ON QUADRATIC $B F$-ALGEBRAS

Hee Sik Kim and Na Ri Kye

Received September 5, 2006

Abstract

In this paper we introduce the notion of a quadratic $B F$-algebra, and obtain that quadratic $B F$-algebras, quadratic Q-algebras, $B G$-algebras and B-algebras are equivalent notions on a field X with $|X| \geq 3$, and hence every quadratic $B F$-algebra is a $B C I$-algebra.

1. Introduction

The concept of B-algebras was introduced by J. Neggers and H. S. Kim. We refer to $[1,6,7,8,10,11,12]$ for details. They defined a B-algebra as an algebra $(X ; *, 0)$ of type $(2,0)$ (i.e., a non-empty set X with a binary operation $*$ and a constant 0) satisfying ($B 1$), (B2) and $(B)(x * y) * z=x *[z *(0 * y)]$, for any $x, y, z \in X$. In [2], Y. B. Jun, R. H. Roh and H. S. Kim introduced $B H$-algebras, which are generalization of $B C K / B C H / B$ algebras. An algebra $(X ; *, 0)$ of type $(2,0)$ is a $B H$-algebra if it satisfies $(B 1),(B 2)$ and $(B H) x * y=0=y * x$ implies $x=y$. Recently, C. B. Kim and H. S. Kim ([3]) defined a $B G$-algebra as an algebra $(X ; *, 0)$ of type $(2,0)$ satisfying $(B 1),(B 2)$ and $(B G)$ $x=(x * y) *(0 * y)$, for any $x, y \in Z$. J. Neggers, S. S. Ahn and H. S. Kim ([8]) introduced the notion of a Q-algebra, i.e., $(B 1),(B 2)$ and $(Q)(x * y) * z=(x * z) * y$, which is a generalization of the idea of $B C H / B C I / B C K$-algebras and generalized some theorems discussed in $B C I$-algebras. A. Walendziak ([13]) introduced the notion of $B F$-algebras, which is a generalization of B-algebras, and investigated some properties of (normal) ideals in $B F$-algebras. For another generalization of B-algebras we refer to $[3,8,13]$. Recently, the present authors ([5]) studied some properties of (normal, closed) ideals in $B F$-algebras, especially they showed that any ideal of $B F$-algebra can be decomposed into the union of some sets, and obtained the greatest closed ideal I^{0} of an ideal I of a $B F$-algebra X contained in I. In this paper we introduce the notion of a quadratic $B F$-algebra, and obtain that quadratic $B F$-algebras, quadratic Q-algebras, $B G$-algebras and B-algebras are equivalent notions on a field X with $|X| \geq 3$, and hence every quadratic $B F$-algebra is a $B C I$-algebra.

2. Preliminaries

Definition 2.1. A $B F$ - algebra is an algebras $(X ; *, e)$ of type $(2,0)$ satisfying the following axioms:
(B1) $x * x=e$,
(B2) $x * e=x$,

[^0]$(B F) e *(x * y)=y * x$, for any $x, y \in X$.

Example 2.2. ([13) Let \mathbf{R} be the set of all real numbers and let "*" be defined by

$$
x * y= \begin{cases}x & \text { if } y=0 \\ y & \text { if } x=0 \\ 0 & \text { otherwise }\end{cases}
$$

Then $(\mathbf{R} ; *, 0)$ is a $B F$-algebra.
Example 2.3. ([13]) Let $A:=[0, \infty)$. Define a binary operation " $*$ " on A as follows; $x * y:=|x-y|, x, y \in A$. Then $(A ; *, 0)$ is a $B F$-algebra.

Example 2.4. Let $X:=\{0,1,2,3,4\}$ be a set with the following table:

$*$	0	1	2	3	4
0	0	1	1	1	1
1	1	0	1	2	2
2	2	1	0	2	2
3	3	1	1	0	3
4	4	1	1	1	0

Then $(X ; *, 0)$ is a $B F$-algebra.

3. The Quadratic $B F$-algebras

Let X be a field with $|X| \geq 3$. An algebra $(X ; *)$ is said to be quadratic if $x * y$ is defined by $x * y=a_{1} x^{2}+a_{2} x y+a_{3} y^{2}+a_{4} x+a_{5} y+a_{6}$, where $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6} \in X$, for any $x, y \in X$. A quadratic algebra $(X ; *)$ is said to be a quadratic BF-algebra if it satisfies the condition $(B 1),(B 2)$ and $(B F)$.

Theorem 3.1. Let X be a field with $|X| \geq 3$. Then every quadratic $B F$-algebra $(X ; *, e)$ has of the form $x * y=x-y+e$ where $x, y \in X$. Proof. Define $x * y=$ $A x^{2}+B x y+C y^{2}+D x+E y+F$, where $A, B, C, D, E, F \in X$ and $x, y, \in X$. Consider (B1).

$$
\begin{aligned}
e & =x * x \\
& =(A+B+C) x^{2}+(D+E) x+F
\end{aligned}
$$

It follows that $F=e, A+B+C=0=D+E$, i.e., $D=-E$. Consider (B2).

$$
x=x * e=A x^{2}+B x e+C e^{2}+D x+E e+e
$$

It follows that $A=0, B e+D=1$ and $C e^{2}+E e+e=0$.
Thus $B+C=0, D=1-B e$. Since $D=-E$, we have $E=-1+B e$.
From this information, we have the following more simpler form:

$$
\begin{aligned}
x * y & =B x y+C y^{2}+D x+E y+e \\
& =B x y+(-B) y^{2}+(1-B e) x+(B e-1) y+e \\
& =B\left(x y-y^{2}-e x+e y\right)+(x-y+e) \\
& =B(x-y)(y-e)+(x-y+e)
\end{aligned}
$$

