10/200, P,=90/200.)

x* t=50 t=100 t=150 t=200 =250 t=300 =350 t=400 t=450 t=500
T1 0.026226 | 0.003686 | 0.003984 0 0 0 0 0 0 0
2 0.002281 | 0.002457 | 0.003984 | 0.002475 0 0 0 0 0 0
3 0.004561 | 0.002457 0 0 0 0.1348 0 0 0 0
T4 0.023945 | 0.007371 | 0.003984 0 | 0.006623 0 0 0 0 0
5 0.027366 | 0.020885 | 0.001992 | 0.004950 0 0 0 0 0 0
T6 0.010262 0 | 0.001992 | 0.002475 0 0 0 0 0 0
7 0.117446 | 0.141278 | 0.025896 | 0.056931 | 0.013245 0.1197 0 0 0 0
s 0.020525 | 0.002457 | 0.011952 0 0 0 0 0 0 0
g 0.002281 | 0.055283 | 0.039841 | 0.037129 | 0.013245 0.0525 0 0 0 0
10 0.013683 | 0.001229 | 0.005976 | 0.002475 0 0 0 0 0 0
T11 0.004561 | 0.013514 | 0.001992 | 0.002475 0 0 0 0 0 0
T12 0.023945 | 0.045455 | 0.019920 | 0.012376 | 0.006623 0 0 0 0 0
13 0.014823 | 0.019656 | 0.005976 0 0 0 0 0 0 0
T14 0.033067 | 0.004914 | 0.001992 | 0.007426 0 0 0 0 0 0
T15 0.043330 | 0.114251 | 0.093626 | 0.004950 | 0.039735 0.007634 0 0 0 0
16 0.136830 | 0.142506 | 0.241036 | 0.257426 | 0.019868 0.007634 0.0846 0.0846 0.0846 | 0.0846
T17 0.144812 | 0.156020 | 0.249004 | 0.311881 | 0.827815 0.1351 0.8606 0.8606 0.8606 | 0.8606
18 0.012543 | 0.030713 | 0.007968 0 | 0.006623 0 0 0 0 0
19 0.126568 | 0.045455 | 0.015936 | 0.002475 0 0 0 0 0 0
20 0.007982 | 0.003686 | 0.003984 0 0 0 0 0 0 0
21 0.009122 0 | 0.005976 0 0 0 0.0207 0.0207 0.0207 | 0.0207
22 0.017104 | 0.018428 | 0.009960 0 0 0 0 0 0 0
23 0.003421 | 0.008600 | 0.001992 | 0.002475 | 0.006623 0 0.0341 0.0341 0.0341 0.0341
T24 0.010262 | 0.001229 | 0.001992 0 0 0 0 0 0 0
25 0.017104 0 0 | 0.002475 | 0.013245 0 0 0 0 0
26 0.143672 | 0.141278 | 0.223108 | 0.274752 | 0.046358 | 0.0022901 0 0 0 0
Ta7 0.002281 | 0.014742 | 0.013944 | 0.012376 0 0.4598 0 0 0 0
28 0 | 0.002457 | 0.001992 | 0.002475 0 0.0981 0 0 0 0
max 0.015 0.018 0.021 0.027 0.031 0.036 0.04 0.04 0.04 0.04
CVaRg 10.5676 11.2978 12.6762 13.1121 13.6591 14.0231 | 14.5398 | 14.5398 | 14.5398 | 14.5398
VaRg 5.3527 6.0121 6.5476 7.1082 7.6543 8.1312 8.9232 8.9232 8.9232 | 8.9232
Time(s) 3 5 6 8 10 13 16 19 22 25
k 27 25 26 18 11 9 4 4 4 4
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Table 4: the Maximization of R-CVaR, z*, VaRg and CVaRg Calculated by Genetic Algorithm(8=0.90,

R;=0.0005, P,=100/200, P,,=10,/200, P;=90/200.)

