INTUITIONISTIC FUZZY IDEALS IN INTRA-REGULAR RINGS

YOUNG BAE JUN AND CHUL HWAN PARK

Received September 29, 2006

ABSTRACT. The aim of this paper is to characterise intra-regular ring R by using the concept of intuitionistic fuzzy left(right,bi,quasi) ideals of R.

1. INTRODUCTION

The theory of fuzzy set was initiated by Zadeh[11] and so many researchers were conducted on the generalizations of the notion of fuzzy sets. The idea of *intuitionistic fuzzy set* was first published by Atanassov [2, 3] as a generalization of the notion of fuzzy sets. In [5], Banerjee and Basnet applied the concept of intuitionistic fuzzy sets to the theory of rings, and introduced the notions of intuitionistic fuzzy subrings and intuitionistic fuzzy ideals of a ring. In [7], Hur et al. introduced the notions of intuitionistic fuzzy (completely) prime ideals and intuitionistic fuzzy weak completely prime ideals in a ring. Present aurhors[9] introduced the notions of intuitionistic fuzzy bi-ideal and quasi-ideal, and characterizations of regular rings are proved. In this paper we introduc the intrinsic product of intuitionistic fuzzy sets and intuitionistic fuzzy left(right, bi, quasi) ideals in a ring. Using such notions, we discuss characterizations of intra-regular ring.

2. Preliminaries

Let R be a ring. Let A and B be subsets of R. Then the multiplication of A and B is defined as follows:

$$AB = \left\{ \sum_{\text{finite}} a_i b_i \mid a_i \in A, \, b_i \in B \right\}$$

An additive subgroup Q of a ring R is called a *quasi-ideal* of R if $QR \cap RQ \subseteq Q$, and an additive subgroup B of a ring R is called a *bi-ideal* of R if $BB \subseteq B$ and $BRB \subseteq B$.

As an important generalization of the notion of fuzzy sets in M, Atanassov [2, 3] introduced the concept of an *intuitionistic fuzzy set* (IFS for short) defined on a non-empty set M as objects having the form

$$A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle \mid x \in M \},\$$

where the functions $\mu_A : M \to [0, 1]$ and $\gamma_A : M \to [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\gamma_A(x)$) of each element $x \in M$ to A respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for all $x \in M$.

Such defined objects are studied by many authors (see for example two journals: 1. *Fuzzy* Sets and Systems and 2. Notes on Intuitionistic Fuzzy Sets) and have many interesting applications not only in mathematics (see Chapter 5 in the book [4]).

²⁰⁰⁰ Mathematics Subject Classification. 03E72,03F55,16D25.

 $Key\ words\ and\ phrases.$ Intra-regular ring, Intrinsic product, Intuitionistic fuzzy left(right, bi, quasi) ideals.

For the sake of simplicity, we shall use the symbol $A = (\mu_A, \gamma_A)$ for the IFS $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle \mid x \in M\}$. Let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be IFSs in a set M. We define

- $A \subseteq B \Leftrightarrow (\forall x \in M) \ (\mu_A(x) \le \mu_B(x), \ \gamma_A(x) \ge \gamma_B(x)).$
- $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$.
- $A \cap B = (\mu_A \wedge \mu_B, \gamma_A \vee \gamma_B).$
- $A \cup B = (\mu_A \vee \mu_B, \gamma_A \wedge \gamma_B).$
- $0_{\sim} = (0,1)$ and $1_{\sim} = (1,0)$.

