ABSOLUTE CONTINUITY OF FORMS AND ABSOLUTE J-CONTRACTIONS

TAKASHI SANO AND TOMOHIDE TOBA

Received April 25, 2006; revised August 10, 2006

$$
\begin{aligned}
& \text { AbSTRACT. In this note, we study absolute continuity of a pair of forms }\langle A x, y\rangle,\langle B x, y\rangle \text {. } \\
& \text { As an application, we have a characterization of absolutely } J \text {-contractive operators } A \\
& \text { on a Krein space: } \\
& \qquad|[A x, A y]| \leqq|[x, y]| \\
& \text { for all } x, y \text {. }
\end{aligned}
$$

Let \mathcal{H} be a Hilbert space whose inner product is denoted as $\langle\cdot, \cdot\rangle$ and let $B(\mathcal{H})$ be the set of bounded linear operators on \mathcal{H}. A linear operator V on \mathcal{H} is said to be isometric if

$$
\langle V x, V y\rangle=\langle x, y\rangle
$$

for all $x, y \in \mathcal{H}$. A linear operator A is called absolutely contractive if

$$
|\langle A x, A y\rangle| \leqq|\langle x, y\rangle|
$$

for all $x, y \in \mathcal{H}$. Then it is natural to try to find a relation between absolutely contractive operators A and isometric operators V. Indeed, A is characterized as αV for some real number $\alpha(0 \leqq \alpha \leqq 1)$ and an isometric operator V, which is shown as Corollary 4 below.

In this note, we would like to extend this to linear operators on a Krein space with selfadjoint involution $J: J=J^{*}, J^{2}=I$. We refer the reader to [1] for Krein spaces. The J-inner product $[\cdot, \cdot]$ on \mathcal{H} is defined by

$$
[x, y]:=\langle J x, y\rangle \quad(x, y \in \mathcal{H})
$$

A linear operator V is said to be J-isometric if

$$
[V x, V y]=[x, y]
$$

for all $x, y \in \mathcal{H}$, and is called absolutely J-isometric if

$$
|[V x, V y]|=|[x, y]|
$$

for all $x, y \in \mathcal{H}$. A linear operator A is called absolutely J-contractive if

$$
|[A x, A y]| \leqq|[x, y]|
$$

for all $x, y \in \mathcal{H}$.
Let us consider an example. Let

$$
A_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad J=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Then $\left[A_{1} x, A_{1} y\right]=-[x, y]\left(x, y \in \mathbb{C}^{2}\right)$; hence, $\left|\left[A_{1} x, A_{1} y\right]\right|=|[x, y]|$ for all $x, y \in \mathbb{C}^{2}$. Suppose that there were a complex number α and a J-isometry V such that $A_{1}=\alpha V$. Then $\left[A_{1} x, A_{1} y\right]=|\alpha|^{2}[x, y]$, and $|\alpha|^{2}=-1$; this is a contradiction.

[^0]We have another example; let

$$
A_{2}=\left(\begin{array}{cc}
a & b \\
e^{i \theta} a & e^{i \theta} b
\end{array}\right)
$$

for $a, b \in \mathbb{C}, \theta \in \mathbb{R}$. Then for the same $J,\left[A_{2} x, A_{2} y\right]=0\left(x, y \in \mathbb{C}^{2}\right)$ and $A_{2} \neq O$ in general.
These examples lead us to the following:
Theorem 1. Let A be a bounded linear operator on \mathcal{H}, J a selfadjoint involution on \mathcal{H}, and $[\cdot, \cdot]$ the J-inner product. Then A is absolutely J-contractive if and only if $A^{*} J A=O$ or $A=\alpha V$ for a real number $\alpha(0<\alpha \leqq 1)$ and an absolutely J-isometric operator V.

To prove this, we prepare the following, which seems of importance in itself:
Theorem 2. Let A, B be linear operators on \mathcal{H}. The form $\langle A x, y\rangle$ is absolutely continuous for $\langle B x, y\rangle$, i.e., $\langle B x, y\rangle=0$ implies $\langle A x, y\rangle=0$, if and only if there is a derivative $\alpha \in \mathbb{C}$ with $A=\alpha B$.