x* t=50 t=100 t=150 t=200 =250 t=300 t=350 t=400 t=450 t=500
1 0.004655 | 0.001403 0 0 0.003759 0 0 0 0 0
2 0.013966 | 0.007013 | 0.006231 0 0 0 0 0 0 0
3 0.001862 | 0.007013 | 0.004673 | 0.002849 0 0 0 0 0 0
4 0.005587 | 0.001403 | 0.001558 0 | 0.0011278 0 0 0 0 0
5 0.015829 | 0.009818 | 0.003115 0 0.003759 0 0 0 0 0
Z6 0.009311 | 0.007013 | 0.003115 | 0.002849 0.003759 0 0 0 0 0
7 0.107076 | 0.126227 | 0.137072 | 0.042735 0.026316 | 0.012048 0 0 0 0
g 0.002793 | 0.002805 0 0 0.007519 0 0 0 0 0
g 0.115456 | 0.071529 | 0.028037 | 0.005698 0.037594 | 0.018072 0 0 0 0
10 0.004655 | 0.007013 | 0.007788 | 0.008547 0 0 0 0 0 0
11 0.013966 | 0.005610 | 0.003115 0 0 0 0 0 0 0
T12 0.0034451 | 0.005610 | 0.010903 | 0.014245 0.018797 0 0 0 0 0
13 0.014898 | 0.004208 | 0.003115 0 0.003759 0 0 0 0 0
T14 0.003724 | 0.028050 | 0.004673 0 0 | 0.012048 0 0 0 0
15 0.086592 | 0.130435 | 0.190031 | 0.042735 0.041353 | 0.090361 0 0 0 0
16 0.108007 | 0.157083 | 0.193146 | 0.270655 0.172932 0 0.1556 0.1556 0.1556 0.1556
17 0.118250 | 0.164095 | 0.188474 | 0.353276 0.481203 | 0.759036 0.7905 0.7905 0.7905 0.7905
18 0.023277 | 0.009818 | 0.001558 | 0.011396 0 0 0 0 0 0
19 0.094041 | 0.037868 | 0.017134 0 0 0 0 0 0 0
20 0.010242 | 0.005610 | 0.001558 0 0 0 0 0 0 0
21 0.014898 | 0.004208 0 0 0 0 0.0097 0.0097 0.0097 | 0.0097
22 0.013966 | 0.019635 | 0.007788 | 0.002849 0 0 0 0 0 0
T23 0.006518 | 0.037868 | 0.007788 | 0.002849 0 0 0.0441 0.0441 0.0441 0.0441
24 0.000931 0 0 0 0 0 0 0 0 0
25 0 | 0.001403 | 0.001558 | 0.005698 0.003759 0 0 0 0 0
26 0.092179 | 0.145863 | 0.172897 | 0.225071 0.176692 | 0.030120 0 0 0 0
o7 0.028864 | 0.001403 0 | 0.002849 0 0 0 0 0 0
28 0.054004 0 | 0.004673 | 0.005698 0.007518 0 0 0 0 0
max 0.027 0.031 0.036 0.041 0.045 0.05 0.055 0.055 0.055 0.055
CVaRg 8.5438 9.2871 9.7612 10.0212 10.5601 11.0652 | 11.4025 | 11.4025 | 11.4025 | 11.4025
VaRg 5.2451 5.7871 6.2791 6.8721 7.3217 7.8212 8.0086 8.0086 8.0086 8.0086
Time(s) 3 5 8 10 13 16 18 20 22 25
k 27 26 23 16 15 6 4 4 4 4
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OPTIMAL PORTFOLIO SELECTION BY CVAR BASED SHARPE RATIO 1243

i 50 150 10
P is from 555 to 555-

table 5 and table 6.

The outcomes under the different P. but the same P; and P,, are showed at

Table 5: the Maximization of R-CVaR, z*, VaRg and CVaRg Calculated by Genetic Algorithm(5=0.99,
R;=0.0005, P,.=120/200, P,,=10/200, P,=90/200.)

z* t=>50 t=100 t=150 t=200 t=250 t=300 t=350 t=400 t=450 t=500
T1 0.010230 | 0.003175 | 0.005690 0 0 0 0 0 0 0
T2 0.017903 | 0.001587 | 0.001422 | 0.002710 0 0 0 0 0 0
3 0.003836 0 0 | 0.002710 | 0.002865 0 0 0 0 0
T4 0.016624 | 0.003175 | 0.004267 | 0.005420 | 0.005731 0 0 0 0 0
5 0.029412 | 0.006349 0 | 0.002710 0 0 0 0 0 0
6 0.014066 | 0.003175 | 0.002845 0 0 0 0 0 0 0
T7 0.084399 | 0.174603 | 0.160740 | 0.056911 | 0.028653 | 0.007407 0 0 0 0
s 0.005115 0 | 0.005690 | 0.002710 0 0 0 0 0 0
g 0.035806 | 0.034921 | 0.018492 | 0.008130 | 0.020057 | 0.007407 0 0 0 0
10 0.003836 | 0.003175 | 0.005690 0 | 0.002865 0 0 0 0 0
11 0 0 | 0.002845 | 0.002710 0 0 0 0 0 0
T12 0.001279 | 0.001587 | 0.004267 | 0.002710 | 0.002865 | 0.007407 0 0 0 0
13 0 0 | 0.002845 | 0.005420 | 0.002865 0 0 0 0 0
T14 0.023018 0 | 0.004267 | 0.002710 | 0.005731 0 0 0 0 0
15 0.130435 | 0.174603 | 0.180654 | 0.062331 | 0.037249 | 0.007407 0 0 0 0
16 0.147059 | 0.174603 | 0.174964 | 0.338753 | 0.361032 | 0.007407 0 0 0 0