Definition 2.1. [5, 8] An IFS $A = (\mu_A, \gamma_A)$ in a ring R is called an *intuitionistic fuzzy* subring of R if it satisfies the following conditions:

- (i) $(\forall x, y \in R) \ (\mu_A(x-y) \ge \min\{\mu_A(x), \mu_A(y)\}),$
- (ii) $(\forall x, y \in R) \ (\mu_A(xy) \ge \min\{\mu_A(x), \mu_A(y)\}),$
- (iii) $(\forall x, y \in R) \ (\gamma_A(x-y) \le \max\{\gamma_A(x), \gamma_A(y)\}),$
- (iv) $(\forall x, y \in R) \ (\gamma_A(xy) \le \max\{\gamma_A(x), \gamma_A(y)\}),$

Definition 2.2. [5, 8] An IFS set $A = (\mu_A, \gamma_A)$ in a ring R is called an *intuitionistic fuzzy* left (resp. right) ideal of R if it satisfies the following conditions:

- (i) $(\forall x, y \in R) \ (\mu_A(x-y) \ge \min\{\mu_A(x), \mu_A(y)\}),$
- (ii) $(\forall x, y \in R) \ (\gamma_A(x-y) \le \max\{\gamma_A(x), \gamma_A(y)\}),$
- (iii) $(\forall a, x \in R) \ (\mu_A(ax) \ge \mu_A(x)) \ (\text{resp. } \gamma_A(xa) \le \gamma_A(x)).$

If $A = (\mu_A, \gamma_A)$ is both an intuitionistic fuzzy left and intuitionistic fuzzy right ideal of a ring R, then $A = (\mu_A, \gamma_A)$ is called an *intuitionistic fuzzy ideal* of R.

Definition 2.3. [9] Let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be IFSs in a ring R. The *intrinsic* product of $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ is defined to be the IFS $A * B = (\mu_{A*B}, \gamma_{A*B})$ in R given by

$$\mu_{A*B}(x) := \bigvee_{\substack{x=\sum \\ \text{finite} \\ a_ib_i}} \min \left\{ \begin{array}{l} \mu_A(a_1), \mu_A(a_2), \cdots, \mu_A(a_m), \\ \mu_B(b_1), \mu_B(b_2), \cdots, \mu_B(b_m) \end{array} \right\}$$
$$\gamma_{A*B}(x) := \bigwedge_{\substack{x=\sum \\ \text{finite} \\ \text{finite} \\ a_ib_i}} \max \left\{ \begin{array}{l} \gamma_A(a_1), \gamma_A(a_2), \cdots, \gamma_A(a_m), \\ \gamma_B(b_1), \gamma_B(b_2), \cdots, \gamma_B(b_m) \end{array} \right\}$$

if we can express $x = a_1b_1 + a_2b_2 + \cdots + a_mb_m$ for some $a_i, b_i \in R$ and for some positive integer m where each $a_ib_i \neq 0$. Otherwise, we define $A * B = 0_{\sim}$, i.e., $\mu_{A*B}(x) = 0$ and $\gamma_{A*B}(x) = 1$.

Definition 2.4. [9] An IFS $A = (\mu_A, \gamma_A)$ in a ring R is called an *intuitionistic fuzzy quasiideal* of R if

(i) $(\forall x, y \in R)$ $(\mu_A(x-y) \ge \min\{\mu_A(x), \mu_A(y)\}),$ (ii) $(\forall x, y \in R)$ $(\gamma_A(x-y) \le \max\{\gamma_A(x), \gamma_A(y)\}),$ (iii) $(A * 1_{\sim}) \cap (1_{\sim} * A) \subseteq A.$

Definition 2.5. [9] An IFS $A = (\mu_A, \gamma_A)$ in a ring R is called an *intuitionistic fuzzy bi-ideal* of R if

- (i) $(\forall x, y \in R) \ (\mu_A(x-y) \ge \min\{\mu_A(x), \mu_A(y)\}),$
- (ii) $(\forall x, y \in R) \ (\gamma_A(x-y) \le \max\{\gamma_A(x), \gamma_A(y)\}),$
- (iii) $A * A \subseteq A$ and $A * 1_{\sim} * A \subseteq A$.

Lemma 2.6. [9] For an IFS $A = (\mu_A, \gamma_A)$ in a ring R, the following assertions are equivalent:

- (i) $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy subring of R.
- (ii) $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy subgroup of the additive group (R, +) and $A * A \subseteq A$.

