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Abstract. The most familiar parlor games High-Hand-Wins poker, Hi-Lo poker and
La Relance poker are discussed, under the situation where the players’ hands are
delivered by extremely non-uniform distributions. It is shown that if players’ hands
are distantly (closely) distributed from (to) the opponent’s one, then they behave
cautiously (boldly), when the amount of bet is not so small.

1 Introduction. We discuss about (1) High-Hand-Wins poker, (2) Hi-Lo poker, and (3)
La Relance poker under the situation that players’ hands are delivered by non-uniform
distributions. For these poker games the solutions are given in Ref.[1, 2].

We use the following notations throughout this paper :
u = p.d.f. u(x) = 1, ∀ x ∈ [0, 1],
f = p.d.f. f(x) = 4(x ∧ x), ∀x ∈ [0, 1],
g = p.d.f. g(x) = 4|x− 1

2 |, ∀x ∈ [0, 1],
u-u = Players’ hands are delivered by i.i.d. random variables with p.d.f.u(x).
f -f and g-g are interpreted analogously.

Let denote

Ef-f |x− y| =
∫ 1

0

∫ 1

0

|x− y|f(x)f(y)dxdy,

and Eu-u|x− y| and Eg-g|x− y|, similarly.
Then we have

Lemma Eu-u|x− y| =
1
3
, Ef-f |x− y| =

7
30

and Eg-g |x− y| =
2
5
.

It is intuitively supposed that, when playing poker games, if the amount of bet is not
so small, players will behave more cautious (boldly), as E|x− y| becomes larger (smaller).
We call this intuition the “Monotonicity Property”.

The object of the present paper is to solve some familiar poker games where the hand
distributions are extremely non-uniform. We show that there exist a positive border value
m, such that if the amount of bet is larger (smaller) thanm, then the Monotonicity Property
(its reverse property) holds true. Three familiar pokers are discussed in Sections 2, 3 and
4, and the proofs of the theorems obtained there are given in Section 5. Final remark is
given in Section 6.

2 High-Hand-Wins Poker. Each player I and II receives a hand x and y, respectively
in [0, 1] according to U[0,1]-distribution, and chooses one of the two alternatives : Fold or
Bet the amount A(> 0), paying the ante 1 to the game. If both players fold, then the game
is a draw and no payoffs return. If both players bet, the showdown is made, and the player
with higher hand wins the pot. If one player bets and the other folds, then the player who
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made the bet wins the pot. Then the game, denoted by ΓHHW,u-u is described by the payoff
matrix

Fold Bet

MHHW (x, y) =
Fold
Bet

[
0 −1
1 (1 +A)sgn(x− y)

]
.(2.1)

It is well-known that players have the same optimal strategy

Bet (Fold), if his hand is > (<)A/(1 +A)

and the value of the game is zero.
We obtain the following results.

Theorem 1 For the game ΓHHW,f-f players’ common optimal strategy is

Bet (Fold), if hand is > (<) 1 − (2(1 + A))−
1
2

when A ≥ 1 ; and
Bet (Fold), if hand is > (<)

√
A/2(1 +A)

when 0 ≤ A < 1. The value of the game is zero.

It is clear that
A > 1 (⇒)

A

1 +A
> 1 − (2(1 +A))−1/2 >

1
2
,

and
0 < A < 1 (⇒)

A

1 +A
<
√
A/(2(1 +A)) >

1
2
.

Thus the monotonicity property mentioned in Section 1 holds true when A > 1.

Theorem 2 For the game ΓHHW,g-g players’ common optimal strategy is

Bet (Fold), if hand is > (<)
1
2

(
1 +

√
A− 1
A+ 1

)

when A > 1 ; and

Bet (Fold), if hand is > (<)
1
2

(
1 −

√
1 −A

1 +A

)

when 0 < A < 1. The value of the game is zero.

It is easy to show that

A > 1 (⇒)
(

1
2
<

)
1 − (2(1 +A))−1/2 <

A

1 +A
<

1
2

(
1 +

√
A− 1
A+ 1

)
,

and

0 < A < 1 (⇒)
(

1
2
>

)√
A/(2(1 +A)) >

A

1 +A
>

1
2

(
1 −

√
1 −A

1 +A

)
.

Thus the Monotonicity Property holds true when A > 1.
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The decision-thresholds as the function of A in the three games ΓHHW,u-u,ΓHHW,f-f

and ΓHHW,g-g are compared as shown by Table 1 and Figure 1. For each curve in Figure
1, the upper (lower) part is the Bet (Fold) region.

