NORM INEQUALITIES FOR THE GEOMETRIC MEAN AND ITS REVERSE

Ritsuo Nakamoto* and Yuki Seo**

Received September 9, 2006; revised September 26, 2006

$$
\begin{aligned}
& \text { AbSTRACT. If two positive operators } A \text { and } B \text { commute, then } A \not \sharp_{\alpha} B=A^{1-\alpha} B^{\alpha} \text { for } \\
& \text { all } 0 \leq \alpha \leq 1 \text {. In this note, we prove a norm inequality for the geometric mean } A \not \sharp_{\alpha} B \\
& \text { and its reverse inequality: Let } A \text { and } B \text { be positive operators on a Hilbert space such } \\
& \text { that } 0<m \leq A, B \leq M \text { for some scalars } 0<m<M \text { and } h=\frac{M}{m} \text {. Then for each } \\
& 0 \leq \alpha \leq 1 \\
& \qquad K\left(h^{2}, \alpha\right)\left\|A^{1-\alpha} B^{\alpha}\right\| \leq\left\|A \not \sharp_{\alpha} B\right\| \leq\left\|A^{1-\alpha} B^{\alpha}\right\|,
\end{aligned}
$$

where $K(h, \alpha)$ is a generalized Kantorovich constant.
1 Introduction. Let A and B be two positive operators on a Hilbert space. The arithmetric-geometric mean inequality says that

$$
\begin{equation*}
(1-\alpha) A+\alpha B \geq A \sharp_{\alpha} B \quad \text { for all } 0 \leq \alpha \leq 1, \tag{1}
\end{equation*}
$$

where the α-geometric mean $A \sharp_{\alpha} B$ is defined as follows:

$$
\begin{equation*}
A \not \sharp_{\alpha} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}} \quad \text { for all } 0 \leq \alpha \leq 1 . \tag{2}
\end{equation*}
$$

On the other hand, Ando [1] proved the Matrix Young inequality: For positive semidefinite matrices A, B and $\frac{1}{p}+\frac{1}{q}=1$

$$
\begin{equation*}
\frac{1}{p} A^{p}+\frac{1}{q} B^{q} \geq U^{*}|A B| U \tag{3}
\end{equation*}
$$

for some unitary matrix U. By (3), for positive semi-definite matrices A, B

$$
\begin{equation*}
\|(1-\alpha) A+\alpha B\| \geq\left\|A^{1-\alpha} B^{\alpha}\right\| \quad \text { for all } 0 \leq \alpha \leq 1 \tag{4}
\end{equation*}
$$

and by (1) we have

$$
\|(1-\alpha) A+\alpha B\| \geq\left\|A \not \sharp_{\alpha} B\right\| \quad \text { for } 0 \leq \alpha \leq 1 \text { and } A, B \geq 0 .
$$

Here we remark that McIntosh [6] proved that (4) for $\alpha=1 / 2$ holds for positive operators.

In this note, we prove a norm inequality and its reverse on the geometric mean. In other words, we estimate $\left\|A \not \sharp_{\alpha} B\right\|$ by $\left\|A^{1-\alpha} B^{\alpha}\right\|$ as mentioned in the abstract. Moreover we discuss it for the case $\alpha>1$. Our main tools are Araki's inequality [2] and its reverse one [4].

[^0]2 Norm inequalities. First of all, we cite Araki's inequality [2]:
Theorem A. If A and B are positive operators, then

$$
\begin{equation*}
\|B A B\|^{p} \leq\left\|B^{p} A^{p} B^{p}\right\| \quad \text { for all } p>1 \tag{5}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\left\|B^{p} A^{p} B^{p}\right\| \leq\|B A B\|^{p} \quad \text { for all } 0<p<1 \tag{6}
\end{equation*}
$$