T17 0.159847 | 0.187302 | 0.176387 | 0.341463 | 0.363897 | 0.940741 0.8768 0.8768 0.8768 0.8768
18 0.005115 0 | 0.007112 0 0 0 0 0 0 0
T19 0.007673 | 0.020635 | 0.021337 | 0.013550 0 | 0.007407 0 0 0 0
20 0.010230 | 0.004762 | 0.001422 | 0.002710 0 0 0 0 0 0

T21 0.007673 | 0.009524 | 0.002845 | 0.002710 | 0.002865 0 0.1121 0.1121 0.1121 0.1121
22 0 | 0.011111 | 0.007112 0 0 0 0 0 0 0

23 0.001279 | 0.001587 | 0.021337 0 | 0.002865 0 0.0111 0.0111 0.0111 0.0111
T24 0.001279 | 0.006349 0 0 0 0 0 0 0
25 0.028133 | 0.014286 | 0.004267 | 0.005420 | 0.002865 0 0 0 0 0
T26 0.162404 | 0.161905 | 0.180654 | 0.127371 | 0.151862 0 0 0 0 0
Tor 0.020460 0 | 0.001422 | 0.005420 | 0.002865 0 0 0 0 0
T28 0.072890 | 0.004762 | 0.001422 | 0.005420 | 0.002865 0 0 0 0 0

max 0.0098 0.01121 0.01435 0.01525 0.01764 0.02121 | 0.02475 | 0.02475 | 0.02475 | 0.02475

CVaRg 13.2389 15.7681 17.2172 19.5232 21.2827 22.2691 | 24.8458 | 24.8458 | 24.8458 | 24.8458

VaRg 5.1061 6.2712 6.8976 7.9812 8.7652 9.6523 | 10.8443 | 10.8443 | 10.8443 | 10.8443
Time(s) 7 9 12 15 18 20 23 26 28 30
k 25 21 25 21 17 7 3 3 3 3

From table 5 and table 6, we can find that the outcomes under higher P, are almost changeless
comparing to those under P, = %. But with the higher P., the time of iteration is longer than before.
The initial setting about P, = % is optimal on this problem. Some crossover searching process become
to be superfluous. Decreasing the setting of P. will cause that the outcomes we got are not optimal
solutions in the global region. the outcomes are regional solutions.

Mutation does not do any help to the solution, but it can assume that evolution of populations
are go on. Because if all individuals are identical, new individual will not be generated by crossover
and inversion, and just by mutation, in other words, mutation realize the global optimum. Therefore,
when the possibility of mutation P, is too small, it is difficult to form the structure consisting of new
generations. When P, is too large, Genetic Algorithm turns to simple searching at random. When P,
is from WQO to % generally, we can get the outcomes by GA. The outcomes under the different P,, but
the same P; and P. are showed at table 7 and table 8.

At table 7 and table 8, we can see that the outcomes will not be satisfied if we decease P,,, it just make

the time of searching longer. Because the process of searching can not find optimal solutions without

10The scale of P. is fitting for the general case. But it will change under different objective function.
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Table 6: the Maximization of R-CVaR, z*, VaRg and CVaRg Calculated by Genetic Algorithm(5=0.99,
R;=0.0005, P,=70/200, P,,=10/200, P,=90/200.)