Table 1 and Figure 1. Decision-threshold in ΓHHW

0 < A < 1 A > 1
g-g 1

2

(
1 −

√
1−A
1+A

)
1
2

(
1 +

√
A−1
A+1

)
(Th.2)

u-u A/(1 +A) A/(1+A)

f -f √
A/2(1 +A) 1 − (2(1 +A))−1/2

(Th.1)

1/2

1

A10

x

f -f

u-u

g-g

3 Hi-Lo Poker. Each player I and II receives a hand x and y, respectively, in according
to U[0,1]-distribution, and chooses one of the two alternatives High and Low. Choices are
made simultaneously and independently of his opponent’s choice. Then players make show-
down, and one with the higher (lower) hand than the opponent wins, if the players’ choices
are Hi-Hi (Lo-Lo). If the players’ choices are Hi-Lo or Lo-Hi the game is a draw. Thus the
game, ΓHL,u-u is described by the payoff matrix

Hi Lo

MHL(x, y) =
Hi
Lo

[
Bsgn(x− y) 0

0 sgn(y − x)

]
,(3.1)

where B(> 0) is the prize given to the winner from the loser, when the hand-pair is Hi-Hi.
It is well-known that for the game ΓHL,u-u players have the same optimal strategies.

Choose Hi (Lo), if hand is > (<) B/(1 +B),
and the value of the game is zero.

It is interesting that if B = ν−1 = 1
2

(√
5 + 1

) ≈ 1.61804, then B
1+B = ν = 1

2

(√
5 − 1

) ≈
0.61804, the golden bisection number. (Note that ν−1 = 1 + ν).
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Theorem 3 For the game ΓHL,f-f , the value of the game is zero. Players’ common optimal
strategy is
Choose Hi (Lo), if hand is > (<) 1 − (2(B + 1))−1/2

when B > 1 ; and
Choose Hi (Lo), if hand is > (<)

√
B/2(B + 1)

when 0 < B < 1.

Theorem 4 For the game ΓHL,g-g, the value of the game is zero. Players’ common optimal
strategy is
Choose Hi (Lo), if hand is > (<) 1

2

(
1 +

√
B−1
B+1

)
when B > 1 ; and
Choose Hi (Lo), if hand is > (<) 1

2

(
1 −

√
1−B
1+B

)
when 0 < B < 1.

Theorem 1∼4 state that, under each of hand distributions u-u, f -f and g-g the games
ΓHHW and ΓHL have the same solution with A (in Theorems 1-2) and B (in Theorems 3-4)
interchanged. This result may be a surprise since the two payoff matrices (2.1) and (3.1)
seem quite unrelated.

4 La Relance Poker. Player I (II) receives a hand x (y) according to U[0,1]. Player I
acts first. He either bets the amount 1 + A or folds, losing his ante 1. If he bets, then II
may either folds, losing his ante, or bet yielding the showdown. The player with the higher
hand wins the pot. So, the payoff matrix of the game, denoted by ΓLR,u-u, is

Fold Bet

MLR(x, y) =
Fold
Bet

[ −1 −1
1 (1 +A)sgn(x− y)

]
.(4.1)

It is well-known that players’ optimal strategies are

φ∗(x) =

⎧⎪⎪⎨
⎪⎪⎩

a function α(x) : [0, c] → [0, 1] satisfying

a restriction
∫ c

0

α(x)dx = cc, if x ≤ c

1, if x > c,

(4.2)

for I ; and ψ∗(y) = I(y > c) , for II, where c = A/(A+ 2). The value of the game is −c2.
We obtain the following results.

Theorem 5 The solution of the game ΓLR,f-f is as follows ;
(a) Case A > 2.

The value of the game is −
(

A
A+2

)2

. Players’ optimal strategies are

φ∗(x) = α(x)I(x ≤ c) + I(x > c)
ψ∗(y) = I(y > c),

where c = 1 − (2 +A)−1/2, and α(x) is a function [0, c] → [0, 1] satisfying a restriction

∫ 1/2

0

α(x)xdx+
∫ c

1/2

α(x)xdx =
A

2(2 +A)2
.(4.3)
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This restriction is satisfied, for example, by α(x) = 2
2+AI(x ≤ c).

(b) Case 0 < A < 2.

