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δθ-REFINABILITY OF PRODUCT SPACES
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Abstract. In this paper we shall show: (1) Let X be a zero-dimensional metric space
and Y be a δθ-refinable P -space. Then X × Y is δθ-refinable.

(2) Let X be an almost expandable strong Σ-space and Y be a strong δθ-refinable
P -space. Then X × Y is δθ-refinable.

(3) Let X be a metrizable space and Y be a w-δθ-refinable P -space. Then X × Y is
w-δθ-refinable.

Similar results of (3) for analogous properties also hold.

1. Introduction

Throughout this paper we assume that each space is a T1-space. Each map is assumed
to be continuous.

It is known the following.
(I) Suppose X is a Σ-space and Y is a P -space.

(i) ([10]). If X and Y are both paracompact, then X × Y is paracompact.
(ii) ([1]). If X and Y are both submetacompact (θ-refinable), then X × Y is submeta-

compact (θ-refinable).
A space X is called a Σ-space if X has a Σ-net.

(II) ([3]). Suppose X is a separable metric space and Y is a normal P (ω)-space. If Y is
δθ-refinable, then X × Y is δθ-refinable.

In this paper we shall investigate the conditions for the product space X × Y has δθ-
refinability and other δθ-refinability-like properties.

Let Ω be a set. Denote Ωn = {(α0, α1, ..., αn−1)|αi ∈ Ω, i = 0, ..., n − 1} for each n ∈
ω, Ω<ω =

⋃
n∈ω Ωn and Ωω = {(α0, α1, ..., αn, ..., )|αn ∈ Ω for each n ∈ ω}. For each

σ = (α0, α1, ..., αn−1) ∈ Ωn and α ∈ Ω, we denote σ ∨ α = (α0, α1, ..., αn−1, α). For each
σ = (α0, α1, ..., αn, ...) ∈ Ωω, we denote σ � n = (α0, α1, ..., αn−1). It is obvious that
σ � n ∈ Ωn.

A space X is said to be a P -space (resp. P (ω)-space) ([9]) if for any open cover {U (σ)|σ ∈
Ω<ω} (resp. with |Ω| ≤ ω) of X where U(σ) ⊂ U(σ ∨ α) for each σ ∈ Ωn and α ∈ Ω, then
there is a closed cover {K(σ)|σ ∈ Ω<ω} of X such that

(i) K(σ) ⊂ U(σ) for each σ ∈ Ω<ω,
(ii) for each σ ∈ Ωω, if

⋃
n∈ω U(σ � n) = X , then

⋃
n∈ω K(σ � n) = X .

For a space X , dimX denotes the covering dimension of X and X is a zero-dimensional
space means dimX = 0.

A subset A of X is called “clopen” set if A is both an open set and a closed set of X .
The following lemmas 1 ∼ 3 are well known.
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Lemma 1. If X is a zero-dimensional metric space, then X has a base B satisfying the
following conditions:

(i) B =
⋃

n∈ω Bn, Bn is a discrete cover of X by clopen sets,
(ii) Bn = {B(σ)|σ ∈ Ωn}, B(σ) =

⋃
α∈Ω B(σ ∨ α) for each σ ∈ Ωn,

(iii) for each x ∈ X, there is a σ ∈ Ωω such that {B(σ � n)|n ∈ ω} is a local base of x in
X.

A collection F of subsets of X is called a net of X if for each x ∈ X and each open set
U such that x ∈ U , there is an F ∈ F such that x ∈ F ⊂ U .

A space X is called a σ-space if σ-locally finite net.

Lemma 2. If X is a σ-space, then X has a net F satisfying the following conditions:
(i) F =

⋃
n∈ω Fn, Fn is a locally finite closed cover of X,

(ii) Fn = {F (σ)|σ ∈ Ωn}, F (σ) =
⋃

α∈Ω F (σ ∨ α) for each σ ∈ Ωn,
(iii) for each x ∈ X, there is a σ ∈ Ωω such that {F (σ � n)|n ∈ ω} is a net of x.

Lemma 3. If X is a Σ-space, then X has a spectral Σ-net F , i. e., satisfying the following
conditions:

(i) F =
⋃

n∈ω Fn, Fn is a locally finite closed cover of X,
(ii) Fn = {F (σ)|σ ∈ Ωn}, F (σ) =

⋃
α∈Ω F (σ ∨ α) for each σ ∈ Ωn,

(iii) for each x ∈ X, there is a σ ∈ Ωω such that {F (σ � n)|n ∈ ω} is a K-net of C(x),
i. e., if U is an open set in X such that C(x) ⊂ U , then F (σ � n) ⊂ U for some n. Here
C(x) =

⋂
n∈ω F (σ � n).

A space X is called a strong Σ-space if X has a Σ-net such that C(x) is compact for each
x ∈ X .

It is well known that each metrizable space is a regular σ-space and each regular σ-space
is a strong Σ-space.

2. δθ-refinability

Definition 1. ([1]) A space X is called “θ-refinable” (resp. “δθ-refinable” ) if every open
cover G of X has a θ-sequence (resp. δθ-sequence) 〈Hn〉n∈ω of X such that each Hn is an
open cover of X and Hn ≺ G. A sequence 〈Hn〉n∈ω of X is called a “θ-sequence” (resp.
“δθ-sequence”) of X if for any x ∈ X there is an nx ∈ ω such that ord(x,Hnx) < ω (resp.
ord(x,Hnx) ≤ ω) where ord(x,Hnx ) = |{H |x ∈ H ∈ Hnx}|. Here |A| denotes the cardinal
number of a set A.

For collections G and H of subsets in X , H ≺ G denotes H is a refinement or a partial
refinement of G.
Theorem 1. Let X be a zero-dimensional metric space and Y be a δθ-refinable P -space.
Then X × Y is δθ-refinable.

Proof . Let B be a base of X satisfying the conditions in Lemma 1. Let G = {Gξ|ξ ∈ Ξ} be
an open cover of X × Y . For each σ ∈ Ω<ω and each ξ ∈ Ξ, let us define
Vσ,ξ =

⋃{V |V is an open set in Y, B(σ)× V ⊂ Gξ}. Then
(1) Vσ,ξ is an open set in Y ,
(2) B(σ) × Vσ,ξ ⊂ Gξ.