SHAN LIN AND MASAMITSU OHNISHI

x* t=50 t=100 t=150 t=200 =250 t=300 t=350 t=400 t=450 t=500
T1 0.014190 0.14563 | 0.002469 | 0.005545 | 0.000867 0 0 0 0 0
2 0.007513 | 0.002427 | 0.005761 | 0.015712 0 0 0 0 0 0
3 0 | 0.020227 | 0.009877 | 0.008318 0 0 0 0 0 0
T4 0.046745 | 0.042071 | 0.076543 | 0.015712 0 0 0 0 0 0
5 0.018364 | 0.001618 | 0.005761 | 0.009242 0 0 0 0 0 0
T6 0.004174 | 0.012136 | 0.004115 | 0.000924 0 0 0 0 0 0
7 0.090150 | 0.101133 | 0.069136 | 0.085028 | 0.021664 0.007407 0.007407 0 0 0
s 0.004174 | 0.017799 | 0.026337 | 0.001848 | 0.000867 0 0 0 0 0
g 0.012521 0.08770 | 0.050206 | 0.049908 | 0.046794 0.00748 0.007407 0 0 0
10 0.030885 | 0.038835 | 0.027160 | 0.006470 | 0.001733 0 0 0 0 0
T11 0.005843 | 0.011327 | 0.028807 0 | 0.009532 0 0 0 0 0
T12 0.065943 | 0.021036 | 0.009053 | 0.083179 | 0.096187 0.022101 0.007407 0 0 0
13 0.030885 | 0.021845 | 0.004938 | 0.015712 0 0 0 0 0 0
T14 0.002504 | 0.000809 0.17284 | 0.004621 | 0.005199 0 0 0 0 0
T15 0.086811 | 0.102751 | 0.083128 | 0.103512 | 0.110052 | 0.0025406 0.003453 | 0.0054353 0.006453 | 0.007453
16 0.089316 | 0.097087 | 0.094650 | 0.112754 | 0.105719 0.031521 | 0.0163815 0.024815 0.022372 | 0.023481
T17 0.102671 | 0.101942 | 0.102881 | 0.108133 | 0.933334 0.903375 0.936521 0.944312 0.945506 | 0.954161
18 0.035058 | 0.022654 | 0.072428 | 0.051756 | 0.100520 0 0 0 0 0
19 0.000835 | 0.101942 | 0.097119 | 0.040665 | 0.102253 | 0.0127431 0.036972 0.011272 0.012348 0
20 0.015860 | 0.006472 | 0.022222 | 0.000924 | 0.010399 0 0 0 0 0
21 0.000835 | 0.002427 | 0.034568 | 0.027726 | 0.006066 0 0 0 0 0
22 0.035893 | 0.009709 | 0.011523 | 0.053604 | 0.009532 0 0 0 0 0
23 0.018364 | 0.025081 | 0.022222 | 0.003697 | 0.075390 0 0 0 0 0
T24 0.001669 | 0.004045 0 | 0.009242 | 0.005199 0 0 0 0 0
25 0.013356 | 0.006472 0 | 0.000924 | 0.013865 0 0 0 0 0
26 0.186979 | 0.099515 | 0.041975 | 0.116451 | 0.101386 0.001511 | 0.0126513 0.014166 | 0.0133212 | 0.014815
Ta7 0.101002 | 0.099515 | 0.041975 | 0.116451 | 0.101386 0.011321 0 0 0 0
28 0 | 0.028317 | 0.079835 | 0.066543 | 0.010399 0 0 0 0 0
max 0.0074 0.0093 0.0126 0.0143 0.0161 0.01845 0.0202 0.0202 0.0202 0.0202
CVaRg 20.4511 20.8765 20.3219 20.7821 21.0911 21.4512 21.8981 21.8981 21.8981 21.8981
VaRg 7.8773 8.2071 8.8611 9.1482 9.5491 9.9623 10.3212 10.3212 10.3212 10.3212
Time(s) 4 6 8 10 12 15 17 19 21 24
k 26 28 26 27 22 9 8 5 5 4
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Table 7: the Maximization of R-CVaR, z*, VaRg and CVaRg Calculated by Genetic Algorithm (5=0.99,
R;=0.0005, P,,=35/200, P.=100/200, P,=10/200.)