The value of the game is −
(

A
2+A

)2

. Players’ optimal strategies are

φ∗(x) = β(x)I(x ≤ b) + I(x > b)
ψ∗(y) = I(y > b),

where b = (A/2(2 +A))1/2 and β(x) is a function [0, b] → [0, 1] satisfying a restriction∫ b

0

β(x)xdx =
A

2(2 +A)2
.(4.4)

This restriction is satisfied, for example, by β(x) = 2
2+AI(x ≤ b).

Theorem 6 The solution of the game ΓLR,g-g is as follows ;
(a) Case A > 2.

The value of the game is −
(

A
A+2

)2

. Players’ optimal strategies are

φ∗(x) = α(x)I(x ≤ c) + I(x > c)
ψ∗(y) = I(y > c),

where c = 1
2

(
1 +

√
A−2
A+2

)
, and α(x) is a function [0, c] → [0, 1] satisfying a restriction

∫ 1/2

0

α(x)
(

1
2
− x

)
dx+

∫ c

1/2

α(x)
(
x− 1

2

)
dx =

A

2(2 +A)2
.(4.5)

This restriction is satisfied, for example, by α(x) = 2
2+AI(x ≤ c).

(b) Case 0 < A < 2.

The value of the game is −
(

A
2+A

)2

. Players’ optimal strategies are

φ∗(x) = β(x)I(x ≤ b) + I(x > b)
ψ∗(y) = I(y > b),

where b = 1
2

(
1 −

√
2−A
2+A

)
, and β(x) is a function [0, b] → [0, 1] satisfying a restriction

∫ b

0

β(x)
(

1
2
− x

)
dx =

A

2(2 +A)2
.(4.6)

This restriction is satisfied, for example, by β(x) = 2
2+AI(x ≤ b).

It is easily shown that

A > 2 (⇒)
(

1
2
<

)
1 − (2 +A)−1/2 <

A

A+ 2
<

1
2

(
1 +

√
A− 2
A+ 2

)
,

0 < A < 2 (⇒)
(

1
2
>

)√
A

2(A+ 2)
>

A

A+ 2
>

1
2

(
1 −

√
2 −A

2 +A

)
,

and therefore the Monotonicity Property mentioned in Section 1 holds true when A > 2.
The decision-thresholds as the function of A in the three games ΓLR,u-u,ΓLR,f-f and

ΓLR,g-g are compared as shown by Table 2. The curves of these functions are almost the
same as in Figure 1, with the point of concentration (A,x) =

(
1, 1

2

)
, replaced by

(
2, 1

2

)
.
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Table 2. Decision-threshold in ΓLR

0 < A < 2 A > 2
g-g 1

2

(
1 −

√
2−A
2+A

)
1
2

(
1 +

√
A−2
A+2

)
(Th.6)

u-u A/(A+ 2) A/(A+2)

f -f √
A/2(2 +A) 1 − (2 +A)−1/2

(Th.5)

It is a surprise that the values of these three games in La Relance are identical, i.e.,

V
(
ΓLR,g-g) = V

(
ΓLR,u-u) = V

(
ΓLR,f-f) = −

(
A

A+ 2

)2

.(4.7)

Also “the amount of bluff” in these games are again identical,

Eu-uα(x) =
2A

(A+ 2)2
, by (4.2)

Ef-fα(x) = Ef-fβ(x) =
2A

(A+ 2)2
, by (4.3)-(4.4)(4.8)

Eg-gα(x) = Eg-gβ(x) =
2A

(A+ 2)2
, by (4.5)-(4.6).

The hand distributions, considered in the present paper, are symmetric (i.e. f(x) =
f(x), in [0, 1], etc) and linear. It may be thought that the equalities (4.7) and (4.8) come
from this setting. If p.d.f.s are not so, for example, if they are

h(x) =
6
5
(
3x− 2x2

)
,−4x logx,−4x log x, etc.

then V
(
ΓLR,h-h) = V

(
ΓLR,u-u) is questionable.

5 Proofs.
Lemma :

Eu-u|x− y| = 2
∫ 1

0

dx

∫ x

0

(x− y)dy =
1
3
.

Ef-f |x− y| = 32

[
2
∫ 1

2

0

xdx

∫ x

0

y(x− y)dy +
∫ 1

1
2

xdx

∫ x

1
2

(x− y)ydy

]
=

7
30
.