Lemma 2.7. [9] An IFS $A = (\mu_A, \gamma_A)$ in a ring R is an intuitionistic fuzzy left (resp. left) ideal of a ring R if and only if

- (i) $\mu_A(x-y) \ge \min\{\mu_A(x), \mu_A(y)\}$ and $\gamma_A(x-y) \le \max\{\gamma_A(x), \gamma_A(y)\},$
- (ii) $1_{\sim} * A \subseteq A$ (resp. $A * 1_{\sim} \subseteq A$).

Lemma 2.8. [9] Every intuitionistic fuzzy left (resp. right, two-sided) ideal of a ring R is an intuitionistic fuzzy quasi-ideal of R.

Lemma 2.9. [9] Any intuitionistic fuzzy quasi-ideal of a ring R is an intuitionistic fuzzy bi-ideal of R.

For a subset X of a ring R, we denote $\widetilde{X} = \{ \langle x, \mu_{\widetilde{X}}(x), \gamma_{\widetilde{X}}(x) \rangle \mid x \in R \}$ defined by

$$\mu_{\widetilde{X}}(x) := \begin{cases} 1 & \text{if } x \in X \\ 0 & \text{otherwise} \end{cases}$$

and
$$\gamma_{\widetilde{X}}(x) := \begin{cases} 0 & \text{if } x \in X \\ 1 & \text{otherwise} \end{cases}$$

for all $x \in R$. For the sake of simplicity, we shall use the symbol $\widetilde{X} = (\mu_{\widetilde{X}}, \gamma_{\widetilde{X}})$ for the $\widetilde{X} = \{\langle x, \mu_{\widetilde{X}}(x), \gamma_{\widetilde{X}}(x) \rangle \mid x \in X\}.$

Lemma 2.10. Let A and B be any subsets of a ring R. Then we have

(i) $\widetilde{A} * \widetilde{B} = \widetilde{AB}$. (ii) $\widetilde{A} \cap \widetilde{B} = \widetilde{A \cap B}$.

Proof. Straightforward.

Lemma 2.11. Let A be a nonempty subset of R, Then the following holds assertions.

- (i) A is a subring of a ring R if and only if \widetilde{A} is an intuitionistic fuzzy subring of R.
- (ii) A is a left(right) ideal of R if and only if A is an intuitionistic fuzzy left(right) ideal of R.
- (iii) A is a quasi ideal of R if and only if \widetilde{A} is an intuitionistic fuzzy quasi ideal of R.

Proof. Straightforward.

3. INTRA-REGULAR RINGS

Recall that a ring R is said to be *intra-regular* if for each element a of R, there exists elements x_i and y_i of R such that $a = \sum_{i=1}^n x_i a^2 y_i$.

Theorem 3.1. A ring R is intra-regular if and only if $A \cap B \subseteq B * A$ for every intuitionistic fuzzy right ideal A of R and every intuitionistic fuzzy left ideal B of R.

Proof. Assume that R is an intra-regular ring. Let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be IFSs in a ring R and let $a \in R$. Since R is a intra-regular ring, there exist elements $x_i, y_i \in R$

such that $x = \sum x_i a^2 y_i = \sum (x_i a)(ay_i)$. Then we have

$$\mu_{(A*B)}(a) = \bigvee_{\substack{a = \sum \\ \text{finite} \\ p_i q_i}} \min\{\mu_A(p_1), \mu_A(p_2), \cdots, \mu_A(p_m), \mu_B(q_1), \mu_B(q_2), \cdots, \mu_B(q_m)\}$$

$$\geq \min\left\{ \begin{array}{c} \mu_A(x_1a), \mu_A(x_2a), \cdots, \mu_A(x_ma), \\ \mu_B(ay_1), \mu_B(ay_2), \cdots, \mu_B(ay_m) \end{array} \right\}$$

$$\geq \min\{\mu_A(a), \mu_B(a)\}$$

$$= (\mu_A \land \mu_B)(a)$$

and

$$\begin{split} \gamma_{(A*B)}(a) &= \bigwedge_{\substack{a=\sum \\ \text{finite}} p_i q_i} \max\{\gamma_A(p_1), \gamma_A(p_2), \cdots, \gamma_A(p_m), \gamma_B(q_1), \gamma_B(q_2), \cdots, \gamma_B(q_m)\} \\ &\leq \max\left\{ \begin{array}{c} \gamma_A(x_1a), \gamma_A(x_2a), \cdots, \gamma_A(x_ma), \\ \gamma_B(ay_1), \gamma_B(ay_2), \cdots, \gamma_B(ay_m) \end{array} \right\} \\ &\leq \max\{\gamma_A(a), \gamma_B(a)\} \\ &= (\gamma_A \lor \gamma_B)(a). \end{split}$$