x* t=50 t=100 t=150 t=200 =250 =300 t=350 =400 t=450 =500
1 0.010230 | 0.003175 | 0.005690 0 0 0 0 0 0 0
2 0.017903 | 0.001587 | 0.001422 | 0.002710 0 0 0 0 0 0
3 0.003836 0 0 | 0.002710 | 0.002865 0 0 0 0 0
4 0.016624 | 0.003175 | 0.004267 | 0.005420 | 0.005731 0 0 0 0 0
5 0.029412 | 0.006349 0 | 0.002710 0 0 0 0 0 0
Z6 0.014066 | 0.003175 | 0.002845 0 0 0 0 0 0 0
7 0.084399 | 0.174603 | 0.160740 | 0.056911 | 0.028653 | 0.007407 0 0 0 0
g 0.005115 0 | 0.005690 | 0.002710 0 0 0 0 0 0
g 0.035806 | 0.034921 | 0.018492 | 0.008130 | 0.020057 | 0.007407 0 0 0 0
10 0.003836 | 0.003175 | 0.005690 0 | 0.002865 0 0 0 0 0
11 0 0 | 0.002845 | 0.002710 0 0 0 0 0 0
T12 0.001279 | 0.001587 | 0.004267 | 0.002710 | 0.002865 | 0.007407 0 0 0 0
13 0 0 | 0.002845 | 0.005420 | 0.002865 0 0 0 0 0
T14 0.023018 0 | 0.004267 | 0.002710 | 0.005731 0 0 0 0 0
15 0.130435 | 0.174603 | 0.180654 | 0.062331 | 0.037249 | 0.007407 0 0 0 0
16 0.147059 | 0.174603 | 0.174964 | 0.338753 | 0.361032 | 0.007407 0 0 0 0
17 0.159847 | 0.187302 | 0.176387 | 0.341463 | 0.363897 | 0.940741 0.8768 0.8768 0.8768 0.8768
18 0.005115 0 | 0.007112 0 0 0 0 0 0 0
19 0.007673 | 0.020635 | 0.021337 | 0.013550 0 | 0.007407 0 0 0 0
20 0.010230 | 0.004762 | 0.001422 | 0.002710 0 0 0 0 0 0
21 0.007673 | 0.009524 | 0.002845 | 0.002710 | 0.002865 0 0.1121 0.1121 0.1121 0.1121
22 0 | 0.011111 | 0.007112 0 0 0 0 0 0 0
23 0.001279 | 0.001587 | 0.021337 0 | 0.002865 0 0.0111 0.0111 0.0111 0.0111
24 0.001279 | 0.006349 0 0 0 0 0 0 0
25 0.028133 | 0.014286 | 0.004267 | 0.005420 | 0.002865 0 0 0 0 0
26 0.162404 | 0.161905 | 0.180654 | 0.127371 | 0.151862 0 0 0 0 0
o7 0.020460 0 | 0.001422 | 0.005420 | 0.002865 0 0 0 0 0
28 0.072890 | 0.004762 | 0.001422 | 0.005420 | 0.002865 0 0 0 0 0
max 0.0098 0.01121 0.01435 0.01525 0.01764 0.02121 | 0.02475 | 0.02475 | 0.02475 | 0.02475
CVaRg 13.2389 15.7681 17.2172 19.5232 21.2827 22.2691 | 24.8458 | 24.8458 | 24.8458 | 24.8458
VaRg 5.1061 6.2712 6.8976 7.9812 8.7652 9.6523 | 10.8443 | 10.8443 | 10.8443 | 10.8443
Time(s) 3 5 7 10 12 14 16 19 21 23
k 25 21 25 21 17 7 3 3 3 3
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Table 8: the Maximization of R-CVaR, z*, VaRg and CVaRg Calculated by Genetic Algorithm (5=0.99,

R;=0.0005, P,,=2/200, P,=100,/200, P;=90/200.)