For each σ ∈ Ω<ω, put V (σ) =
⋃

ξ∈Ξ Vσ,ξ. Then
(3) Let σ ∈ Ωω. If {B(σ � n)|n ∈ ω} is a local base of a point x, then

⋃
n∈ω V (σ � n) = Y .

(4) V (σ) ⊂ V (σ ∨ α) for each σ ∈ Ω<ω and each α ∈ Ω.

Since Y is a P -space, there is a closed cover {K(σ)|σ ∈ Ω<ω} of Y such that
(5) K(σ) ⊂ V (σ) for each σ ∈ Ω<ω,
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(6) for each σ ∈ Ωω, if
⋃

n∈ω V (σ � n) = Y , then
⋃

n∈ω K(σ � n) = Y .

Put Mn =
⋃{B(σ)×K(σ)|σ ∈ Ωn}. Then we have

(7) X × Y =
⋃

n∈ω Mn.

For each σ ∈ Ω<ω, Vσ = {Vλ,ξ|ξ ∈ Ξ} is a collection of open sets of Y , cover K(σ) and
V ′

σ = Vσ ∪ {X � K(σ)} is an open cover of Y .
Since Y is δθ-refinable, there is a sequence 〈O′

σ,m〉m∈ω of open refinements of V ′
σ such that

for each y ∈ Y , there is an my with ord(y,O′
σ,my

) ≤ ω. Put Oσ,m = {O ∈ O′
σ,m|O∩K(σ) �=

∅}. Then Oσ,m are collections of open sets in Y , covers K(σ), Oσ,m ≺ Vσ and

(8) for each y ∈ Y , there is an my with ord(y,Oσ,my) ≤ ω.

Put L(σ; m) = {B(σ)×O|O ∈ Oσ,m} and

Ln,m =
⋃

σ∈Ωn L(σ; m) ∪ {(X × Y � Mn) ∩Gξ|ξ ∈ Ξ}. Then

(9) Ln,m is an open cover of X × Y and a refinement of G.
(10) 〈Ln,m〉n,m∈ω is a δθ-sequence.

Proof. Let (x, y) ∈ X × Y . Then (x, y) ∈Mn for some n. Since Bn is discrete, there is the
only element σ ∈ Ωn such that x ∈ B(σ). Then, there is an m such that ord(y,O′

σ,m) ≤ ω.
It is easy to see that ord((x, y),Ln,m) ≤ ω. �

Lemma 4. Suppose X =
⋃

n∈ω Fn, each Fn is closed in X and is δθ-refinable. Then X is
δθ-refinable.

Theorem 2. Let X be a union of countable number of zero-dimensional metrizable closed
subspaces and Y be a δθ-refinable P -space. Then X × Y is δθ-refinable.

Proof . This theorem follows from Theorem 2 by using Lemma 4. �
A space X is said to be strongly δθ-refinable if for any open cover G of X there is a
sequence 〈Hn〉n∈ω of open refinements of G such that for each x ∈ X , there is an nx

with ord(x,Hn) ≤ ω for every n ≥ nx. Such a sequence 〈Hn〉n∈ω is said to be a strong
δθ-sequence.

A space X is called almost expandable if for every locally finite collection {Fξ|ξ ∈ Ξ} of
closed subsets of X , there exists a point finite collection {Gξ|ξ ∈ Ξ} of open subsets of X
such that Fξ ⊂ Gξ for each ξ.

Theorem 3. Let X be an almost expandable strong Σ-space and Y be a strong δθ-refinable
P -space. Then X × Y is δθ-refinable.

Proof. Let F =
⋃

n∈ω Fn be a spectral Σ-net of X , i.e., for some set Ω, Fn = {F (σ)|σ ∈ Ωn}
be a locally finite closed cover of X for each n ∈ ω satisfying the conditions in Lemma 3.

Since X is almost expandable, there is a point finite open cover Hn = {H(σ)|σ ∈ Ωn} of
X such that H(σ) ⊃ F (σ) for each σ ∈ Ωn.

Let G = {Gξ|ξ ∈ Ξ} be an open cover of X ×Y . For each σ ∈ Ω<ω, let Wσ be the maximal
family of Uλ × Vλ satisfying the following conditions:
(1) Uλ is an open set in X , H(σ) ⊃ Uλ ⊃ F (σ),
(2) Vλ is an open set in Y ,
(3) there is a finite open cover Uσ,λ of Uλ such that {U × Vλ|U ∈ Uσ,λ} ≺ G.
Put Wσ = {Uλ × Vλ|λ ∈ Λσ}.
For each σ ∈ Ω<ω, put V (σ) =

⋃
λ∈Λσ

Vλ. Then

(4) Let σ ∈ Ωω. If {F (σ � n)|n ∈ ω} is a K-net of C(x), then
⋃

n∈ω V (σ � n) = Y .
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Proof. Let y be an arbitrary element of Y . Then, since C(x) is compact, there is a finite set
{U ′

i |i = 1, 2, ..., k} of open sets in X and an open set V of Y such that C(x) ⊂ ∪k
i=1U

′
i , y ∈

V, {U ′
i × V |i = 1, 2, ..., k} ≺ G. Then there is an n such that C(x) ⊂ F (σ � n) ⊂ ∪k

i=1U
′
i .

Put Ui = U
′
i ∩H(σ � n). Then F (σ � n) ⊂ ∪k

i=1Ui and {Ui × V |i = 1, 2, ..., k} ≺ G. By the
definition of V (σ � n), V ⊂ V (σ � n). Thus y ∈ V (σ � n).

(5) V (σ) ⊂ V (σ ∨ α) for each σ ∈ Ω<ω and each α ∈ Ω.