Hence $\mu_{A*B}(x) \geq (\mu_A \wedge \mu_B)(x)$ and $\gamma_{A*B}(x) \leq (\gamma_A \vee \gamma_B)(x)$ for all $x \in R$. Therefore $A \cap B \subseteq B * A$. Suppose the necessary condition holds. Let a be any element of R. We consider the principal left ideal [a) and the principal right ideal (a]. By Lemma 2.11, $[\widetilde{a}) = (\mu_{\widetilde{a}}, \gamma_{\widetilde{a}})$ is an intuitionistic fuzzy left ideal and $(\widetilde{a}] = (\mu_{\widetilde{a}}, \gamma_{\widetilde{a}})$ is an intuitionistic fuzzy right ideal. Then we have

$$\mu_{\widetilde{(a][a)}}(a) = \mu_{\widetilde{(a]}*\widetilde{[a]}}(a) \ge (\mu_{\widetilde{(a]}} \land \mu_{\widetilde{[a]}})(a) = \min\{\mu_{\widetilde{(a]}}(a), \mu_{\widetilde{[a]}}(a)\} = \min\{1, 1\} = 1$$

and

$$\gamma_{\widetilde{(a][a)}}(a) = \gamma_{\widetilde{(a]}*\widetilde{[a)}}(a) \leq (\gamma_{\widetilde{(a]}} \vee \gamma_{\widetilde{[a]}})(a) = \max\{\gamma_{\widetilde{(a]}}(a), \gamma_{\widetilde{[a]}}(a)\} = \max\{0, 0\} = 0.$$

Using the above results, we have

$$a \in (a][a) = (na + Ra)(ma + aR) = (m + n)a + (na)(aR) + Ra(ma) + (Ra)(aR).$$

and so $a = \sum_{i=1}^{n} x_i a^2 y_i$ for some x_i and y_i of R. Therefore R is an intra-regular ring. \Box

Lemma 3.2. [10] A ring R is regular and intra-regular if and only if every quasi-ideal of R is idempotent.

Theorem 3.3. For a ring R, the following conditions are equivalent:

- (i) R is a regular and intra-regular ring.
- (ii) A * A = A for every intuitionistic fuzzy bi-ideal A of R.
- (iii) A * A = A for every intuitionistic fuzzy quasi-ideal A of R.

Proof. (i) \Rightarrow (ii). Let $A = (\mu_A, \gamma_A)$ be any intuitionistic fuzzy bi-ideal of R. Then $A * A \subseteq A$. To prove the opposite inclusion, let a be any element of R. Since R is a regular and intra-regular ring, there exists an element x, y_i and z_i in \mathbb{R} such that a = axa and $a = \sum_{i=1}^{n} y_i a^2 z_i$. Then

$$a = axa = axaxa = ax(\sum y_i aaz_i)xa = \sum (axy_i a)(az_i xa).$$

Thus we have

$$\mu_{A*A}(a) = \bigvee_{\substack{a = \sum_{\text{finite}} p_i q_i}} \min\left\{ \begin{array}{l} \mu_A(p_1), \mu_A(p_2), \cdots, \mu_A(p_m), \\ \mu_A(q_1), \mu_A(q_2), \cdots, \mu_A(q_m) \end{array} \right\} \\ \ge \min\left\{ \begin{array}{l} \mu_A(axy_1a), \mu_A(axy_2a), \cdots, \mu_A(axy_ma), \\ \mu_A(az_1xa), \mu_A(az_2xa), \cdots, \mu_A(az_mxa) \end{array} \right\} \\ \ge \min\{\mu_A(a), \mu_A(a)\} \\ = \mu_A(a) \end{array} \right\}$$