As seen in [3], it is equivalent to the Cordes inequality

$$
\left\|A^{p} B^{p}\right\| \leq\|A B\|^{p} \quad \text { for all } 0<p<1
$$

We show the following norm inequality, in which we use Theorem A twice:
Theorem 1. Let A and B be positive operators. Then for each $0 \leq \alpha \leq 1$

$$
\begin{equation*}
\|A \nVdash \alpha B\| \leq\left\|A^{1-\alpha} B^{\alpha}\right\| . \tag{7}
\end{equation*}
$$

Proof. It follows from (6) of Theorem A that

$$
\left\|A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}}\right\| \leq\left\|A^{\frac{1}{2 \alpha}} A^{-\frac{1}{2}} B A^{-\frac{1}{2}} A^{\frac{1}{2 \alpha}}\right\|^{\alpha}=\left\|A^{\frac{1-\alpha}{2 \alpha}} B A^{\frac{1-\alpha}{2 \alpha}}\right\|^{\alpha}
$$

for $0 \leq \alpha \leq 1$.
Furtheremore, if $\alpha \geq 1 / 2$, then by (6) of Theorem A again

$$
\left\|A^{\frac{1-\alpha}{2 \alpha}} B A^{\frac{1-\alpha}{2 \alpha}}\right\|^{\alpha} \leq\left\|A^{1-\alpha} B^{2 \alpha} A^{1-\alpha}\right\|^{\frac{1}{2}}=\left\|A^{1-\alpha} B^{\alpha}\right\|
$$

Hence, if $1 / 2 \leq \alpha \leq 1$, then we have the desired inequality (7).
If $\alpha<1 / 2$, then by using $A \sharp_{\alpha} B=B \sharp_{1-\alpha} A$, it reduces the proof to the case $\alpha \geq 1 / 2$ and so the proof is complete.

We use also the notation \bigsqcup to distingush from the operator mean \sharp;

$$
\begin{equation*}
A \natural_{\alpha} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}} \quad \text { for all } \alpha \notin[0,1] . \tag{8}
\end{equation*}
$$

Theorem 2. Let A and B be positive operators. If $3 / 2 \leq \alpha \leq 2$, then

$$
\begin{equation*}
\left\|A দ_{\alpha} B\right\| \leq\left\|A^{1-\alpha} B^{\alpha}\right\| \tag{9}
\end{equation*}
$$

Proof. Put $\alpha=1+\beta$ and $1 / 2 \leq \beta \leq 1$. Then we have

$$
\begin{aligned}
\left\|A \natural_{\alpha} B\right\| & =\left\|B \natural_{-\beta} A\right\|=\left\|B^{\frac{1}{2}}\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right)^{-\beta} B^{\frac{1}{2}}\right\| \\
& =\left\|B^{\frac{1}{2}}\left(B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}}\right)^{\beta} B^{\frac{1}{2}}\right\| \\
& \leq\left\|B^{\frac{1}{2 \beta}} B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}} B^{\frac{1}{2 \beta}}\right\|^{\beta} \quad \text { by }(6) \text { and } 1 / 2 \leq \beta \leq 1 \\
& =\left\|B^{\frac{1+\beta}{2 \beta}} A^{-1} B^{\frac{1+\beta}{2 \beta}}\right\|^{\beta} \\
& \leq\left\|B^{1+\beta} A^{-2 \beta} B^{1+\beta}\right\|^{\frac{1}{2}} \quad \text { by }(6) \text { and } 0<\frac{1}{2 \beta} \leq 1 \\
& =\left\|A^{-\beta} B^{1+\beta}\right\|=\left\|A^{1-\alpha} B^{\alpha}\right\| .
\end{aligned}
$$

Remark 3. In Theorem 2, the inequality $\left\|A \natural_{\alpha} B\right\| \leq\left\|A^{1-\alpha} B^{\alpha}\right\|$ does not always hold for $1<\alpha<3 / 2$. In fact, Let $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$. Then we have $\left\|A \natural_{\frac{4}{3}} B\right\|=$ $3.38526>\left\|A^{-\frac{1}{3}} B^{\frac{4}{3}}\right\|=3.3759$. Also, $\left\|A \natural_{\frac{7}{5}} B\right\|=3.49615<\left\|A^{-\frac{2}{5}} B^{\frac{7}{5}}\right\|=3.50464$.