Eg-g|x− y| =
∫ 1

0

∫ 1

0

|x− y| {4 − 2f (x)− 2f (y) + f(x)f(y)} dxdy =
2
5
.

The last one is obtained by using g(x) = 2 − f(x), Ef-f |x− y| = 7
30 and∫ 1

0

∫ 1

0

|x− y|f(x)dxdy =
∫ 1

0

(
1
2
− x+ x2

)
f(x)dx =

7
24
.

Theorem 1 : Let φ(x) (ψ(y)) be the probability that I (II) bets on the hand x (y). The
expected payoff is

M(φ,ψ) =
∫ 1

0

∫ 1

0

(
φ(x), φ(x)

)
MHHW (x, y)

(
ψ(y), ψ(y)

)T
f(x)f(y)dxdy(5.1)
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where MHHW (x, y) is given by (2.1). By symmetry the value of the game is zero.
It follows that

MHHW (φ,ψ) = E [φ− ψ + (1 +A)sgn(x− y)φψ](5.2)

=
∫ 1

0

K(x|ψ)φ(x)f(x)dx + (an expression not-involving φ)

where

K(x|ψ) = 1 + (1 +A)
∫ 1

0

sgn(x− y)ψ(y)f(y)dy.(5.3)

Suppose temporally that

ψ(y) = I(y > c), for some appropriate c ∈
(

1
2
, 1
)
,(5.4)

where I(e) is the indicator of the event e. Considering the three cases x < 1
2 < c, 1

2 < x < c
and x > c, we obtain from (5.3)-(5.4),

K(x|ψ) =
{

1 − 2(1 +A) c2, if x ≤ c
1 + 2(1 +A)

(
c2 − 2x2

)
, if x > c

(5.5)

which is continuous and non-decreasing in x ∈ [0, 1]. We choose c = 1 − (2(1 +A))−1/2,
which satisfies c ∈ (1

2 , 1), if A > 1. Then K(x|ψ) = (>)0, if x ≤ (>)c.
Hence, φ∗(x), that maximizes (5.2) for ψ(y) given by (5.4), is φ∗(x) = I(x > c). This proves
the first part of Theorem 1.

Now, suppose this time that

ψ(y) = I(y > b) for some b ∈
(

0,
1
2

)
.(5.6)

Then (5.3) becomes

K(x|ψ) =

⎧⎨
⎩

1 − (1 +A)(1 − 2b2), if x ≤ b < 1
2

1 + (1 +A)(4x2 − 2b2 − 1), if b < x < 1
2

1 + (1 +A)(−4x2 − 2b2 + 1), if b < 1
2 < x

(5.7)

which is continuous and non-decreasing in x ∈ [0, 1]. We choose b =
√
A/2(1 +A) which

satisfies b ∈ (0, 1
2 ) if 0 < A < 1. Then K(x|ψ) = (>) 0 if x ≤ (>) b.

Hence φ∗(x) that maximized (5.2) for ψ(y) given by (5.6), is φ∗(x) = I(x > b). This proves
the secound half of Theorem 1. �

Theorem 2 : For the game ΓHHW,g-g the expected payoffs is

(5.2′) M(φ,ψ) =
∫ 1

0

K(x|ψ)φ(x)g(x)dx + (an expression not-involving φ)

and

(5.3′) K(x|ψ) = 1 + (1 +A)
∫ 1

0

sgn(x− y)ψ(y)g(y)dy.

Hence for (5.4), we get

(5.5′) K(x|ψ) =
{

1 − 2(1 +A)cc, if x ≤ c
1 + 2(1 +A)(−xx+ cc), if x > c (> 1

2 ),
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which is continuous and non-decreasing in x ∈ [0, 1]. We choose 2cc = (1 + A)−1 i.e.,

c = 1
2

(
1 +

√
A−1
A+1

)
if A > 1. Then φ∗(x) = I(x > c) maximizes (5.2′).