and

$$\gamma_{A*A}(a) = \bigwedge_{\substack{a=\sum \\ \text{finite} \\ p_i q_i}} \max \begin{cases} \gamma_A(p_1), \gamma_A(p_2), \cdots, \gamma_A(p_m), \\ \gamma_A(q_1), \gamma_A(q_2), \cdots, \gamma_A(q_m) \end{cases} \\ \leq \max \begin{cases} \gamma_A(axy_1a), \gamma_A(axy_2a), \cdots, \gamma_A(axy_ma), \\ \gamma_A(az_1xa), \gamma_A(az_2xa), \cdots, \gamma_A(az_mxa) \end{cases} \\ \leq \max\{\gamma_A(a), \gamma_A(a)\} \\ = \gamma_A(a), \end{cases}$$

and so $A \subseteq A * A$. Therefore we obtain A * A = A.

(ii) \Rightarrow (iii) Since any intuitionistic fuzzy quasi-ideal of R is an intuitionistic fuzzy bi-ideal of R by Lemma 2.11, the implication (ii) \Rightarrow (iii) is valid.

(iii) \Rightarrow (i). Let Q be any quasi-ideal of R, and a any element of Q. By Lemma 2.11, \tilde{Q} is an intuitionistic fuzzy quasi-ideal of R. Then we have $\mu_{\widetilde{Q}^2}(a) = \mu_{\widetilde{Q}*\widetilde{Q}}(a) = \mu_{\widetilde{Q}}(a) = 1$ and $\gamma_{\widetilde{Q}^2}(a) = \gamma_{\widetilde{Q}*\widetilde{Q}}(a) = \gamma_{\widetilde{Q}}(a) = 0$ and so $a \in Q^2$, that is, $Q \subseteq Q^2$. Since the reverse inclusion always holds, we obtain $Q^2 = Q$. It follows from Lemma 3.2, R is a regular and intra-regular ring.

Lemma 3.4. [9] A ring R is regular if and only if $A * B = A \cap B$ for every intuitionistic fuzzy right ideal $A = (\mu_A, \gamma_A)$ of R and every intuitionistic fuzzy left ideal $B = (\mu_B, \gamma_B)$ of R.

Theorem 3.5. For a ring R, the following conditions are equivalent:

- (i) R is regular and intra-regular.
- (ii) $A \cap B \subseteq (A * B) \cap (B * A)$ for every intuitionistic fuzzy bi-ideals A and B of R.
- (iii) $A \cap B \subseteq (A * B) \cap (B * A)$ for every intuitionistic fuzzy bi-ideal A and every intuitionistic fuzzy quasi-ideal B of R
- (iv) $A \cap B \subseteq (A * B) \cap (B * A)$ for every intuitionistic fuzzy quasi-ideals A and B of R.
- (v) $A \cap B \subseteq (A * B) \cap (B * A)$ for every intuitionistic fuzzy quasi-ideal A and intuitionistic fuzzy left ideal B of R.
- (vi) $A \cap B \subseteq (A * B) \cap (B * A)$ for every intuitionistic fuzzy right ideal A and intuitionistic fuzzy left ideal B of R.

Proof. (i) \Rightarrow (ii). Assume that R is a regular and intra-regular ring. Let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be any intuitionistic fuzzy bi-ideals of R, and a be any element of R. Since R is regular and intra-regular, there exists elements x_i , y_i and z_i in R such that