3 Reverse type inequalities. In this section, we show reverse inequalities of the results obtained in the previous section. In order to prove our results, we need some preliminaries. For $h>0$, a generalized Kantorovich constant $K(h, p)$ is defined by

$$
\begin{equation*}
K(h, p)=\frac{h^{p}-h}{(p-1)(h-1)}\left(\frac{p-1}{p} \frac{h^{p}-1}{h^{p}-h}\right)^{p} \tag{10}
\end{equation*}
$$

for any real numbers $p \in \mathbb{R}$. We state some properties of $K(h, p)$ (see [5, Theorem 2.54]):
Lemma 4. Let $h>0$ be given. Then a generalized Kantorovich constant $K(h, p)$ has the following properties.
(i) $K(h, p)=K\left(h^{-1}, p\right)$ for all $p \in \mathbb{R}$.
(ii) $K(h, p)=K(h, 1-p)$ for all $p \in \mathbb{R}$.
(iii) $K(h, 0)=K(h, 1)=1$ and $K(1, p)=1$ for all $p \in \mathbb{R}$.
(iv) $K\left(h^{r}, \frac{p}{r}\right)^{\frac{1}{p}}=K\left(h^{p}, \frac{r}{p}\right)^{-\frac{1}{r}}$ for $p r \neq 0$.

The following theorem is reverse inequalities of Araki's inequality [4].
Theorem B. If A and B are positive operators such that $0<m \leq A \leq M$ for some scalars $0<m<M$, then

$$
\begin{equation*}
\left\|B^{p} A^{p} B^{p}\right\| \leq K(h, p)\|B A B\|^{p} \quad \text { for all } p>1 \tag{11}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
K(h, p)\|B A B\|^{p} \leq\left\|B^{p} A^{p} B^{p}\right\| \quad \text { for all } 0<p<1 \tag{12}
\end{equation*}
$$

where a generalized Kantorovich constant $K(h, p)$ is defined by (10) and $h=\frac{M}{m}$ is a generalized condition number of A in the sense of Turing [7].

We show the following reverse inequality for Theorem 1 :
Theorem 5. If A and B are positive operators such that $0<m \leq A, B \leq M$ for some scalars $0<m<M$ and $h=\frac{M}{m}$, then for each $0 \leq \alpha \leq 1$

$$
\begin{equation*}
K\left(h^{2}, \alpha\right)\left\|A^{1-\alpha} B^{\alpha}\right\| \leq\left\|A \not \sharp_{\alpha} B\right\| . \tag{13}
\end{equation*}
$$

Proof. Suppose that $0 \leq \alpha \leq \frac{1}{2}$. Since $\frac{m}{M} \leq A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \leq \frac{M}{m}$, it follows that a generalized condition number of $A^{-\frac{1}{2}} B A^{-\frac{1}{2}}$ is $\frac{M}{m} / \frac{m}{M}=h^{2}$ and we have

$$
\begin{aligned}
\left\|A \sharp_{\alpha} B\right\| & =\left\|\left(A^{\frac{1}{2 \alpha}}\right)^{\alpha}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha}\left(A^{\frac{1}{2 \alpha}}\right)^{\alpha}\right\| \\
& \geq K\left(h^{2}, \alpha\right)\left\|A^{\frac{1}{2 \alpha}} A^{-\frac{1}{2}} B A^{-\frac{1}{2}} A^{\frac{1}{2 \alpha}}\right\|^{\alpha} \quad \text { by }(12) \text { and } 0 \leq \alpha \leq \frac{1}{2} \\
& =K\left(h^{2}, \alpha\right)\left\|A^{\frac{1-\alpha}{2 \alpha}} B A^{\frac{1-\alpha}{2 \alpha}}\right\|^{\alpha} \\
& \geq K\left(h^{2}, \alpha\right)\left\|A^{1-\alpha} B^{2 \alpha} A^{1-\alpha}\right\|^{\frac{1}{2}} \quad \text { by }(5) \text { and } \frac{1}{2 \alpha} \geq 1 \\
& =K\left(h^{2}, \alpha\right)\left\|A^{1-\alpha} B^{\alpha}\right\| .
\end{aligned}
$$