This follows from more general one, which might be well-known, but we have a proof for the reader's convenience:

Proposition 3. Let X, Y be complex vector spaces and let $\varphi_{i}: X \times Y \longrightarrow \mathbb{C}$ be bilinear ($i=1,2$). Then

$$
\varphi_{1}(x, y)=0 \Longrightarrow \varphi_{2}(x, y)=0
$$

if and only if

$$
\varphi_{2}(x, y)=\alpha \varphi_{1}(x, y) \quad(x \in X, y \in Y)
$$

for a complex number α.
Proof. Since the sufficiency is clear, we show the necessity.
Case 1: either X or Y is of dimension 1. For instance, assume that $\operatorname{dim} Y=1: Y=\mathbb{C} y_{0}$ for some $y_{0} \in Y$. Then by assumption,

$$
\varphi_{1}\left(x, y_{0}\right)=0 \Longrightarrow \varphi_{2}\left(x, y_{0}\right)=0
$$

By the standard fact on linear functionals ([3, Proposition 1.1.1] or [2, Appendix A]), there is a complex number α such that

$$
\varphi_{2}\left(x, y_{0}\right)=\alpha \varphi_{1}\left(x, y_{0}\right) \quad(x \in X)
$$

and the assertion follows.
Case 2: $\operatorname{dim} X, \operatorname{dim} Y \geqq 2$. For each $x \in X$, since the linear functionals $\varphi_{1}(x, \cdot), \varphi_{2}(x, \cdot)$ on Y satisfy the assumption, we have a complex number $\alpha(x) \in \mathbb{C}$ such that

$$
\varphi_{2}(x, \cdot)=\alpha(x) \varphi_{1}(x, \cdot)
$$

Similarly, for each $y \in Y$ we have a complex number $\beta(y)$ such that

$$
\varphi_{2}(\cdot, y)=\beta(y) \varphi_{1}(\cdot, y)
$$

If $\varphi_{1}(x, \cdot)=0$ for all $x \in X$, then $\varphi_{2}(x, \cdot)=0$ for all $x \in X$ by assumption, and the conclusion follows for any α. Hence, we assume that there is a vector $x_{0} \in X$ with $\varphi_{1}\left(x_{0}, \cdot\right) \neq 0$ and take any $x \in X$. Our claim is that $\alpha(\cdot)$ can be taken to be identical.

If the linear functionals $\varphi_{1}\left(x_{0}, \cdot\right), \varphi_{1}(x, \cdot)$ are linearly independent, then there are vectors $y_{1}, y_{2} \in Y$ such that $\varphi_{1}\left(x_{0}, y_{1}\right)=\varphi_{1}\left(x, y_{2}\right)=1$ and $\varphi_{1}\left(x_{0}, y_{2}\right)=\varphi_{1}\left(x, y_{1}\right)=0$. Put $y_{3}:=y_{1}+y_{2} \in Y$, then we have $\varphi_{1}\left(x_{0}, y_{3}\right)=\varphi_{1}\left(x, y_{3}\right)=1$. Hence, it follows that

$$
\begin{aligned}
\alpha(x) & =\alpha(x) \varphi_{1}\left(x, y_{3}\right)=\varphi_{2}\left(x, y_{3}\right)=\beta\left(y_{3}\right) \varphi_{1}\left(x, y_{3}\right)=\beta\left(y_{3}\right) \\
& =\beta\left(y_{3}\right) \varphi_{1}\left(x_{0}, y_{3}\right)=\varphi_{2}\left(x_{0}, y_{3}\right)=\alpha\left(x_{0}\right) \varphi_{1}\left(x_{0}, y_{3}\right)=\alpha\left(x_{0}\right)
\end{aligned}
$$

If $\varphi_{1}\left(x_{0}, \cdot\right)$ and $\varphi_{1}(x, \cdot)$ are linearly dependent and $\varphi_{1}(x, \cdot) \neq 0$, then there is a complex number $\lambda(\neq 0)$ such that $\varphi_{1}(x, \cdot)=\lambda \varphi_{1}\left(x_{0}, \cdot\right)$. Taking a vector $y_{4} \in Y$ with $\varphi_{1}\left(x_{0}, y_{4}\right)=1$, we have

$$
\begin{aligned}
\alpha(x) & =\alpha(x) \varphi_{1}\left(x_{0}, y_{4}\right)=\frac{1}{\lambda} \alpha(x) \lambda \varphi_{1}\left(x_{0}, y_{4}\right)=\frac{1}{\lambda} \alpha(x) \varphi_{1}\left(x, y_{4}\right)=\frac{1}{\lambda} \varphi_{2}\left(x, y_{4}\right) \\
& =\frac{1}{\lambda} \beta\left(y_{4}\right) \varphi_{1}\left(x, y_{4}\right)=\beta\left(y_{4}\right) \varphi_{1}\left(x_{0}, y_{4}\right)=\varphi_{2}\left(x_{0}, y_{4}\right)=\alpha\left(x_{0}\right) \varphi_{1}\left(x_{0}, y_{4}\right)=\alpha\left(x_{0}\right)
\end{aligned}
$$