T t=50 t=100 t=150 t=200 t=250 t=300 t=350 t=400 t=450 | t=500
T 0.014190 | 0.14563 | 0.002469 | 0.005545 | 0.000867 0 0 0 0 0
o 0.007513 | 0.002427 | 0.005761 | 0.015712 0 0 0 0 0 0
3 0 | 0.002427 0 0 0 0 0 0 0 0
x4 0.046745 | 0.042071 | 0.076543 | 0.015712 0 0 0 0 0 0
s 0.018364 | 0.001618 | 0.005761 | 0.009242 0 0 0 0 0 0
6 0.004174 | 0.012136 | 0.004115 | 0.000924 0 0 0 0 0 0
x7 0.090150 | 0.101133 | 0.074897 | 0.085028 | 0.021664 | 0.007407 | 00.007407 0 0 0
s 0.004174 | 0.017799 | 0.026337 | 0.001848 | 0.000867 0 0 0 0 0
9 0.012521 | 0.068770 | 0.050206 | 0.049908 | 0.046794 0.00848 0 0 0 0
10 0.030885 | 0.038835 | 0.027160 | 0.006470 | 0.001733 0 0 0 0 0
x11 0.005843 | 0.011327 | 0.028807 0 | 0.009532 0 0 0 0 0
T12 0.065943 | 0.021036 | 0.009053 | 0.083179 | 0.096187 0 0 0 0 0
r13 0.030885 | 0.021845 | 0.004938 | 0.015712 0 0 0 0 0 0
T14 0.002504 | 0.000809 | 0.017284 | 0.004621 | 0.005199 0 0 0 0 0
x5 0.086811 | 0.102751 | 0.083128 | 0.103512 | 0.110052 | 0.0015406 | 0.001453 | 0.0014353 | 0.001453 | 0.001453
T16 0.089316 | 0.097087 | 0.094650 | 0.112754 | 0.105719 | 0.033521 | 0.0163815 | 0.014815 | 0.013818 | 0.013818
x17 0.102671 | 0.101942 | 0.102881 | 0.108133 | 0.933334 | 0.923375 | 0.936521 | 0.954312 | 0.968917 | 0.968917
T8 0.035058 | 0.022654 | 0.072428 | 0.051756 | 0.100520 0 0 0 0 0
T19 0.000835 | 0.101942 | 0.097119 | 0.040665 | 0.102253 | 0.0127431 | 0.036972 0 0 0
20 0.015860 | 0.006472 | 0.022222 | 0.000924 | 0.106586 0 0 0 0 0
To1 0.000835 | 0.002427 | 0.034568 | 0.027726 0 0 0 0 0 0
w22 0.035893 | 0.009709 | 0.011523 | 0.053604 0 0 0 0 0 0
T3 0.018364 | 0.025081 | 0.022222 | 0.003697 0 0 0 0 0 0
w24 0.001669 | 0.004045 0 | 0.009242 0 0 0 0 0 0
Tas 0.013356 | 0.006472 0 | 0.000924 | 0.013865 0 0 0 0 0
26 0.101002 | 0.099515 | 0.041975 | 0.116451 | 0.101386 | 0.012832 | 0.0126513 | 0.013415 | 0.015812 | 0.015812
w27 0.078464 | 0.016990 | 0.079835 | 0.116451 | 0.101386 0 0 0 0 0
Tos 0.085977 | 0.028317 0 | 0.066543 | 0.010399 0 0 0 0 0
max 0.005 0.007 0.008 0.01 0.013 0.017 0.02 0.02 0.02 0.02
CVaRg | 185691 | 19.0212 | 19.5421 | 19.9791 | 20.4312 20.8978 21.4322 21.4322 | 21.4322 | 21.4322
VaRg 8.4322 8.4321 9.0112 9.4111 9.6754 10.0073 10.2123 10.2123 | 10.2123 | 10.2123
Time(s) 1 3 1 5 6 7 10 12 15 18
K 27 28 24 26 17 7 6 1 1 1
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generating good genes. But if we increase P,,, the time of iteration will be longer, but the speed of
convergence do not become quickly absolutely. It is because that the high P, will destroy the good genes
and the good gene structure.

Inversion operator on the one hand can assure that the new generation of individuals attain the
characteristics of being feasible solution. On the other hand, can improve the search ability on solution
space. If the possibility of inversion P; is too small, it will difficult to generate good generations, when

140 40

P; is too large, it will lose some good genes. We set P; that P; = 555 and P; = 555 separately under the

same P, and P,. The outcomes are showed at table 9 and table 10.

Table 9: the Maximization of R-CVaR, z*, VaRs and CVaRg Calculated by Genetic Algorithm(5=0.99,
R;=0.0005, P;=140/200, P.=100/200, P,,=10/200.)

z* t=>50 t=100 t=150 t=200 t=250 t=300 t=350 t=400 t=450 t=>500
T1 0.010230 | 0.003175 | 0.005690 0 0 0 0 0 0 0
T2 0.017903 | 0.001587 | 0.001422 | 0.002710 0 0 0 0 0 0
3 0.003836 0 0 | 0.002710 | 0.002865 0 0 0 0 0
T4 0.016624 | 0.003175 | 0.004267 | 0.005420 | 0.005731 0 0 0 0 0
5 0.029412 | 0.006349 0 | 0.002710 0 0 0 0 0 0
6 0.014066 | 0.003175 | 0.002845 0 0 0 0 0 0 0
7 0.084399 | 0.174603 | 0.160740 | 0.056911 | 0.028653 | 0.007407 0 0 0 0
s 0.005115 0 | 0.005690 | 0.002710 0 0 0 0 0 0
g 0.035806 | 0.034921 | 0.018492 | 0.008130 | 0.020057 | 0.007407 0 0 0 0
10 0.003836 | 0.003175 | 0.005690 0 | 0.002865 0 0 0 0 0
11 0 0 | 0.002845 | 0.002710 0 0 0 0 0 0
T12 0.001279 | 0.001587 | 0.004267 | 0.002710 | 0.002865 | 0.007407 0 0 0 0
13 0 0 | 0.002845 | 0.005420 | 0.002865 0 0 0 0 0
T14 0.023018 0 | 0.004267 | 0.002710 | 0.005731 0 0 0 0 0
T15 0.130435 | 0.174603 | 0.180654 | 0.062331 | 0.037249 | 0.007407 0 0 0 0
16 0.147059 | 0.174603 | 0.174964 | 0.338753 | 0.361032 | 0.007407 0 0 0 0