Suppose that $\frac{1}{2} \leq \alpha \leq 1$. Since $0 \leq 1-\alpha \leq \frac{1}{2}$, we have

$$
\begin{aligned}
\left\|A \sharp_{\alpha} B\right\| & =\left\|B \sharp_{1-\alpha} A\right\| \\
& \geq K\left(h^{2}, 1-\alpha\right)\left\|B^{1-(1-\alpha)} A^{1-\alpha}\right\| \\
& =K\left(h^{2}, \alpha\right)\left\|A^{1-\alpha} B^{\alpha}\right\| \quad \text { by (ii) of Lemma } 4
\end{aligned}
$$

and so the proof is complete.

We show the following reverse inequality for Theorem 2 :
Theorem 6. If A and B are positive operators such that $0<m \leq A, B \leq M$ for some scalars $0<m<M$ and $h=\frac{M}{m}$, then for each $\frac{3}{2} \leq \alpha \leq 2$

$$
K\left(h^{2}, \alpha-1\right) K(h, 2(\alpha-1))^{-\frac{1}{2}}\left\|A^{1-\alpha} B^{\alpha}\right\| \leq\left\|A দ_{\alpha} B\right\| .
$$

Proof. Put $\alpha=1+\beta$ and $1 / 2 \leq \beta \leq 1$. Then we have

$$
\begin{aligned}
& \left\|A দ_{\alpha} B\right\|=\left\|B \natural_{-\beta} A\right\| \\
& =\left\|B^{\frac{1}{2}}\left(B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}}\right)^{\beta} B^{\frac{1}{2}}\right\| \\
& \geq K\left(h^{2}, \beta\right)\left\|B^{\frac{1}{2 \beta}} B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}} B^{\frac{1}{2 \beta}}\right\|^{\beta} \quad \text { by }(12) \text { of Theorem B and } 1 / 2 \leq \beta \leq 1 \\
& =K\left(h^{2}, \beta\right)\left\|B^{\frac{1+\beta}{2 \beta}} A^{-\frac{2 \beta}{2 \beta}} B^{\frac{1+\beta}{2 \beta}}\right\|^{\beta} \\
& \geq K\left(h^{2}, \beta\right)\left(K\left(h^{-2 \beta}, \frac{1}{2 \beta}\right)\left\|B^{1+\beta} A^{-2 \beta} B^{1+\beta}\right\|^{\frac{1}{2 \beta}}\right)^{\beta} \quad \text { by }(12) \text { and } 0<\frac{1}{2 \beta} \leq 1 \\
& =K\left(h^{2}, \beta\right) K\left(h^{-2 \beta}, \frac{1}{2 \beta}\right)^{\beta}\left\|A^{-\beta} B^{1+\beta}\right\| \\
& =K\left(h^{2}, \beta\right) K(h, 2 \beta)^{-\frac{1}{2}}\left\|A^{1-\alpha} B^{\alpha}\right\| .
\end{aligned}
$$

The last equality follows from

$$
K\left(h^{-2 \beta}, \frac{1}{2 \beta}\right)^{\beta}=K\left(h^{2 \beta}, \frac{1}{2 \beta}\right)^{\beta}=K(h, 2 \beta)^{-\frac{\beta}{2 \beta}}=K(h, 2 \beta)^{-\frac{1}{2}}
$$

by (i) and (iv) of Lemma 4.