Proof. Let y ∈ V (σ). Then there are an open set Uλ in X , an open set Vλ in Y and a finite
open cover Uσ,λ of Uλ such that y ∈ Vλ, F (σ) ⊂ Uλ ⊂ H(σ) and {U × Vλ|U ∈ Uσ,λ} ≺ G.
Put U

′
λ = Uλ ∩H(σ ∨ α) and U ′

σ,λ = {U ∩H(σ ∨ α)|U ∈ Uσ,λ}. Then U
′
λ is an open set in

X , Vλ is an open set in Y , U ′
σ,λ is a finite open cover of U

′
λ, F (σ ∨α) ⊂ U

′
λ ⊂ H(σ ∨α) and

U ′
σ,λ ≺ G. By the maximality of Wσ∨α, we have U

′
λ×Vλ ∈ Wσ∨α. Thus Vλ ⊂ V (σ∨α) and

so y ∈ V (σ ∨ α).

Since Y is a P -space, there is a closed cover {K(σ)|σ ∈ Ω<ω} of Y such that
(6) K(σ) ⊂ V (σ) for each σ ∈ Ω<ω,
(7) for each σ ∈ Ωω, if

⋃
n∈ω V (σ � n) = Y , then

⋃
n∈ω K(σ � n) = Y .

Then we have
(8) X × Y =

⋃{F (σ)×K(σ)|σ ∈ Ω<ω}.
Proof. Let (x, y) be an arbitrary element of Y × Y and let us choose σ ∈ Ωω be {F (σ �
n)|n ∈ ω} is a K-net of C(x). Then, by (4) and (7), y ∈ K(σ � n) for some n. Thus
(x, y) ∈ F (σ � n)×K(σ � n).

For each σ ∈ Ω<ω, Vσ = {Vλ|λ ∈ Λσ} is a collection of open sets in Y , cover K(σ) and
V ′

σ = Vσ ∪ {Y � K(σ)} is an open cover of Y .
Since Y is strongly δθ-refinable, there is a sequence 〈O′

σ,m〉m∈ω of open refinements of
V ′

σ such that for each y ∈ Y , there is an my with ord(y,O′
σ,m) ≤ ω for every m ≥ my. Put

Oσ,m = {O ∈ O′
σ,m|O∩K(σ) �= ∅}. Then Oσ,m are collections of open sets in Y and covers

K(σ), Oσ,m ≺ Vσ and

(9) for each y ∈ Y , there is an my with ord(y,Oσ,m) ≤ ω for every m ≥ my.

We can represent Oσ,m = {Oσ,m,λ|λ ∈ Λσ} with Oσ,m,λ ⊂ Vλ for each λ.
Put L(σ; m) = {U ×Oσ,m,λ|U ∈ Uσ,λ, λ ∈ Λσ} and

Ln,m =
⋃

σ∈Ωn L(σ; m)∪{(X×Y �Mn)∩Gξ |ξ ∈ Ξ} where Mn =
⋃{F (σ)×K(σ)|σ ∈ Ωn}.

Then
(10) Ln,m is an open cover of X × Y and a refinement of G.
(11) 〈Ln,m〉n,m∈ω is a δθ-sequence.

Proof of (10). Let (x, y) ∈ X×Y . If (x, y) /∈Mn, then (x, y) ∈ (X×Y �Mn)∩Gξ for some
ξ ∈ Ξ. If (x, y) ∈ Mn, then (x, y) ∈ F (σ) ×K(σ) for some σ ∈ Ωn. Since

⋃Oσ,m ⊃ K(σ),
y ∈ Oσ,m,λ for some λ ∈ Λσ. Since F (σ) ⊂ Uλ =

⋃Uσ,λ, x ∈ U for some U ∈ Uσ,λ. Thus
(x, y) ∈ U ×Oσ,m,λ. Hence Ln,m is a cover of X × Y .

By (3), L(σ; m) ≺ G and therefore Ln,m ≺ G.
Proof of (11). Let (x, y) ∈ X × Y . Then there is an n such that (x, y) ∈ Mn. Since Hn

is point finite, there is a finite set {σi|i = 1, 2, ..., k} of Ωn such that x ∈ H(σ) ⇐⇒ σ ∈
{σi|i = 1, 2, ..., k}. For each i, there is an m(i) ∈ ω such that ord(y,Oσ,m) ≤ ω for each
m ≥ m(i). Put m∗ = max{m(i)|i = 1, 2, ..., k}. Then ord(y,Oσ,m) ≤ ω for each m ≥ m∗

and each i ≤ k. Then ord((x, y),Ln,m) ≤ ω for each m ≥ m∗.
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To show this, let m ≥ m∗ and let (x, y) ∈ U ×Oσ,m,λ ∈ L(σ; m) with U ∈ Uσ,λ, σ ∈ Ωn.
Then U ⊂ Uλ ⊂ H(σ). Therefore x ∈ H(σ) and so σ ∈ {σi|i = 1, 2, ..., k}. Since y ∈ Oσi,m,λ

and ord(y,Oσi,m) ≤ ω, such λ are at most countably many number. �

3. δθ-refinability-like properties

In this section we investigate δθ-refinability-like properties.

Definition 2. Let U and V be open covers of X. V is called a pointwise W-refinement of U
at x if there is a finite subfamily U ′

of U such that V(x) ≺ U ′
. Here V(x) = {V ∈ V|x ∈ V }.

Let U be a cover of X and 〈Vn〉n∈ω a sequence of covers of X. A sequence 〈Vn〉n∈ω is
called a pointwise W-refining sequence for U if for each x, there exists an nx such that Vnx

is a pointwise W-refinement of U at x.

The next characterization of θ-refinable spaces was given by J. M. W. Worrell.

Theorem B ([13], or cf. [14, Theorem 3.4]). A space X is θ-refinable (submetacompact)
if and only if every open cover of X has a pointwise W-refining sequence by open covers if
and only if every open cover of X has a pointwise W-refining sequence by semi-open covers.

A cover G of X is said to be a semi-open cover of X if for each x ∈ X, x ∈ Int(st(x,G))
where st(x,L) =

⋃{L|x ∈ L ∈ L} and Int(st(x,G)) denotes the interior of st(x,G).
Definition 3. ([7]). Let L and G be covers of X. L is called “point-star Ḟ -refinement” of
G at x ∈ X if there is a finite subfamily G′

of G such that x ∈ ⋂G′
and st(x,L) ⊂ ⋃G′

.
A sequence 〈Ln〉n∈ω of covers of X is called “point-star Ḟ -refining sequence” of G if for

each x ∈ X, there is an nx ∈ ω such that Lnx is a point-star Ḟ -refinement of G at x.