By applying $(B F)$ we obtain:

$$
\begin{aligned}
e *(x * y)= & B *(e-x * y)(x * y-e)+(e-x * y+e) \\
= & B[e-B(x-y)(y-e)-(x-y+e)][B(x-y)(y-e)+(x-y+e)-e] \\
& +[2 e-B(x-y)(y-e)-(x-y+e)] \\
= & B[-B(x-y)(y-e)-(x-y)][B(x-y)(y-e)+(x-y)] \\
& +[e-B(x-y)(y-e)-(x-y)] \\
= & -B[B(x-y)(y-e)+(x-y)]^{2}-[B(x-y)(y-e)+(x-y)]+e \\
= & -B(x-y)^{2}[B(y-e)+1]^{2}-(x-y)[B(y-e)+1]+e .
\end{aligned}
$$

Since $y * x=B(y-x)(x-e)+(y-x+e)=B(y-x)(x-e)+(y-x)+e$, in order to satisfy $(B F)$, it should be

$$
-B(x-y)^{2}[B(y-e)+1]^{2}-(x-y)[B(y-e)+1]+e=B(y-x)(x-e)+(y-x)+e .
$$

If we let $x:=e$ in the above identity, then $-B(e-y)^{2}[B(y-e)+1]^{2}-(e-y)[B(y-e)+1]=$ $y-e$. It follows that $B=0$. Hence, $C=0, E=-1$ and $D=1$. Thus $x * y=x-y+e$, proving the theorem.

Example 3.2. Let \mathbf{R} be the set of all real numbers. If we define $x * y:=x-y$, the usual subtraction on \mathbf{R}, then $(\mathbf{R} ; *, 0)$ be a $B F$-algebra.

Example 3.3. Let $\kappa:=G F\left(p^{n}\right)$ be a Galois field. If we define $x * y:=x-y+e$, then $(\kappa ; *, e)$ is a $B F$-algebra.

Proposition 3.4. Let X be a field with $|X| \geq 3$. If X is a quadratic $B F$-algebra, then $(x * z) *(y * z)=x * y$ for any $x, y, z \in X$.

Proof. Straightforward.
H. K. Park and H. S. Kim ([10]) proved that every quadratic B-algebra $(X ; *, e), e \in X$, has the form $x * y=x-y+e$, where X is a field with $|X| \geq 3$. J. Neggers, S. S. Ahn and H. S. Kim ([9]) introduced the notion of Q-algebras, and obtained that every quadratic Q-algebra $(X ; *, e), e \in X$, has the form $x * y=x-y+e, x, y \in X$, where X is a field with $|X| \geq 3$. Also, H. S. Kim and H. D. Lee ([4]) showed that every quadratic $B G$-algebra $(X ; *, e), e \in X$, has the form $x * y=x-y+e, x, y \in X$, where X is a field with $|X| \geq 3$. We summarize:

Theorem 3.5. Let X be a field with $|X| \geq 3$. Then the following are equivalent:
(1) $(X ; *, e)$ is a quadratic $B F$-algebra,
(2) $(X ; *, e)$ is a quadratic $B G$-algebra,
(3) $(X ; *, e)$ is a quadratic Q-algebra,
(4) $(X ; *, e)$ is a quadratic B-algebra.

Theorem 3.6. ([10]) Let X be a field with $|X| \geq 3$. Then every quadratic B-algebra on X is a $B C I$-algebra. Theorem 3.7. Let X be a field with $|X| \geq 3$. Then every quadratic $B F$-algebra on X is a $B C I$-algebra.

Proof. It is an immediate consequence of Theorem 3.5 and Theorem 3.6.

References

[1] J. R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups and related systems 7 (2001), 1-6.
[2] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japo. Online 1 (1998), 347-354.
[3] C. B. Kim and H. S. Kim, On BG-algebras Mate. Vesnik (submitted).
[4] H. S. Kim and H. D. Kee, On quadratic BG-algebras Int. Math J. 5 (2004), 529-535.
[5] H. S. Kim and N. R. Kye, Some decompositions of ideals in BF-algebras, Sci. Math. Japo. (to appear).
[6] J. Neggers and H. S. Kim, On B-algebras Mate. Vesnik 54 (2002), 21-29.
[7] , A fundemental theorem of B-homomorphism for B-algebras, Intern. Math. J. 2 (2002), 517-530.
[8] \qquad , On β-algebras, Math. Slovaca 52 (2002), 517-530.
[9] J. Neggers, S. S. Ahn and H. S. Kim, On Q-algebras Int. J. Math. Math. Sci. 27 (2001), 749-757.
[10] H. K. Park and H. S. Kim, On quadratic B-algebras, Quasigroups and related systems 7 (2001), 67-72.
[11] A. Walendziak, A note on normal subalgebras in B-algebras, Sci. Math. Japo. 62 (2005), 1-6.
[12] \qquad , Some axiomatizations of B-algebras, Math. Slovaca 56(2) (2006), 301-306.
[13] \qquad , On BF-algebras, Math. Slovaca (to appear).

Hee Sik Kim, Department of Mathematics, Hanyang University, Seoul 133-791, Korea
E-mail address: heekim@hanyang.ac.kr

Na Ri Kye, Department of Mathematics, Hanyang University, Seoul 133-791, Korea
E-mail address: ky2421@hanmail.net

[^0]: 2000 Mathematics Subject Classification. 06F35.
 Key words and phrases. $B F$-algebras, quadratic, $B C I / B G / B / Q$-algebras.