As mentioned in Remark 3, we have no relation between $\left\|A \natural_{\alpha} B\right\|$ and $\left\|A^{1-\alpha} B^{\alpha}\right\|$ for $1 \leq \alpha \leq \frac{3}{2}$. We have the following result:

Theorem 7. If A and B are positive operators such that $0<m \leq A, B \leq M$ for some scalars $0<m<M$ and $h=\frac{M}{m}$, then for each $1 \leq \alpha \leq \frac{3}{2}$

$$
K\left(h^{2}, \alpha-1\right)\left\|A^{1-\alpha} B^{\alpha}\right\| \leq\left\|A \natural_{\alpha} B\right\| \leq K(h, 2(\alpha-1))^{-\frac{1}{2}}\left\|A^{1-\alpha} B^{\alpha}\right\|
$$

Proof. Put $\alpha=1+\beta$ and $0 \leq \beta \leq \frac{1}{2}$. Since a generalized condition number of $A^{-2 \beta}$ is $h^{-2 \beta}$, it follows that

$$
\begin{aligned}
\left\|A \natural_{\alpha} B\right\| & =\left\|B \natural_{-\beta} A\right\|=\left\|B^{\frac{1}{2}}\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right)^{-\beta} B^{\frac{1}{2}}\right\| \\
& =\left\|B^{\frac{1}{2}}\left(B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}}\right)^{\beta} B^{\frac{1}{2}}\right\| \\
& \leq\left\|B^{\frac{1}{2 \beta}} B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}} B^{\frac{1}{2 \beta}}\right\|^{\beta} \quad \text { by }(6) \text { and } 0 \leq \beta \leq 1 \\
& =\left\|B^{\frac{1+\beta}{2 \beta}} A^{-1} B^{\frac{1+\beta}{2 \beta}}\right\|^{\beta} \\
& \leq\left(K\left(h^{-2 \beta}, \frac{1}{2 \beta}\right)\left\|B^{1+\beta} A^{-2 \beta} B^{1+\beta}\right\|^{\frac{1}{2 \beta}}\right)^{\beta} \quad \text { by }(11) \text { and } 1 \leq \frac{1}{2 \beta} \\
& =K(h, 2(\alpha-1))^{-\frac{1}{2}}\left\|A^{1-\alpha} B^{\alpha}\right\| \quad \text { by }(\mathrm{i}) \text { and (iv) of Lemma } 4 .
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
\left\|A \natural_{\alpha} B\right\| & =\left\|B \natural_{-\beta} A\right\|=\left\|B^{\frac{1}{2}}\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right)^{-\beta} B^{\frac{1}{2}}\right\| \\
& =\left\|B^{\frac{1}{2}}\left(B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}}\right)^{\beta} B^{\frac{1}{2}}\right\| \\
& \geq K\left(h^{2}, \beta\right)\left\|B^{\frac{1}{2 \beta}} B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}} B^{\frac{1}{2 \beta}}\right\|^{\beta} \quad \text { by }(12) \text { and } 0 \leq \beta \leq 1 \\
& =K\left(h^{2}, \beta\right)\left\|B^{\frac{1+\beta}{2 \beta}} A^{-1} B^{\frac{1+\beta}{2 \beta}}\right\|^{\beta} \\
& \geq K\left(h^{2}, \beta\right)\left\|B^{1+\beta} A^{-2 \beta} B^{1+\beta}\right\|^{\frac{1}{2}} \quad \text { by }(5) \text { and } \frac{1}{2 \beta} \geq 1 \\
& =K\left(h^{2}, \alpha-1\right)\left\|A^{1-\alpha} B^{\alpha}\right\|
\end{aligned}
$$

and so the proof is complete.