H. J. K. Junnila gave the next characterization of submetacompactness.

Theorem C ([7]). A space X is θ-refinable (submetacompact) if and only if every open
cover of X has a point star Ḟ -refining sequence by open covers if and only if every open
cover of X has a point star Ḟ -refining sequence by semi-open covers.

In [5], w-δθ-refinability and ww-δθ-refinability were defined. Now we shall define s-w-δθ-
refinability and s-ww-δθ-refinability.

Definition 4. Let U and V be open covers of X. V is called a pointwise countable W-
refinement of U at x if there is a countable subfamily U ′

of U such that V(x) ≺ U ′
.

Let U be a cover of X and 〈Vn〉n∈ω a sequence of covers of X. A sequence 〈Vn〉n∈ω is
called a pointwise countable W-refining sequence for U if for each x, there exists an nx such
that Vnx is a pointwise countable W-refinement of U at x.

We shall say a space X is w-δθ-refinable (resp. s-w-δθ-refinable) if every open cover of
X has a pointwise countable W-refining sequence by open covers (resp. semi-open covers).

Definition 5. Let L and G are covers of X. L is called “point-star Ċ-refinement” of G at
x ∈ X if there is a countable subfamily G′

of G such that x ∈ ⋂G′
and st(x,L) ⊂ ⋃G′

.
A sequence 〈Ln〉n∈ω of covers of X is called “point-star Ċ-refining sequence” of G if for

each x ∈ X, there is an nx ∈ ω such that Lnx is a point-star Ċ-refinement of G at x.
We shall say a space X is ww-δθ-refinable (resp. s-ww-δθ-refinable) if every open cover

of X has a point star Ċ-refining sequence by open covers (resp. semi-open covers).

If we define w-θ-refinability, s-w-θ-refinability, ww-θ-refinability and s-ww-θ-refinability
similarly. Then Theorems B denotes that a space X is θ-refinable if and only if it is w-
θ-refinable if and only if it is s-w-θ-refinable. And Theorem C denotes that a space X is
θ-refinable if and only if it is ww-θ-refinable if and only if it is s-ww-θ-refinable.

The following lemma essentially has proved in [5].
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Lemma 5. (1) Let G be an open cover of X and 〈Vn〉n∈ω be a pointwise countable W-
refining sequence of G. Then there exists a pointwise countable W-refining sequence 〈Hn〉n∈ω

of G satisfying the following conditions (a) For each x ∈ X, there exist an nx ∈ ω and a
countable subfamily G′

of G such that Hn(x) ≺ G′
for every n ≥ nx.

Here, (b) We can choose Hn ≺ G,
(c) If each Vn is an open cover, then each Hn can be an open cover and if each Vn is a
semi-open cover, then each Hn can be a semi-open cover.
(2) Let G be an open cover of X and 〈Vn〉n∈ω be a point-star Ċ-refining sequence of G.
Then there exists a point-star Ċ-refining sequence 〈Hn〉n∈ω of G satisfying the following
conditions (a) For each x ∈ X, there exist an nx ∈ ω and a countable subfamily G′

of G
such that x ∈ ⋂G′

and st(x,Hn) ⊂ ⋃G′
for every n ≥ nx.

Here, (b) We can choose Hn ≺ G,
(c) If each Vn is an open cover, then each Hn can be an open cover and if each Vn is a
semi-open cover, then each Hn can be a semi-open cover.

Proof. Let us put Hn = ∧n
i=0Vi ∧ G(= {∩n

i=0Vi ∩G|Vi ∈ Vi for each i = 0, 1, ..., n, G ∈ G}).
Then 〈Hn〉n∈ω satisfies the conditions (a), (b) and (c).

We prove only (1).
Proof of (a). Let x ∈ X . Then there are an n(i) ∈ ω and a countable subfamily Gi of G

such that Vni(x) ≺ Gi.
Define nx = max{n(i)|i ≤ n} and G′

=
⋃

i≤n Gi. Then it is easy to see that Hn(x) ≺ G′

for every n ≥ nx.
(b) is ovbious.
Proof of (c). Suppose each Vn is a semi-open cover of X . Let x ∈Int(st(x,Vi)) for each

i ≤ n. Thus there are open sets Wi in X such that x ∈ Wi ⊂ st(x,Vi) for each i ≤ n. Let
G ∈ G so that x ∈ G. Then W = G ∩ ∩i≤nWi is a neighborhood of x in X such that W ⊂
st(x,Hn). �

Lemma 6. If X is a metrizable space, then for each n ∈ ω, there are locally finite open
covers Hn and Bn of X satisfying the following conditions:

(1) Hn = {H(σ)|σ ∈ Ωn}, Bn = {B(σ)|σ ∈ Ωn},
(2) B(σ) ⊂ H(σ),
(3) H(σ) =

⋃
α∈Ω H(σ ∨ α), B(σ) =

⋃
α∈Ω B(σ ∨ α) for each σ ∈ Ωn,

(4) for each x ∈ X, there is a σ ∈ Ωω such that {H(σ � n)|n ∈ ω} is a local base of x in
X and {B(σ � n)|n ∈ ω} is a local base of x in X.

Proof. For each n ∈ ω, let Un = {U (x; 1/2(n + 1))|x ∈ X}. Here U(x; 1/2(n + 1)) = {y ∈
X |d(x, y) < 1/2(n + 1)} where d is a metric function on X . Then Un is an open cover of
X . Since X is paracompact, there are a locally finite open cover U ′

n = {U (α)|α ∈ Ωn} of
X such that U ′

n ≺ Un and a locally finite open cover B′
n = {B(α)

′ |α ∈ Ωn} of X such that
B(α)′ ⊂ U(α) for each α ∈ Ωn. Put Ω =

⋃
n∈ω Ωn and define U(α) = ∅ for each α ∈ Ω�Ωn.