T17 0.159847 | 0.187302 | 0.176387 | 0.341463 | 0.363897 | 0.940741 0.8768 0.8768 0.8768 0.8768
18 0.005115 0 | 0.007112 0 0 0 0 0 0 0
19 0.007673 | 0.020635 | 0.021337 | 0.013550 0 | 0.007407 0 0 0 0
20 0.010230 | 0.004762 | 0.001422 | 0.002710 0 0 0 0 0 0

T21 0.007673 | 0.009524 | 0.002845 | 0.002710 | 0.002865 0 0.1121 0.1121 0.1121 0.1121
22 0 | 0.011111 | 0.007112 0 0 0 0 0 0 0

T23 0.001279 | 0.001587 | 0.021337 0 | 0.002865 0 0.0111 0.0111 0.0111 0.0111
T24 0.001279 | 0.006349 0 0 0 0 0 0 0
25 0.028133 | 0.014286 | 0.004267 | 0.005420 | 0.002865 0 0 0 0 0
T26 0.162404 | 0.161905 | 0.180654 | 0.127371 | 0.151862 0 0 0 0 0
Ta7 0.020460 0 | 0.001422 | 0.005420 | 0.002865 0 0 0 0 0
28 0.072890 | 0.004762 | 0.001422 | 0.005420 | 0.002865 0 0 0 0 0

max 0.0098 0.01121 0.01435 0.01525 0.01764 0.02121 | 0.02475 | 0.02475 | 0.02475 | 0.02475

CVaRg 13.2389 15.7681 17.2172 19.5232 21.2827 22.2691 | 24.8458 | 24.8458 | 24.8458 | 24.8458

VaRg 5.1061 6.2712 6.8976 7.9812 8.7652 9.6523 | 10.8443 | 10.8443 | 10.8443 | 10.8443
Time(s) 7 9 12 15 18 21 24 27 29 31
k 25 21 25 21 17 7 3 3 3 3

From table 9 and table 10, we can find that the time of iteration will be longer if we increase Pr, but
the speed of convergence do not become quickly. It is because that the process will spent more time to
find the optimal solutions, and the process of searching will lose some good genes by increasing P;. We
can say that it will waste time and the iteration of searching in increasing P;. Conversely, the time of
iteration will be shorter if we decrease Py, but the speed of convergence will get slowly, it is possible that
we can get the optimal solutions if deceasing P; too much.

We can find the initial setting is the optimal setting of this problem. In fact, the setting of the
possibility of crossover, mutation and inversion will change in different objective problems.
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Table 10: the Maximization of R-CVaR, z*, VaRg and CVaRg Calculated by Genetic Algorithm(5=0.99,
R;=0.0005, P;=40/200, P.=100/200, P,,,=10/200.)