Meanwhile, for (5.6), we obtain

(5.7′) K(x|ψ) =

⎧⎨
⎩

1 − (1 +A)(1 − 2b+ 2b2), if 0 < x ≤ b

1 − (1 +A)
{
(2x− 1)2 + 2bb

}
, if b < x < 1

2

1 + (1 +A)
{
(2x− 1)2 − 2bb

}
, if b < 1

2 < x

which is continuous and non-decreasing in x ∈ [0, 1]. We choose b such that 1 − 2b+ 2b2 =

(1 +A)−1, i.e., b = 1
2

(
1 −

√
1−A
1+A

)
∈ (0, 1

2 ), if 0 < A < 1. The φ∗(x) = I(x > b) maximizes
(5.2′). �

Theorem 3 : For the game ΓHL,f-f the expected payoff is

M(φ,ψ) =
∫ 1

0

∫ 1

0

(
φ(x), φ(x)

)
MHL(x, y)

(
ψ(y), ψ(y)

)T
f(x)f(y)dxdy(5.8)

where MHL(x, y) is given by (3.1). By symmetry the value of the game is zero.
It follows that, by (5.8),

MHL(φ,ψ) = E [{φ+ ψ + (B − 1)φψ} sgn(x− y)](5.9)

=
∫ 1

0

K(x|ψ)φ(x)f(x)dx + (an expression non-involving φ)

where

K(x|ψ) =
∫ 1

0

(
Bψ(y) + ψ(y)

)
sgn(x− y)f(y)dy.(5.10)

Suppose, temporally that

ψ(y) = I(y > c), for some c ∈ (1/2, 1) .(5.11)

Then, from (5.10) and (5.11), we have

K(x|ψ) =

⎧⎨
⎩

4x2 − 1 − 2(B − 1)c2, if 0 < x < 1
2 < c

−4x2 + 1 + 2(1 −B)c2, if 1
2 < x < c

B(−4x2 + 2c2) + 1 − 2c2, if c < x < 1
(5.12)

which is continuous and increasing in x ∈ [0, 1]. We choose c = 1 − (2(B + 1))−1/2 which
satisfies c ∈ (1

2 , 1) if B > 1. Then K(x|ψ) < (>) 0, if x < (>) c. Hence φ∗(x) that
maximizes (5.9), for ψ(y) given by (5.11), is φ∗(x) = I(x > c). This proves the first half of
the Theorem 3.

Now, next, we let

ψ(y) = I(y > b), for some b ∈ (0, 1/2) .(5.13)

Then (5.10) gives

K(x|ψ) =

⎧⎨
⎩

4x2 − 2b2 −B(1 − 2b2), if 0 < x < b
2b2 +B(4x2 − 2b2 − 1), if b < x < 1

2
2b2 +B(−4x2 − 2b2 + 1), if b < 1

2 < x < 1
(5.14)

which is continuous and increasing in x ∈ [0, 1]. Choose b =
√
B/2(B + 1) which satisfies

b ∈ (0, 1
2 ) if 0 < B < 1. Thus K(x|ψ) < (>) 0 if x < (>) b. Hence φ∗(x) that maximizes
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(5.9) for ψ(y) given by (5.13) is φ∗(x) = I(x > b). This proves the second half of Theorem
3. �

Theorem 4 : The proof is much similar as in Theorem 3. We have (5.9′) and (5.10′) which
are (5.9) and (5.10) with f(x) replaced by g(x).

First let

(5.11′) ψ(y) = I(y > c), for some c ∈ (1/2, 1) .

Then from (5.10′) and (5.11′) we obtain

(5.12′) K(x|ψ) =

⎧⎨
⎩

−(2x− 1)2 + 2cc− 2Bcc, if 0 < x < 1
2 < c

4x2 − 2c2 − 2c+ 1 − 2Bcc, if 1
2 < x < c

B(4x2 − 4x+ 2cc) + 2c2 − 2c+ 1, if c < x < 1

which is continuous and increasing in x ∈ [0, 1]. We choose cc = 1
2(B+1) i.e., c = 1

2

(
1 +

√
B−1
B+1

)
if B > 1. Then K(x|ψ) < (>) 0, if x < (>) c. Hence φ∗(x) = I(x > c) maximaizes (5.9′),
for ψ(y) given by (5.11′).

Now next let

(5.13′) ψ(y) = I(y > b), for some b ∈ (0, 1/2) .