For each σ = (α0, ..., αn−1) ∈ Ωn, put H(σ) = ∩n−1
i=0 U(αi) and B(σ) = ∩n−1

i=0 B(αi)
′
. Then

Hn = {H(σ)|σ ∈ Ωn} and Bn = {B(σ)|σ ∈ Ωn} satisfy the conditions.
(1), (2) and (3) are obvious.
To show (4), let x ∈ X . For each n ∈ ω, let us choose U(αn) ∈ U ′

n such that x ∈ U(αn).
Then diam(U(αn)) ≤ 1/n+1. Therefore {U (αn)|n ∈ ω} and {B(αn)|n ∈ ω} are local basis
of x ∈ X . Thus {H(σ � n)|n ∈ ω} and {B(σ � n)|n ∈ ω} are local basis of x ∈ X where
σ = (α0, ..., αn−1, ...) ∈ Ωω. �

Theorem 4. Let X be a metrizable space and Y be a P -space.
(a) If Y is w-δθ-refinable, then so is X × Y .



δθ-REFINABILITY OF PRODUCT SPACES 1165

(b) If Y is s-w-δθ-refinable, then so is X × Y .
(c) If Y is ww-δθ-refinable, then so is X × Y .
(d) If Y is s-ww-δθ-refinable, then so is X × Y .

Proof. Let Hn and Bn be open covers of X satisfying the conditions (1) ‘ (4) in Lemma 6.
Let G = {Gξ|ξ ∈ Ξ} be an open cover of X × Y . For each σ ∈ Ω<ω and each ξ ∈ Ξ, let us
define Vσ,ξ =

⋃{V |V is an open set in Y, H(σ)× V ⊂ Gξ}. Then
(5) Vσ,ξ is an open set in Y ,
(6) H(σ) × Vσ,ξ ⊂ Gξ.

For each σ ∈ Ω<ω, put V (σ) =
⋃

ξ∈Ξ Vσ,ξ. Then
(7) Let σ ∈ Ωω. If {H(σ � n)|n ∈ ω} is a local base of a point x, then

⋃
n∈ω V (σ � n) = Y .

(8) V (σ) ⊂ V (σ ∨ α) for each σ ∈ Ω<ω and each α ∈ Ω.

Since Y is a P -space, there is a closed cover {K(σ)|σ ∈ Ω<ω} of Y such that
(9) K(σ) ⊂ V (σ) for each σ ∈ Ω<ω,
(10) for each σ ∈ Ωω, if

⋃
n∈ω V (σ � n) = Y , then

⋃
n∈ω K(σ � n) = Y .

Put Mn =
⋃{B(σ)×K(σ)|σ ∈ Ωn}. Then Mn is a closed subset of X × Y and we have

(11) X × Y =
⋃

n∈ω Mn.

For each σ ∈ Ω<ω, Vσ = {Vσ,ξ|ξ ∈ Ξ} is a collection of open sets in Y , cover K(σ) and
V ′

σ = Vσ ∪ {Y � K(σ)} is an open cover of Y .

Cases (a) and (b). Since Y is w-δθ-refinable (resp. s-w-δθ-refinable), there is a sequence
〈O′

σ,m〉m∈ω of open covers (resp. semi-open covers) of Y such that
(12) for each y ∈ Y , there are an my and a countable subfamily V ′

(y) of V ′
σ such that

(O′
σ,m)(y) ≺ V ′

(y) for every m ≥ my. Here, if y ∈ K(σ), then we can choose V ′
(y) ⊂ Vσ.

Put Oσ,m = {O ∈ O′
σ,m|O ∩K(σ) �= ∅}. Then (Oσ,m)(y) ≺ V ′

(y) for every m ≥ my. By
Lemma 5, we may assume that Oσ,m ≺ Vσ.

Cases (c) and (d). Since Y is ww-δθ-refinable (resp. s-ww-δθ-refinable), there is a sequence
〈O′

σ,m〉m∈ω of open covers (resp. semi-open covers) of Y such that for each y ∈ Y , there are
an my and a countable subfamily V ′

(y) of V ′
σ such that y ∈ ⋂V ′

(y) and st(y,O′
σ,m) ⊂ ⋃V ′

(y)

for every m ≥ my.
Put Oσ,m = {O ∈ O′

σ,m|O ∩ K(σ) �= ∅}. Then Oσ,m are collections of open sets in Y

and covers K(σ), if y ∈ K(σ), then we can choose V ′
(y) ⊂ Vσ. Here we may assume that

Oσ,m ≺ Vσ. Put

L(σ; m) = {H(σ)×O|O ∈ Oσ,m} and

Ln,m =
⋃

σ∈Ωn L(σ; m) ∪ {(X × Y � Mn) ∩Gξ|ξ ∈ Ξ}. Then

(13) Ln,m is an open cover (resp. semi-open cover) of X × Y and a refinement of G.
and
(14) Case (a). 〈Ln,m〉n,m∈ω is a w-δθ-sequences.
Case (b). 〈Ln,m〉n,m∈ω is a s-w-δθ-sequences.
Case (c). 〈Ln,m〉n,m∈ω is a ww-δθ-sequences.
Case (d). 〈Ln,m〉n,m∈ω is a s-ww-δθ-sequences.

Proof of (13). We prove only case (c). To show that Ln,m is a semi-open cover, let
(x, y) ∈ X × Y . It is ovbious that (x, y) ∈ Int(st((x, y),Ln,m)) if (x, y) /∈Mn. We consider
the case of (x, y) ∈ Mn. Then (x, y) ∈ H(σ) × K(σ) for some σ ∈ Ωn. Since O′

σ,m is a
semi-open cover, y ∈ Int(st(y,O′

σ,m)). Therefore there is an open neighborhood W of y
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in Y such that W ⊂ st(y,O′
σ,m). Since y ∈ K(σ), st(y,O′

σ,m) = st(y,Oσ,m). Therefore,
H(σ)×W ⊂ H(σ)× st(y,Oσ,m) ⊂ st((x, y),Ln,m)). Thus (x, y) ∈ Int(st((x, y)),Ln,m)).
Since

⋃L(σ; m) ⊃ H(σ) × K(σ) ⊃ B(σ) × K(σ), Ln,m is a cover of X × Y . For each
L ∈ Ln,m, L = H(σ) × O for some σ ∈ Ωn and some O ∈ Oσ,m. Since O ⊂ V for some
V ∈ V ′

σ and O ∩ K(σ) �= ∅, V �= Y � K(σ). Thus V = Vσ,ξ for some ξ ∈ Ξ. Therefore
H(σ)×O ⊂ H(σ)× Vσ,ξ ⊂ Gξ for some ξ ∈ Ξ.