Finally, we consider the case of $\alpha \geq 2$:
Theorem 8. If A and B are positive operators such that $0<m \leq A, B \leq M$ for some scalars $0<m<M$ and $h=\frac{M}{m}$, then for each $\alpha \geq 2$

$$
K(h, 2(\alpha-1))^{-\frac{1}{2}}\left\|A^{1-\alpha} B^{\alpha}\right\| \leq\left\|A \natural_{\alpha} B\right\| \leq K\left(h^{2}, \alpha-1\right)\left\|A^{1-\alpha} B^{\alpha}\right\|
$$

Proof. Put $\alpha=1+\beta$ and $\beta \geq 1$. Then we have

$$
\begin{aligned}
\left\|A \natural_{\alpha} B\right\| & =\left\|B \natural_{-\beta} A\right\|=\left\|B^{\frac{1}{2}}\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right)^{-\beta} B^{\frac{1}{2}}\right\| \\
& =\left\|B^{\frac{1}{2}}\left(B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}}\right)^{\beta} B^{\frac{1}{2}}\right\| \\
& \leq K\left(h^{2}, \beta\right)\left\|B^{\frac{1}{2 \beta}} B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}} B^{\frac{1}{2 \beta}}\right\|^{\beta} \quad \text { by }(11) \text { and } \beta \geq 1 \\
& =K\left(h^{2}, \beta\right)\left\|B^{\frac{1+\beta}{2 \beta}} A^{-1} B^{\frac{1+\beta}{2 \beta}}\right\|^{\beta} \\
& \leq K\left(h^{2}, \alpha-1\right)\left\|A^{1-\alpha} B^{\alpha}\right\| \quad \text { by }(6) \text { and } 0<\frac{1}{2 \beta} \leq 1 .
\end{aligned}
$$

Also, it follows that

$$
\begin{aligned}
\left\|A \mathfrak{\natural}_{\alpha} B\right\| & =\left\|B \natural_{-\beta} A\right\|=\left\|B^{\frac{1}{2}}\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right)^{-\beta} B^{\frac{1}{2}}\right\| \\
& =\left\|B^{\frac{1}{2}}\left(B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}}\right)^{\beta} B^{\frac{1}{2}}\right\| \\
& \geq\left\|B^{\frac{1}{2 \beta}} B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}} B^{\frac{1}{2 \beta}}\right\|^{\beta} \quad \text { by (5) and } \beta \geq 1 \\
& =\left\|B^{\frac{1+\beta}{2 \beta}} A^{-1} B^{\frac{1+\beta}{2 \beta}}\right\|^{\beta} \\
& \geq K\left(h^{-2 \beta}, \frac{1}{2 \beta}\right)^{\beta}\left\|B^{1+\beta} A^{-2 \beta} B^{1+\beta}\right\|^{\frac{1}{2}} \quad \text { by (11) and } 0<\frac{1}{2 \beta} \leq 1 \\
& =K(h, 2(\alpha-1))^{-\frac{1}{2}}\left\|A^{1-\alpha} B^{\alpha}\right\| \quad \text { by (i) and (iv) of Lemma } 4 .
\end{aligned}
$$

References

[1] T.Ando, Matrix Young inequalities, Operator Theory: Adv. and Appl., 75 (1995), 33-38.
[2] H.Araki, On an inequality of Lieb and Thirring, Letters Math. Phys., 19 (1990), 167-170.
[3] M.Fujii, T.Furuta and R.Nakamoto, Norm inequalities in the Corach-Recht theory and operator means, Illinois J. Math., 40 (1996), 527-534.
[4] M.Fujii and Y.Seo, Reverse inequalities of Araki, Cordes and Löwner-Heinz inequalities, Nihonkai Math. J., 16 (2005), 145-154.
[5] T.Furuta, J.Mićić, J.E.Pečarić and Y.Seo, Mond-Pec̆arić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
[6] A.McIntosh, Heinz inequalities and perturbation of spectral families, Macquarie Math. Reports, 1979.
[7] A.M.Turing, Rounding off-errors in matrix processes, Quart. J. Mech. Appl. Math., 1(1948), 287-308.

* Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316, Japan.

E-mail address: nakamoto@mxibaraki.ac.jp
** Faculty of Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama-City, Saitama 337-8570, Japan.
E-mail address: yukis@sic.shibaura-it.ac.jp

[^0]: 2000 Mathematics Subject Classification. 47A63 and 47A64.
 Key words and phrases. Positive operator, Araki's inequality, geometric mean, generalized Kantorovich constant, reverse inequality.