Then (5.10′) becomes

(5.14′) K(x|ψ) =

⎧⎨
⎩

−4x2 + 4x− 2bb−B(2b2 − 2b+ 1), if 0 < x < b

B(−4x2 + 4x+ 2b2 − 2b− 1) + 2bb, if b < x < 1
2

B(4x2 − 4x+ 2b2 − 2b+ 1) + 2bb, if b < 1
2 < x

which is continuous and increasing in x ∈ [0, 1]. Choose b such that bb = B
2(1+B) , i.e.,

b = 1
2

(
1 −

√
1−B
1+B

)
∈ (0, 1

2 ), if 0 < B < 1. Then K(x|ψ) < (>) 0, if x < (>) b.
Hence φ∗(x) that maximizes (5.9′) for ψ(y) given by (5.13′) is φ∗(x) = I(x > b). �

Theorem 5 : For the game ΓLR,f-f the expected payoff is

M(φ,ψ) =
∫ 1

0

∫ 1

0

(
φ(x), φ(x)

)
MLR(x, y)

(
ψ(y), ψ(y)

)T
f(x)f(y)dxdy(5.15)

=
∫ 1

0

∫ 1

0

{−φ(x) + φ(x)ψ(y) + φ(x)ψ(y)(1 +A)sgn(x− y)
}
f(x)f(y)dxdy

which can be rewritten by

M(φ,ψ) =
∫ 1

0

K(x|ψ)φ(x)f(x)dx − 1,(5.16)

where

(5.16a) K(x|ψ) = 2 +
∫ 1

0

{−1 + (1 +A)sgn(x− y)}ψ(y)f(y)dy ;

or,

M(φ,ψ) =
∫ 1

0

L(y|φ)ψ(y)f(y)dy + (an expression not-involving ψ)(5.17)
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where

(5.17a) L(y|φ) =
∫ 1

0

{−1 + (1 +A)sgn(x− y)}φ(x)f(x)dx.

Proof of (a). Suppose temporally that

ψ∗(y) = I(y > c) for some c ∈ (1/2, 1) .(5.18)

Then (5.16a) becomes

K(x|ψ∗) =
{

2 − 2(2 +A)c2, if x ≤ c
2 − 4(1 +A)x2 + 2Ac2, if x > c

(5.19)

which is continuous and non-decreasing in x ∈ [0, 1]. We choose c such that c2 = 1
2+A , i.e.,

c = 1− (2 +A)−1/2 ∈ (1
2 , 1) if A > 2. Thus K(x|ψ∗) = (>) 0 if x ≤ (>) c. Hence by (5.16),

φ∗(x) =
{

a function α(x) : [0, c] → [0, 1], if c ≤ c
1, if x > c

maximizes M(φ,ψ∗).
On the other hand by (5.17a) we have

1
4
L(y|φ∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
−(2 +A)

∫ y

0 +A
∫ 1/2

y

]
α(x)xdx

+A
{∫ c

1/2
α(x)xdx+ 1

2c
2
}
, if y < 1

2 < c

−(2 +A)
∫ 1/2

0 α(x)xdx
+
[
−(2 +A)

∫ y

1/2
+A

∫ c

y

]
α(x)xdx+ 1

2Ac
2, if 1

2 < y < c

−(2 +A)
∫ 1/2

0
α(x)xdx− (2 +A)

[∫ c

1/2
α(x)xdx

+ 1
2

(
c2 − y2

)]
+ 1

2Ac
2, if 1

2 < c < y

(5.20)

which is continuous and decreasing in y ∈ [0, 1]. Choosing α(x) such taht L(c|φ∗) = 0, i.e.,

∫ 1/2

0

α(x)xdx+
∫ c

1/2

α(x)xdx =
A

2(2 +A)
c2 =

A

2(2 +A)2
(5.21)

we have L(y|φ∗) > (=, <) 0, for y < (=, >) c. The condition (5.21) is possible, if, for

example, α(x) = I
(
x <

√
A

A+2 c
)
. Therefore ψ∗(y) = I(y > c) minimizes M(φ∗, ψ).

Thus we have shown that (φ∗, ψ∗) is the optimal strategy-pair.
Finally we compute the value of the game. By (5.16), (5.19) and c2 = 1

2+A , we have

M(φ∗, ψ∗) =
∫ 1

0

K(x|ψ∗)φ∗(x)f(x)dx− 1 = 4
∫ c

0

{
2 − 4(1 +A)x2 + 2Ac2

}
xdx− 1

= 4
{(

1 +Ac2
)
c2 − (1 +A)c4

}− 1 = 4
(
c2 − c4

)− 1 = −
(

A

2 +A

)2

.