Proof of (14). Let (x, y) ∈ X × Y . Then there is an n such that (x, y) ∈Mn. Since Hn is
point finite, there is a finite set {σi|i = 0, 1, ..., k − 1} of Ωn such that x ∈ H(σ) ⇐⇒ σ ∈
{σi|i = 0, 1, ..., k − 1}.
Cases (a) and (b). For each i, there are an m(i) ∈ ω and a countable subfamily V ′

(i) of V ′
σi

satisfying the condition (O′
σi,m)(y) ≺ V ′

(i) for each m ≥ mi.

Cases (c) and (d). For each i, there are an m(i) ∈ ω and a countable subfamily V ′
i of V ′

σi

satisfying the conditions: y ∈ ⋂V ′
(i) and st(y,O′

σi,m) ⊂ ⋃V ′
(i) for every m ≥ mi.

Put V ′′
(i) = V ′

(i) � {Y � K(σi)}.
Let m be an arbitrary element of ω such that m ≥ max{mi|i = 0, 1, .., k − 1}. Put

L′
= {H(σi) × V |V ∈ V ′′

i , i = 0, 1, .., k − 1}. Then L′
is a countable family and L′ ≺ G.

For each L ∈ L′
, let us choose G(L) ∈ G such that L ⊂ G(L) and put G′

= {G(L)|L ∈ L′}.
Then G′

is a countable subfamily of G and

Cases (a) and (b). Ln,m((x, y)) ≺ G′
.

Cases (c) and (d). (x, y) ∈ ⋂G′
and st((x, y),Ln,m) ⊂ ⋃G′

.

Proof of cases (a) and (b). Let (x, y) ∈ L ∈ Ln,m. Since (x, y) ∈ Mn, L = H(σ) × O for
some O ∈ Oσ,m. Since O ∈ Oσ,m(y), O ⊂ V for some V ∈ V ′

i . Since O∩K(σ) �= ∅, V ∈ V ′′
i .

Since x ∈ H(σ), σ = σi for some i. Hence L ⊂ H(σi)× V (put = L
′
) ⊂ G(L

′
) ∈ G′

.

Proof of cases (c) and (d). It is obvious that (x, y) ∈ L for each L ∈ L′
and since

L ⊂ G(L), (x, y) ∈ G(L) for each G(L) ∈ G′
. The proof of st((x, y),Ln,m) ⊂ ⋃G′

is similar
to that of Ln,m((x, y)) ≺ G′

. �

4. Pseudo-open maps and δθ-refinability

It is obvious that every δθ-refinable space is w-δθ-refinable, every w-δθ-refinable space is
ww-δθ-refinable and s-w-δθ-refinable, every ww-δθ-refinable space is s-ww-δθ-refinable and
every s-w-δθ-refinable space is s-ww-δθ-refinable.

However, the converse is not known.
Let L(X) denote the Lindelöf number of a space X , i.e., L(X) = min{κ ≥ ω | each open

cover G of X has a subcover G′
with |G′ | ≤ κ}.

In [4], K. Chiba proved the following.

Theorem D ([4]). Let X be a space with L(X) ≤ ω1. Then the following are equivalent.
(1) X is δθ-refinable.
(2) X is w-δθ-refinable.
(3) X is ww-δθ-refinable.

Now we give the following.

Theorem 5. Let X be a space with L(X) ≤ ω1. Then the following are equivalent.
(1) X is δθ-refinable.
(2) X is w-δθ-refinable.
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(3) X is ww-δθ-refinable.
(4) X is s-w-δθ-refinable.
(5) X is s-ww-δθ-refinable.

Proof. This proof is similar to that of Theorem D. It is sufficient to prove that (5) ⇒ (1).
Let U be an open cover of X . We may assume that U = {Uα|α < ω1}. By assumption,
there exists a sequence 〈Lk〉k∈ω of point star Ċ-refining sequence by semi-open covers of X .

For each k ∈ ω and each α < ω1, define
Vk,α = Uα∩(Int(st(X � ∪β �=αUβ,Lk)),
V

′
k,α = Uα ∩ (∪β>αUβ)∩(Int(st(X � ∪β<αUβ ,Lk))) and put
Vk = {Vk,α|α < ω1} ∪ {V ′

k,α|α < ω1}.
Then

(i) Vk is an open cover of X such that Vk ≺ U .

Proof. It is obvious that each set of Vk is an open set and Vk ≺ U . To prove that Vk is a
cover of X , let x ∈ X . Put α = min {β < ω1|x ∈ Uβ}. Then x ∈ Uα � ∪β<αUβ . Since Lk

is semi-open cover of X , x ∈Int(st(x,Lk)) ⊂Int(st(X � ∪β<αUβ ,Lk))). If x /∈ V
′
k,α, then

x /∈ ∪β>αUβ and thus x ∈ X � ∪β �=αUβ. Since Lk is semi-open, x ∈Int(st(x,Lk)) ⊂
Int(st(X � ∪β<αUβ ,Lk)). Hence x ∈ Vk,α.

(ii) {Vk|k ∈ ω} is a δθ-sequence.

Proof. Let x ∈ X . Then there exist a k ∈ ω and a countable subset {αi|i = 1, 2, ...} ⊂ ω1

such that x ∈ ∩∞i=1Uαi and st(x,Lk) ⊂ ∪∞i=1Uαi .
If x ∈ Vk,α, then there is an L ∈ Lk such that x ∈ L and L ∩ (X � ∪β �=αUβ) �= ∅. Since

L ⊂ ∪∞i=1Uαi , α = αi for some i. Therefore {α < ω1|x ∈ Vk,α} ⊂ {αi|i = 1, 2, ...}. Put α∗ =
sup{αi|i = 1, 2, ...}. Then {α < ω1|x ∈ V

′
k,α} ⊂ {α|α ≤ α∗}. To show this, let α > α∗. If

x ∈ L ∈ Lk, then L ⊂ ∪β<αUβ. Thus x /∈ V
′
k,α. Hence ord(x,Vk) ≤ ω. �

A surjective map f : X → Y is called pseudo-open if for any y ∈ Y and any open set U in
X such that f−1(y) ⊂ U, y ∈ Intf(U). Here Intf(U) denotes the interior of f(U).