 $a = \sum (ax_iy_ia)(az_ix_ia)$. Then we have

$$\mu_{A*B}(a) = \bigvee_{\substack{a = \sum \\ \text{finite} \\ p_i q_i}} \min \left\{ \begin{array}{l} \mu_A(p_1), \mu_A(p_2), \cdots, \mu_A(p_m), \\ \mu_B(q_1), \mu_B(q_2), \cdots, \mu_B(q_m) \end{array} \right\}$$

$$\geq \min \left\{ \begin{array}{l} \mu_A(ax_1y_1a), \mu_A(ax_2y_2a), \cdots, \mu_A(ax_my_ma), \\ \mu_B(az_1x_1a), \mu_B(az_2x_2a), \cdots, \mu_B(az_mx_ma) \end{array} \right\}$$

$$\geq \min \{\mu_A(a), \mu_B(a)\}$$

$$= (\mu_A \land \mu_B)(a)$$

and

$$\gamma_{A*B}(a) = \bigwedge_{\substack{a=\sum \\ \text{finite} \\ p_i q_i}} \max \begin{cases} \gamma_A(p_1), \gamma_A(p_2), \cdots, \gamma_A(p_m), \\ \gamma_B(q_1), \gamma_B(q_2), \cdots, \gamma_B(q_m) \end{cases} \\ \leq \max \begin{cases} \gamma_A(ax_1y_1a), \gamma_A(ax_2y_2a), \cdots, \gamma_A(ax_my_ma), \\ \gamma_B(az_1x_1a), \gamma_B(az_2x_2a), \cdots, \gamma_B(az_mx_ma) \end{cases} \\ \leq \max \{\gamma_A(a), \gamma_B(a)\} \\ = (\gamma_A \lor \gamma_B)(a), \end{cases}$$

and hence $A \cap B \subseteq A * B$. Similarly $A \cap B \subseteq B * A$. Therefore $A \cap B \subseteq (A * B) \cap (B * A)$

(ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi). Straightforward.

 $(vi) \Rightarrow (i)$. Let A and B be any intuitionistic fuzzy right ideal and any intuitionistic fuzzy left ideal of R respectively. Then we have $A \cap B \subseteq (A * B) \cap (B * A) \subseteq B * A$. It follows from Lemma 3.4 that R is an intra-regular ring. Similarly we can prove $A \cap B \subseteq (A * B) \cap (B * A) \subseteq$ (A * B). By Lemma 2.7 we see that $A * B \subseteq A * 1_{\sim} \subseteq A$ and $A * B \subseteq 1_{\sim} * B \subseteq B$ so that $A * B \subset A \cap B$. Hence $A * B = A \cap B$ From Lemma 3.4 it follows that R is regular ring. Therefore R is regular and intra-regular

References

- Y. S. Ahn, K. Hur and D. S. Kim, The lattice of intuitionistic fuzzy ideals of a ring, J. Appl. Math. Comput. 19 (2005), 551-572.
- [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87–96.
- [3] K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (1994), 137-142.
- [4] K. T. Atanassov, Intuitionistic fuzzy sets. Theory and applications, Studies in Fuzziness and Soft Computing, 35. Heidelberg; Physica-Verlag 1999.
- [5] B. Banerjee and D. Kr. Basnet, Intuitionistic fuzzy subrings and ideals, J. Fuzzy Math. 11(1) (2003), 139–155.
- [6] B. Davvaz, W. A. Dudek and Y. B. Jun, Intuitionistic fuzzy H_v-submodules, Inform. Sci. 176 (2006), 285–300.
- [7] K. Hur, S. Y. Jang and H. W. Kang, Intuitionistic fuzzy ideals of a ring, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 12 (2005), 193–209.
- [8] K. Hur, H. W. Kang and H. K. Song, Intuitionistic fuzzy subgroups and subrings, Honam Math. J. 25 (2003), 19–41.
- Y.B.Jun and C.H.park, Intrinsic product of intuitionistic fuzzy subrings/ideals in rings, Honam Math. J.(to appear)
- [10] O. Steinfield, Quasi-ideals in Rings and Semigroups, Akad, Kaido, Budapest (1978).
- [11] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338–353.

Young Bae Jun Department of Mathematics Education and (RINS) Gyeongsang National University Chinju 660-701, Korea E-mail: skywine@gmail.com Chul Hwan Park

Department of Mathematics University of Ulsan Ulsan 680-749, Korea E-mail: chpark@ulsan.ac.kr