Proof of (b). Let 0 < A < 2. Now let

ψ∗(y) = I(y > c), for some c ∈ (0, 1/2) .(5.22)
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Then (5.16a) becomes

K(x|ψ∗) =

⎧⎨
⎩

−A+ 2(2 +A)c2, if 0 < x < c
4x2 +A(4x2 − 2c2 − 1), if c < x < 1

2
2 +A(1 − 2c2) − 4(A+ 1)x2, if c < 1

2 < x < 1
(5.23)

which is continuous and non-decreasing in x ∈ [0, 1]. Choose c such that K(c|ψ∗) = 0,
i.e., c =

√
A/2(2 +A) ∈ (0, 1

2 ). That is, φ∗(x) = α(x)I(x ≤ c) + I(x > c), for some
α(x) : [0, c] → [0, 1], maximizes M(φ,ψ∗).

Meanwhile, by (5.17a), we have

1
4
L(y|φ∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
−(2 +A)

∫ y

0 +A
∫ c

y

]
α(x)xdx

+A
{

1
2

(
1
4 − c2

)
+ 1

8

}
, if y < c < 1

2

−(2 +A)
∫ c

0
α(x)xdx

−(2 +A)1
2

(
y2 − c2

)
+A

(
1
4 − 1

2y
2
)
, if c < y < 1

2

−(2 +A)
∫ c

0 α(x)xdx
−(2 +A)

{
1
4 − 1

2c
2 − 1

2y
2
}

+A1
2y

2, if c < 1
2 < y

(5.24)

which is continuous and decreasing in y ∈ [0, 1]. By using c2 = A/2(2 + A) and choosing
α(x) such that L(c|φ∗) = −(2 +A)

∫ c

0
α(x)xdx+A

(
1
4 − 1

2c
2
)

= 0 we obtain∫ c

0

α(x)xdx = c2
(

1
2
− c2

)
.(5.25)

Hence we find that L(y|φ∗) < (=, >) 0, for y < (=, >) c and, by (5.17), ψ∗(y) = I(y > c)
minimizes M(φ∗, ψ). This condition for α(x) is possible, for example, α(x) = 2

2+AI(x ≤ c).
Finally we must derive the value of the game when 0 < A < 2. From (5.16), (5.23) and

(5.25) we find

1
4
M(φ∗, ψ∗) =

∫ 1/2

c

{
4x2 +A

(
4x2 − 2c2 − 1

)}
xdx+

∫ 1

1/2

{
2 +A(1 − 2c2) − 4(A+ 1)x2

}
xdx− 1

4

= −(1 +A)c4 − 1
8
(1 + 2c2) +

1
8
A(1 − 2c2) +

1
2
A(c2 + 2c4) = −c4.

Therefore M(φ∗, ψ∗) = −4c4 = − A2

(2+A)2 . �

Theorem 6 : All computations made in the proof of Theorem 5 are made again with
f(x) = 4(x ∧ x), replaced by g(x) = 4

∣∣1
2 − x

∣∣.
Proof of (a). For ψ∗(y) defined by (5.18), Eq.(5.16a) becomes

(5.19′) K(x|ψ∗) = 2 +
∫ 1

0

{−1 + (1 +A)sgn(x− y)}ψ∗(y)g(y)dy

=
{

2 − 2(2 +A)cc, if x ≤ c
2 + 4(1 +A)(x2 − x) + 2Acc, if x > c

which is continuous and non-decreasing in x ∈ [0, 1]. Choose c such that cc = 1
2+A , i.e.,

c = 1
2

(
1 +

√
A−2
A+2

)
∈ (1

2 , 1), if A > 2. Thus K(x|ψ∗) = (>) 0 if x < (>) c.
Hence by (5.16),

φ∗(x) =
{

a function α(x) : [0, c] → [0, 1], if x < c
1, if x > c
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maximizes M(φ,ψ∗).
On the other hand, we have by (5.17′)

(5.20′)
1
4
L(y|φ∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
−(2 +A)

∫ y

0
+A

∫ 1/2

y

]
α(x)

(
1
2 − x

)
dx

+A
∫ c

1/2 α(x)
(
x− 1

2

)
dx+ 1

2Acc, if y < 1
2 < c

−(2 +A)
∫ 1/2

0
α(x)

(
1
2 − x

)
dx

+
[
−(2 +A)

∫ y

1/2 +A
∫ c

y

]
α(x)

(
x− 1

2

)
dx+ 1

2Acc, if 1
2 < y < c

−(2 +A)
∫ 1/2

0
α(x)

(
1
2 − x

)
dx

−(2 +A)
∫ c

1/2
α(x)

(
x− 1

2

)
dx

−(2 +A)1
2

(
y2 − y + cc

)
+ 1

2A(y − y2), if 1
2 < c < y

which is continuous and decreasing in y ∈ [0, 1].
Choosing c such that L(c|φ∗) = 0, we obtain

(5.21′)
∫ 1/2

0

α(x)
(

1
2
− x

)
dx+

∫ c

1/2

α(x)
(
x− 1

2

)
dx =

Acc

2(2 +A)
=

A

2(2 +A)2
.