Theorem 6. Let X be a δθ-refinable space. If there is a finite to one pseudo-open map f
from X onto a space Y , then Y is s-ww- δθ-refinable.

Proof . Let O be an open cover of Y . Put U = {f−1(O)|O ∈ O}. Then U is an open cover
of X . Since X is δθ-refinable, there is a δθ-sequence 〈Vn〉n∈ω of open refinements of U . Put
Wn = ∧n

k=1Vk and Ln = f(Wn) = {f (W )|W ∈ Wn}. Then

(1) Ln is a semi-open cover of Y and Ln ≺ O.

(2) 〈Ln〉n is a point Ċ-refining sequence.

Proof of (1). To show that Ln is semi-open, let y ∈ Y . Then f−1(y) ⊂ ⋃{W |W ∈ Wn, W ∩
f−1(y) �= ∅}. Since f is a pseudo-open map, y ∈ Intf(

⋃{W |W ∈ Wn, W ∩ f−1(y) �= ∅}) =
Int

⋃{f (W )|W ∈ Wn, y ∈ f(W )} = Int(st(y,Ln)).

Proof of (2). For each y ∈ Y , put f−1(y) = {x(i)|i = 1, 2..., j}. For each i, there are an
n(i) such that (Li)(x(i)) is countable. Put V ′

= ∪j
i=1(Vn(i))x(i). Then V ′

is a countable
subfamily of V . For each V ∈ V ′

, let us choose O(V ) ∈ O such that V ⊂ f−1(O(V )) and
put O′

= {O(V )|V ∈ V ′}. Then O′
is a countable subfamily of O and y ∈ ⋂O′

. Let us
put m = max{n(i)|i = 1, 2, ..., j}. Then st(y,Lm) ⊂ ⋃O′

. �
By Theorems 5 and 6, we obtain the following.
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Theorem 7. Let X be a δθ-refinable space and Y be a space with L(Y ) ≤ ω1. If there is a
finite to one pseudo-open map from X onto Y , then Y is δθ-refinable.

Remark. Lemma 1.3 in [10] is not correct. Lemma 1.3 is used only in Lemma 1.4 and
Theorem 3.15 in [10]. However, these can be proved without Lemma 1.3.

Lemma 1.3. ([10]). Let {Fi} be a Σ-net of a space X . If for each i, Hi is a locally finite
closed cover of X refining Fi, then {Hi} is a Σ-net.

In fact, the following example exists.

Example. Let X = (0,∞) with the subspace topology of the Euclidean space R. Let
Fi = {(0, 1]} ∪ {(0, j

i ], [
j
i ,

j+1
i ]; j = 1, 2, ..., i− 1} ∪ {[n, n + j

i ]; j = 1, 2, ..., i, n = 1, 2, ...} for
each i ∈ N. Then Fi is a locally finite closed cover of X .

(1) {Fi} is a Σ-net of X .
Proof. Let K1 ⊃ K2 ⊃ ... is a sequence of non-empty closed sets of X such that Ki ⊂
C(x,Fi) for some point x in X and for each i. Then there are some k and a closed interval
[a, b] such that Ki ⊂ [a, b] for each i ≥ k. Since [a, b] is compact,

⋂∞
i=1 Ki �= ∅.

Let us put Hi = {(0, 1]} ∪ {[n, n + j
i ]; j = 1, 2, ..., i, n = 1, 2, ...} for each i ∈ N. Then Hi is

a locally finite closed cover of X . However
(2) {Hi} is not a Σ-net of X .

Proof. Let Ki = (0, 1
i+1 ] for each i ∈ N. Then Ki is a closed subset of X , K1 ⊃ K2 ⊃

...Ki ⊃ ... and Ki ⊂ (0, 1] = C(1
2 ,Fi) for each i. But

⋂∞
i=1 Ki = ∅. �

5. Inverse limits

K. Chiba investigated the covering properties of inverse limits and proved the following.

Theorem E ([5]). Let {Xα, πα
β , Λ} be an inverse system and X = lim←−{Xα, πα

β , Λ}. Suppose
each projection πα is a pseudo-open map and X is κ-paracompact where |Λ| = κ. Then
(a) If each Xα is w-δθ-refinable, then so is X .
(b) If each Xα is ww-δθ-refinable, then so is X .
(cf. [2], [5] or [6] for the definitions of inverse systems and their limits, projections.)

Let κ be an infinite cardinal. A space X is called κ-paracompact if every open cover G of
X with |G| ≤ κ has a locally finite open refinement.

In this paper we shall prove the similar result for s-w-δθ-refinability and s-ww-δθ-refinability.

Theorem 8. Let {Xα, πα
β , Λ} be an inverse system and X = lim←−{Xα, πα

β , Λ}. Suppose each
projection πα is a pseudo-open map and X is κ-paracompact where |Λ| = κ. Then
(c) If each Xα is s-w-δθ-refinable, then so is X.
(d) If each Xα is s-ww-δθ-refinable, then so is X.

These proofs are quite similar to that of theorem D. But, for completeness, we shall give
the proof only for part (c) briefly. (The proofs of (a) and (b) are similar. Therefore in [5]
only proof of (b) was given)

Proof of part (c). Let G = {Gξ|ξ ∈ Ξ} be an arbitrary open cover of X . For each α ∈ Λ
and ξ ∈ Ξ, let Uα,ξ be the maximal open set in Xα satisfying π−1

α (Uα,ξ) ⊂ Gξ and put
Uα = ∪ξ∈ΞUα,ξ. Then {π−1

α (Uα)|α ∈ Λ} is an open cover of X and there exists an open
cover {Wα|α ∈ Λ} of X such that
(1) Wα ⊂ π−1

α (Uα) for each α ∈ Λ, and (2) Wα ⊂Wβ if α ≤ β. (cf. [2]).
Let us put Tα = Xα�Int πα(X � Wα). Then

(3) Tα is closed in Xα and Tα ⊂ Uα for each α ∈ Λ.
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Put Cα = Int π−1
α (Tα) for each α ∈ Λ. Then

(4) C = {Cα|α ∈ Λ} is an open cover of X . (cf. [2] or [5]).
Since X is κ-paracompact and |C| = κ, there is a locally finite open coverO = {Oα|α ∈ Λ}

such that
(5) Oα ⊂ Cα for each α ∈ Λ.

