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Abstract. A metric space (X, d) in which for every x, y ∈ X and for every t, 0 ≤ t ≤ 1
there exists exactly one point z ∈ X such that d(x, z) = (1 − t)d(x, y) and d(z, y) =
td(x, y) is called an M-space. In this paper we discuss suns and moons in M-spaces
and characterize these via best approximation thereby extending corresponding known
results in normed linear spaces to M-spaces.

Introduction The concept of a sun in Approximation Theory was first introduced in
normed linear spaces by Klee [5] but the terminology ’sun’ was proposed by Effimov and
Steckin [3]. We recall that a set V is a sun iff whenever v0 ∈ V is a best approximation to
some element x /∈ V then v0 is a best approximation to every element on the ray from v0

through x. Since every convex set in a normed linear space has this property, a sun may be
regarded as a generalization of a convex set. Vlasov [10],who developed the concept further,
showed that in a smooth Banach space every proximinal sun is convex. In view of Vlasov’s
result, the most famous unsolved problem in Approximation Theory viz. whether or not
every Chebyshev set in a Hilbert space is convex, may be stated equivalently as “Is every
Chebyshev set in a Hilbert space a sun?” The concept of a moon, which is a generalization
of sun, was introduced by Amir and Deutsch [1] and their special interest was in determin-
ing those normed linear spaces in which every moon is a sun. Knowing such spaces is quite
useful as it is much easier to verify that a given set is a moon than verify it is a sun.

Our purpose in this paper is to discuss these concepts in M-spaces [4] (also called strongly
convex spaces [9]) and extend some of the results proved in [1] and [6] to M-spaces.

To start with, we give a few notations and recall a few definitions.
Let (X, d) be a metric space and x, y, z ∈ X . We say that z is between x and y if

d(x, z) + d(z, y) = d(x, y). For any two points x, y of X , the set {z ∈ X : d(x, z) + d(z, y) =
d(x, y)} is called the metric segment and is denoted by G[x, y].

A metric space (X, d) is said to be convex [9] if for every x, y ∈ X and for every t,
0 ≤ t ≤ 1 there exists at least one point z ∈ X such that

d(x, z) = (1 − t)d(x, y) and d(z, y) = td(x, y)

The space (X, d) is said to be strongly convex [9] or an M-space [4] if such a z exists and is
unique for each pair x, y of X .

Thus for strongly convex metric spaces each t, 0 ≤ t ≤ 1 , determines a unique point of
the segment G[x, y] .

Let G(x, y,−) denote the largest line segment containing G[x, y] for which x is an extreme
point i.e. the ray starting from x and passing through y, G1(x, y,−) denotes G(x, y,−) \
G[x, y] and K(v0, x) ≡ ⋃

B(z, d(z, v0)), z ∈ G1(v0, x,−) where B(z, r) stands for an open
ball with centre z and radius r.
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Figure 1: A non sun set and a set which is a sun

A subset V of an M-space (X, d) is said to be a cone with vertex v0 if G(v0, y,−) ⊆ V
whenever y ∈ V .

Let V be a non-empty subset of a metric space (X, d) and x ∈ X . An element v0 ∈ V
is called a best approximation to x if d(x, v0) = dist(x, V ). We denote by PV (x), the set of
all best approximants to x in V . The set V is said to be proximinal if PV (x) �= ∅ for each
x ∈ X and is said to be Chebyshev if PV (x) is exactly singleton for each x ∈ X .

For v0 ∈ V , PV
−1(v0) = {x ∈ X : v0 ∈ PV (x)} . It is easy to prove (see [8]) that if

x ∈ PV
−1(v0) then xλ ∈ PV

−1(v0) for every xλ ∈ G[v0, x] i.e.v0 ∈ PV (xλ) . On the other
hand, v0 may not be in PV (xλ) for xλ ∈ G1(v0, x,−). This motivates the following definition
introduced in normed linear spaces by Effimov and Steckin [3]: If V is a proximinal subset
of an M-space (X, d) , a point v0 ∈ V is called a solar point ( see Fig. 1 left diagram) of V

if x ∈ PV
−1(v0) implies xλ ∈ PV

−1(v0) for every xλ ∈ G1(v0, x,−). The set V is called a
sun (see Fig. 1 right diagram) if for each x ∈ X \ V , every v0 ∈ PV (x) is a solar point of V
i.e. for all v0 ∈ PV (x), v0 ∈ PV (z) for all z ∈ G1(v0, x,−).

Let V be a subset of an M-space (X, d) . A point v0 ∈ V is called a lunar point if x ∈ X

and K(v0, x) ∩ V �= ∅ imply v0 ∈ K(v0, x) ∩ V . The set V is called a moon if each of its
point is lunar.

The set V = {(x, y) ∈ R2 : x2 + 4y2 ≥ 1} in Euclidean 2-space R2 is a moon (see [2],
p.38). We shall see that each sun in an M-space is a moon. However, the converse is not
true (see [1]).

For proximinal subsets of an M-space, we have:

Theorem 1 A proximinal subset V of an M-space (X, d) is a sun if and only if for any
v0 ∈ V , the set PV

−1(v0) is a cone with vertex v0 .

Proof Suppose V is a sun and x ∈ PV
−1(v0) i.e. v0 ∈ PV (x) . We want to show that

G(v0, x,−) ⊆ PV
−1(v0). Since v0 ∈ PV (x) and V is a sun, v0 ∈ PV (z) for all z ∈ G1(v0, x,−)

and consequently for all z ∈ G(v0, x,−) i.e. z ∈ PV
−1(v0) for all z ∈ G(v0, x,−) i.e.