x* t=50 t=100 t=150 t=200 =250 =300 =350 t=400 t=450 t=500
1 0.014190 0.14563 | 0.002469 | 0.005545 | 0.000867 0 0 0 0 0
2 0.007513 | 0.002427 | 0.005761 | 0.015712 0 0 0 0 0 0
3 0 | 0.020227 | 0.009877 | 0.008318 0 0 0 0 0 0
4 0.046745 | 0.042071 | 0.076543 | 0.015712 0 0 0 0 0 0
5 0.018364 | 0.001618 | 0.005761 | 0.009242 | 0.011265 0 0 0 0 0
Z6 0.004174 | 0.012136 | 0.004115 | 0.000924 | 0.015598 0 0 0 0 0
7 0.090150 | 0.101133 | 0.069136 | 0.085028 | 0.021664 | 0.007407 | 0.007407 | 0.007407 | 0.007407 | 0.007407
g 0.004174 | 0.017799 | 0.026337 | 0.001848 | 0.000867 0 0 0 0 0
g 0.012521 0.08770 | 0.050206 | 0.049908 | 0.046794 | 0.007407 0 0.00505 0 0
10 0.030885 | 0.038835 | 0.027160 | 0.006470 | 0.001733 0 0 0 0 0
11 0.005843 | 0.011327 0.03786 0 | 0.009532 0 0 0 0 0
T12 0.065943 | 0.021036 0 | 0.083179 | 0.096187 | 0.007407 0 0 0 0
13 0.030885 | 0.021845 | 0.004938 | 0.015712 0 0 0 0 0 0
T14 0.002504 | 0.000809 | 0.017284 | 0.004621 0 0 0 0 0 0
15 0.086811 | 0.102751 | 0.083128 | 0.103512 | 0.131715 | 0.007407 0 0 0 0
16 0.089316 | 0.097087 | 0.094650 | 0.112754 | 0.105719 | 0.007407 | 0.014815 | 0.012457 | 0.012457 | 0.012457
17 0.102671 | 0.101942 | 0.175309 | 0.108133 | 0.109185 | 0.933334 | 0.955555 | 0.967679 | 0.967679 | 0.967679
18 0.035058 | 0.022654 0 | 0.051756 | 0.100520 0 0 0 0 0
19 0.000835 | 0.101942 | 0.097119 | 0.040665 | 0.102253 | 0.007407 | 0.007407 0 0 0
20 0.015860 | 0.006472 | 0.022222 | 0.000924 | 0.010399 0 0 0 0 0
21 0.000835 | 0.002427 | 0.034568 | 0.027726 | 0.110055 0 0 0 0 0
22 0.035893 | 0.009709 | 0.011523 | 0.053604 0 0 0 0 0 0
23 0.018364 | 0.025081 | 0.022222 | 0.003697 0 0 0 0 0 0
24 0.001669 | 0.004045 0 | 0.009242 0 0 0 0 0 0
25 0.013356 | 0.006472 0 | 0.000924 0 0 0 0 0 0
26 0.101002 | 0.099515 | 0.041975 | 0.116451 0.12565 | 0.007407 | 0.014815 | 0.007407 | 0.012457 | 0.012457
o7 0.078464 | 0.016990 0 | 0.001848 0 0 0 0 0 0
28 0.085977 | 0.028317 | 0.079835 | 0.066543 0 0 0 0 0 0
max 0.006 0.007 0.01 0.014 0.017 0.02 0.02215 0.02215 0.02215 0.02215
CVaRg 18.8654 19.3313 19.6534 21.1112 21.7509 22.0129 22.6571 22.6571 22.6571 22.6571
VaRg 7.8765 8.2541 8.7102 9.2342 9.6581 10.0201 10.2322 10.2322 10.2322 10.2322
Time(s) 3 6 8 10 13 16 19 21 23 25
k 27 28 25 20 17 8 5 5 4 4
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Figure 5: the Maximization under Different P;

5 Conclusion This paper considered a new approach for simultaneous consideration of return and risk,
and defined a new measure to improve performance of portfolio. Different to the famous Sharpe Ratio,
the ratio of expect excess return to CVaR can be used in even extra case, which means the distribution
of return is not normal. With the acknowledgement of coherence of CVaR, CVaR is widely used to
value risk in many fields, consequently it is important to suggest the new measure and take place of
the Sharpe Ratio presented by Sharpe. We use the Genetic Algorithm to solve the optimal problem of
non-linear programming. Though, the Genetic Algorithm is an important part of a new area of applied
research termed Evolutionary Computation. These are actually search processes and naturally useful
for discovering optimum solutions. It is rare that the Genetic Algorithm is used in the field of finance,
and to solve the problem of optimal portfolio among all kinds of securities. Numerical experiments
have been shown that the Genetic Algorithm can be efficiently used to solve the problem of optimal
portfolio. At the same time, this program we made is a general program, in other words, each unknown
produces stochastically and the program keeps the best answer after each loop. This implies that the
answer satisfied fundamental assumption, and it provides a means to maximization under acceptable risk
levels. This optimization satisfied common sense that considers both profits and risk without emphasizing
particularly on each side.

However, sometimes we must face different clients with their personal opinion. Some clients are
conservative. They cannot accept higher risk, even compensate is larger proceeds. They have a limitation
of risk. Of course, on the other hand, there are some adventurists who seek the largest profits. Using
this program it is easily to satisfy them by changing a few parameters and set some restrictions.
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