When $\varphi_{1}(x, \cdot)=0$, we can take any number as $\alpha(x)$.
Therefore, the proof is complete.
Proof of Theorem 1. It suffices to show the necessity. Applying Theorem 2, we have a complex number $\beta(|\beta| \leqq 1)$ such that

$$
A^{*} J A=\beta J
$$

When $\beta=|\beta| e^{i \theta} \neq 0$, then

$$
\left[\frac{A}{\sqrt{|\beta|}} x, \frac{A}{\sqrt{|\beta|}} y\right]=e^{i \theta}[x, y]
$$

Therefore, $V:=\frac{A}{\sqrt{|\beta|}}$ is absolutely J-isometric. For $\alpha:=\sqrt{|\beta|}$, the proof is complete.
We remark that since $A^{*} J A$ and J are selfadjoint β should be real and that the existence of V with $[V x, V y]=-[x, y](\forall x, y)$ depends on each Krein space.

Let $J=I$, the identity operator on \mathcal{H}. Then in the above proof, the scalar β with $A^{*} A=\beta I$ should be non-negative, since $A^{*} A$ is positive. When $\beta=0$, that is, $A^{*} A=O$, then $A=O=0 \cdot I$. When $\beta>0, \frac{A}{\sqrt{\beta}}$ is isometric. Therefore, we have:
Corollary 4. Let A be a linear operator on \mathcal{H}. Then A is absolutely contractive if and only if $A=\alpha V$ for a real number $\alpha(0 \leqq \alpha \leqq 1)$ and an isometric operator V.

Finally, we have a comment on the condition that $A^{*} J A=O$. Assume that

$$
P_{+}:=\frac{1}{2}(I+J) \neq O, P_{-}:=\frac{1}{2}(I-J) \neq O
$$

that is, J is indefinite. Denote the corresponding subspaces by $\mathcal{H}_{+}, \mathcal{H}_{-}$and consider the decomposition $\mathcal{H}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}$. In correspondence to this decomposition, $J, A \in B(\mathcal{H})$ are represented as

$$
J=\left(\begin{array}{cc}
I_{+} & O \\
O & -I_{-}
\end{array}\right), \quad A=\left(\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

In this case, $A^{*} J A=O$ if and only if there is a partial isometry W from \mathcal{H}_{+}to \mathcal{H}_{-}such that

$$
W A_{11}=A_{21}, \quad W A_{12}=A_{22}
$$

In fact, $A^{*} J A=O$ means that

$$
\left\|A_{11} x+A_{12} y\right\|=\left\|A_{21} x+A_{22} y\right\| \quad\left(x \in \mathcal{H}_{+}, y \in \mathcal{H}_{-}\right)
$$

Hence, $W_{0}: A_{11} x+A_{12} y \mapsto A_{21} x+A_{22} y \quad\left(x \in \mathcal{H}_{+}, y \in \mathcal{H}_{-}\right)$is well-defined and we extend this to a desired partial isometry $W: \mathcal{H}_{+} \rightarrow \mathcal{H}_{-}$. Therefore, we conclude:
Proposition 5. Let $J \in B(\mathcal{H})$ be an indefinite selfadjoint involution, $A \in B(\mathcal{H})$, and let us represent them as

$$
J=\left(\begin{array}{cc}
I_{+} & O \\
O & -I_{-}
\end{array}\right), \quad A=\left(\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

Then $A^{*} J A=O$ if and only if there is a partial isometry W from \mathcal{H}_{+}to \mathcal{H}_{-}such that

$$
W A_{11}=A_{21}, \quad W A_{12}=A_{22}
$$

Acknowledgement: We would like to thank the members of Tohoku-Seminar for valuable advice, especially Professor Sin-ei Takahashi for fruitful suggestion on Proposition 3. We are grateful to the referee for careful reading of the manuscripts and for helpful comments.

References

[1] T. Ya. Azizov and I. S. Iokhvidov, Linear Operators in Spaces with an Indefinite Metric, Nauka, Moscow 1986 English translation: Wiley, New York, 1989.
[2] J. B. Conway, A Course in Functional Analysis, 2nd Ed., Springer-Verlag, 1990.
[3] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, vol. 1, Academic Press, 1983.

Department of Mathematical Sciences, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan

E-mail; sano@sci.kj.yamagata-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. 47A07, 47A63, 47B50.
 Key words and phrases. form; absolute continuity; Krein space; indefinite inner product; absolutely J-isometric operator; absolutely J-contractive operator.