PV
−1(v0) is a cone with vertex v0.
Conversely, let x ∈ X \ V and y ∈ PV (x) i.e. x ∈ PV

−1(y) where y ∈ V . Since PV
−1(y)

is a cone with vertex y, G(y, x,−) ⊆ PV
−1(y) i.e. y ∈ PV (z) for all z ∈ G(y, x,−). Hence

V is a sun.

Theorem 2 A proximinal subset V of an M-space (X, d) is a sun if and only if for any
v0 ∈ V and x ∈ PV

−1(v0), K(v0, x) ∩ V = ∅ .

Proof Suppose V is a sun. Let v0 ∈ V and x ∈ PV
−1(v0) . Since v0 ∈ PV (x) and V is a

sun, v0 ∈ PV (z) for all z ∈ G(v0, x,−). To show K(v0, x)∩V = ∅ . Suppose u ∈ K(v0, x)∩V
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i.e. u ∈ B(z, d(z, v0)) for some z ∈ G1(v0, x,−) i.e. d(z, u) ≤ d(z, v0) and so v0 /∈ PV (z) as
u ∈ V , a contradiction. Therefore K(v0, x) ∩ V = ∅.

For the converse part, suppose V is not a sun. Then there exists x ∈ X \ V and
v0 ∈ PV (x) such that v0 /∈ PV (z) for some z ∈ G(v0, x,−). Then d(z, v1) ≤ d(z, v0) where
v1 ∈ PV (z) i.e. v1 ∈ B(z, d(z, v0)) for some z ∈ G(v0, x,−). i.e v1 ∈ K(v0, x). Also v1 ∈ V
and therefore K(v0, x) ∩ V �= ∅, a contradiction. Hence V is a sun.

Note In normed linear spaces, Theorem 2 was proved by Amir and Deutsch [1] (see also
[6], p. 467).

Lemma 3 K(v0, x) = K(v0, y) for all y ∈ G[v0, x], where x ∈ X, V ⊂ X and v0 ∈ PV (x).

Proof K(v0, x) ≡ ⋃
B(z1, d(z1, v0)), z1 ∈ G1(v0, x,−), K(v0, y) ≡ ⋃

B(z2, d(z2, v0)), z2 ∈
G1(v0, y,−).

Let z ∈ K(v0, x) then z ∈ B(z1, d(z1, v0)) for at least one z1 ∈ G1(v0, x,−). Now any
z1 ∈ G1(v0, x,−) is also a point on G1(v0, y,−) i.e. z1 = z2 for some z2 ∈ G1(v0, y,−) i.e.
z ∈ ⋃

B(z2, d(z2, v0)), z2 ∈ G1(v0, y,−). Therefore,

K(v0, x) ⊆ K(v0, y)(1)

Let z ∈ K(v0, y) i.e z ∈ B(z2, d(z2, v0) for at least one z2 ∈ G1(v0, y,−). If z2 ∈
G1(v0, x,−) then z ∈ K(v0, x) and so K(v0, y) ⊆ K(v0, x). If z2 ∈ G[y, x], consider z′ ∈
G1(v0, x,−). Then

d(z, z′) ≤ d(z, z2) + d(z2, z′)
≤ d(z2, v0) + d(z2, z′)
= d(z′, v0).

Therefore z ∈ B(z′, d(z′, v0)) and so z ∈ K(v0, x). Consequently

K(v0, y) ⊆ K(v0, x).(2)

(1) and (2) imply K(v0, x) = K(v0, y).

The following theorem shows that we may assume in the definition of lunar point that
x has v0 as a best approximation from V .

Theorem 4 Let V be a subset of an M-space (X, d) and v0 ∈ V . Then the following are
equivalent:
(i) v0 is a lunar point
(ii) whenever v0 is a best approximation to x with K(v0, x)∩V �= ∅ then v0 ∈ K(v0, x) ∩ V .

Proof (i) ⇒ (ii) is trivial. (ii) ⇒ (i). Let x ∈ X and K(v0, x) ∩ V �= ∅. To show
v0 ∈ K(v0, x) ∩ V . If v0 is a best approximation to x then by (ii), v0 ∈ K(v0, x) ∩ V . If v0

is not a best approximation to x then two cases arise:
(a) v0 is not a local best approximation to x,
(b) v0 is a local best approximation to x.
Case (a): If v0 is not a local best approximation to x i.e. for all ε ≥ 0 there exists vε ∈ V such
that d(vε, v0) ≤ ε and d(vε, x) ≤ d(v0, x). Then vε ∈ B(x, d(v0, x)) ⊂ K(v0, x). Therefore
every neighbourhood of v0 contains an element vε of K(v0, x)∩ V other than v0 i.e. v0 is a
limit point of K(v0, x) ∩ V and so v0 ∈ K(v0, x) ∩ V . Hence v0 is a lunar point.
Case (b): If v0 is a local best approximation to x i.e. v0 is a best approximation to x
from V ∩ B(v0, ε) for some ε ≥ 0. Let z ∈ G[v0, x] such that d(z, v0) ≤ ε

2 then by Lemma
3 K(v0, z) = K(v0, x) and v0 is a best approximation to z from V [7]. So (ii) implies
v0 ∈ K(v0, z) ∩ V = K(v0, x) ∩ V and therefore v0 is a lunar point.
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Remark For normed linear spaces, above theorem was proved by Amir and Deutsch [1]-
Lemma 2.7.

Corollary 5 Every sun in an M-space is a moon.

Proof Let V be a sun. Suppose V is not a moon i.e. there exists v0 ∈ V which is not a lunar
point i.e. v0 is a best approximation to x ∈ X with K(v0, x)∩V �= ∅ but v0 /∈ K(v0, x) ∩ V .

As V is a sun, Theorem 2 implies K(v0, x)∩V = ∅ whenever v0 is a best approximation
to x ∈ X .

Since these two statements are contradictory, the result follows.
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