Let us put Uα = {Uα,ξ|ξ ∈ Ξ} and U ′
α = Uα ∪ {Xα � Tα}. Then U ′

α is an open cover of
Xα. Since Xα is s-w-δθ-refinable, by Lemma 5, we can choose a sequence 〈L′

α,m〉m∈ω of
semi-open covers of Xα satisfying: for each y ∈ Xα, there are an m(y) ∈ ω and a countable
subfamily U ′

α,y of U ′
α such that L′

α,m(y) ≺ U ′
α for every m ≥ m(y).

Put Lα,m = {L ∩ Uα|L ∈ L′
α,m, L ∩ Tα �= ∅}. Then we have

(i)α. Tα ⊂
⋃Lα,m for each m.

(ii)α. For each y ∈ Tα, there are an m(y) ∈ ω and a countable subset A(y) of Ξ such
that y ∈ ∩ξ∈A(y)Uα,ξ and Lα,m(y) ≺ U ′

α for each m ≥ m(y).

Put Lm = {π−1
α (L) ∩Oα|L ∈ Lα,m, α ∈ Λ} for each m. Then

(6) Lm is a semi-open cover of X for each m.
Proof. Let x = (xα)α∈Λ ∈ X . Then x ∈ Oα for some α. Since xα ∈ Tα, by (5), (i)α,

xα ∈ L for some L ∈ Lα,m. Thus x ∈ π−1
α (L) ∩Oα ∈ Lm. Thus Lm is a cover of X .

Since L′
α,m is a semi-open cover of Xα, xα ∈ Int(st(xα,L′

α,m)). Therefore there is an
open set N of Xα such that xα ∈ N ⊂ Int(st(xα,L′

α,m)). Then N ∩ Uα is a neighborhood
of xα and N ∩ Uα ⊂ st(xα,L′

α,m) ∩ Uα =st(xα,Lα,m). Then
π−1

α (N)∩Oα is a neighborhood of x and it is easy to see that π−1
α (N)∩Oα ⊂st(xα,Lm).

(7) 〈Lm〉m∈ω is a pointwise countable W-refining sequence of G.
Proof. Let x ∈ X . Then, sinceO is locally finite, there exists a finite set {αi|i = 1, 2, ..., k}

of Λ such that x ∈ Oα ⇐⇒ α = αi for some i = 1, 2, ..., k. For each i = 1, 2, ..., k, since
xαi ∈ Tαi , there exist an mi ∈ ω and a countable subset Ai of Ξ such that xαi ∈ ∩ξ∈AiUαi,ξ

and Lαi,m(xαi) ≺ {Uαi,ξ|ξ ∈ Ai} for each m ≥ mi.
Let us put m = max{mi|i = 1, 2, ..., k} and A = ∪k

i=1Ai. Then m ∈ ω and A is a
countable subset of Ξ. Then it is easy to see that Lm(x) ≺ {Gξ|ξ ∈ Ξ}. �

Let κ be an infinite cardinal. A space X is called κ-θ-refinable (κ-submetacompact) if
every open cover G of X with |G| ≤ κ has a θ-sequence {Hn|n ∈ ω} of open refinements of
G.

If P is a topological property, X is called hereditarily P if every subspace has P .
It is easy to see that X is hereditarily P if every open subspace has P when P is w-δθ-

refinability or ww-δθ-refinability.
The following theorem is known.

Theorem F ([5]). Let {Xα, πα
β , Λ} be an inverse system and X = lim←−{Xα, πα

β , Λ}. Suppose
X is hereditarily κ-submetacompact where |Λ| = κ.
(a) If each Xα is hereditarily w-δθ-refinable, then so is X .
(b) If each Xα is hereditarily ww-δθ-refinable, then so is X .

Concerning this, we have the following.

Theorem 9. Let {Xα, πα
β , Λ} be an inverse system and X = lim←−{Xα, πα

β , Λ}. Suppose X

is hereditarily κ-submetacompact where |Λ| = κ.
(c) If each Xα is hereditarily s-w-δθ-refinable, then so is X.
(d) If each Xα is hereditarily s-ww-δθ-refinable, then so is X.
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We only give the proof of part (c).

Proof of part(c). Let G be an arbitrary open subspace of X and G = {Gξ|ξ ∈ Ξ} be an
arbitrary open cover of G. For each α ∈ Λ and ξ ∈ Ξ, let Uα,ξ be the maximal open set in
Xα satisfying π−1

α (Uα,ξ) ⊂ Gξ and put Uα = ∪ξ∈ΞUα,ξ. Then U = {π−1
α (Uα)|α ∈ Λ} is an

open cover of G with |U| = κ. Since G is κ-submetacompact, there is a sequence 〈On〉n∈ω

of open refinements of U satisfying the condition: For each x ∈ G, there exists an nx ∈ ω
such that ord(x,Onx) < ω. We can represent On = {Oα,n|α ∈ Λ} with Oα,n ⊂ π−1

α (Uα) for
each α ∈ Λ. Let us put Uα = {Uα,ξ|ξ ∈ Ξ} for each α ∈ Λ. Then Uα is an open cover of Uα.
Since Uα is s-w-δθ-refinable, by Lemma 5, there is a sequence 〈Lα,m〉m∈ω of open covers of
Uα satisfying:
y ∈ Uα, there are an m(y) ∈ ω and a countable subset A(y) of Ξ such that Lα,m(y) ≺
{Uα,ξ|ξ ∈ A(y)}.

For each n, m ∈ ω, let us put Vn
m = {π−1

α (L) ∩Oα,n|L ∈ Lα,m, α ∈ Λ}. Then 〈Vn
m〉n,m∈ω

is a pointwise countable W-refining sequence of G by semi-open covers of X . �
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