This restriction on α(x) is satisfied, for example, by α(x) = 2ccI(x < c).
We want to derive the value of the game,

M(φ∗, ψ∗) =
∫ 1

0

K(x|ψ∗)φ∗(x)g(x)dx− 1

= 4
∫ 1

0

{
2 + 4(1 +A)(x2 − x) + 2Acc

}(
x− 1

2

)
dx− 1

= 4
{

(1 +A)
(
−c4 + 2c3 − 4 +A

2 +A
c2 +

2
2 +A

c

)}
− 1

=
1
4
(1 +A)

{
−(cc)2 +

2
2 +A

cc

}
− 1 = −

(
A

2 +A

)2

.

Proof of (b). For ψ∗(y) = I(y > b), for some b ∈ (0, 1
2 ), we derive, by (5.16a).

K(x|ψ∗) =

⎧⎨
⎩

2 − 2(2 +A)
(
b2 − b+ 1

2

)
, if x < b < 1

2

2 + 4(1 +A)(x− x2) − 2bbA − (2 +A), if b < x < 1
2

2 + 4(1 +A)(x2 − x) + 2A
(
b2 − b+ 1

2

)
, if b < 1

2 < x.

Choose b such that K(b|ψ∗) = 0, i.e., b = 1
2

(
1 −

√
2−A
2+A

)
if 0 < A < 2.

Hence, by (5.16a), we get the optimal φ∗(x) = β(x)I(x < b) + I(x > b), where β(x) is a
function : [0, b] → [0, 1] which will be more clarified later.

Now, by (5.17a), we compute

1
4
L(y|φ∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
−(2 +A)

∫ y

0 +A
∫ b

y

]
β(x)

(
1
2 − x

)
dx

+A
(

1
4 − 1

2bb
)
, if y < b < 1

2

−(2 +A)
∫ b

0
β(x)

(
1
2 − x

)
dx

−(2 +A)1
2 (yy − bb) +A

(
1
4 − 1

2yy
)
, if b < y < 1

2

−(2 +A)
∫ b

0 β(x)
(

1
2 − x

)
dx

+ 1
4 − 1

2 (bb+ yy) +A1
2yy, if b < 1

2 < y.
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By the condition L(b|φ∗) = 0, we find that

∫ b

0

β(x)
(

1
2
− x

)
dx =

A

2 +A

(
1
4
− 1

2
bb

)
=

A

2(2 +A)2
.

We want to find the value of the game.

M(φ∗, ψ∗) =
∫ 1

0

K(x|ψ∗)φ∗(x)g(x)dx− 1

= 4

[∫ 1/2

b

[
2 + 4xx− 2bbA − (2 +A)

] (1
2
− x

)
dx

+
∫ 1

1
2

[
2 + 4(1 +A)(−xx) + 2A

(
b2 − b +

1
2

)](
x− 1

2

)
dx

]
− 1

= 4

[∫ 1
2−b

0

{
(1 +A)(1 − 4t2) −A(1 + 2bb)

}
tdt

+
∫ 1

2

0

{
(1 +A)(4s2 − 1) + 2 +A(1 − 2bb)

}
sds

]
− 1

=
(

1
2
− b

)2

(1 −A+ 4bb) +
3
4

+A

(
1
4
− bb

)
− 1

= −
[
A2 −A− 2
4(2 +A)

+
2A2 −A3

4(2 +A)2
+

1
4

]
= −

(
A

2 +A

)2

�

6 Remark. Newman’s real poker (denoted by ΓNRP,u-u) is different from the usual kinds
of poker. It brings the following two changes into the game ΓLR,u-u in that (1) Player I is
not permitted to fold, and (2) he must choose and announce the amount of bet which can
be arbitrary high. In Ref.[3] Newman gave the interesting solution of the game and noted
that the value of the game is 1/7 and the integer 7 is mysteriously present in the solution.
What change will appear, instead of the integer 7 in the solutions of the games ΓNRP,f-f
and ΓNRP,g-g? It is an interesting question. See also Ref.[4].
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