ABSOLUTE CONTINUITY OF FORMS AND ABSOLUTE *J*-CONTRACTIONS

TAKASHI SANO AND TOMOHIDE TOBA

Received April 25, 2006; revised August 10, 2006

ABSTRACT. In this note, we study absolute continuity of a pair of forms $\langle Ax, y \rangle$, $\langle Bx, y \rangle$. As an application, we have a characterization of absolutely *J*-contractive operators *A* on a Krein space: $|[Ax, Ay]| \leq |[x, y]|$

for all x, y.

Let \mathcal{H} be a Hilbert space whose inner product is denoted as $\langle \cdot, \cdot \rangle$ and let $B(\mathcal{H})$ be the set of bounded linear operators on \mathcal{H} . A linear operator V on \mathcal{H} is said to be isometric if

$$\langle Vx, Vy \rangle = \langle x, y \rangle$$

for all $x, y \in \mathcal{H}$. A linear operator A is called absolutely contractive if

$$|\langle Ax, Ay \rangle| \leq |\langle x, y \rangle|$$

for all $x, y \in \mathcal{H}$. Then it is natural to try to find a relation between absolutely contractive operators A and isometric operators V. Indeed, A is characterized as αV for some real number α ($0 \leq \alpha \leq 1$) and an isometric operator V, which is shown as Corollary 4 below.

In this note, we would like to extend this to linear operators on a Krein space with selfadjoint involution $J: J = J^*$, $J^2 = I$. We refer the reader to [1] for Krein spaces. The *J*-inner product $[\cdot, \cdot]$ on \mathcal{H} is defined by

$$[x,y] := \langle Jx,y \rangle \quad (x,y \in \mathcal{H}).$$

A linear operator V is said to be J-isometric if

$$[Vx, Vy] = [x, y]$$

for all $x, y \in \mathcal{H}$, and is called absolutely *J*-isometric if

$$[Vx, Vy]| = |[x, y]|$$

for all $x, y \in \mathcal{H}$. A linear operator A is called absolutely J-contractive if

$$|[Ax, Ay]| \leq |[x, y]|$$

for all $x, y \in \mathcal{H}$.

Let us consider an example. Let

$$A_1 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad J = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).$$

Then $[A_1x, A_1y] = -[x, y]$ $(x, y \in \mathbb{C}^2)$; hence, $|[A_1x, A_1y]| = |[x, y]|$ for all $x, y \in \mathbb{C}^2$. Suppose that there were a complex number α and a *J*-isometry *V* such that $A_1 = \alpha V$. Then $[A_1x, A_1y] = |\alpha|^2 [x, y]$, and $|\alpha|^2 = -1$; this is a contradiction.

²⁰⁰⁰ Mathematics Subject Classification. 47A07, 47A63, 47B50.

Key words and phrases. form; absolute continuity; Krein space; indefinite inner product; absolutely J-isometric operator; absolutely J-contractive operator.

We have another example; let

$$A_2 = \left(\begin{array}{cc} a & b \\ e^{i\theta}a & e^{i\theta}b \end{array}\right)$$

for $a, b \in \mathbb{C}, \theta \in \mathbb{R}$. Then for the same $J, [A_2x, A_2y] = 0$ $(x, y \in \mathbb{C}^2)$ and $A_2 \neq O$ in general. These examples lead us to the following:

Theorem 1. Let A be a bounded linear operator on \mathcal{H} , J a selfadjoint involution on \mathcal{H} , and $[\cdot, \cdot]$ the J-inner product. Then A is absolutely J-contractive if and only if $A^*JA = O$ or $A = \alpha V$ for a real number α ($0 < \alpha \leq 1$) and an absolutely J-isometric operator V.

To prove this, we prepare the following, which seems of importance in itself:

Theorem 2. Let A, B be linear operators on \mathcal{H} . The form $\langle Ax, y \rangle$ is absolutely continuous for $\langle Bx, y \rangle$, i.e., $\langle Bx, y \rangle = 0$ implies $\langle Ax, y \rangle = 0$, if and only if there is a derivative $\alpha \in \mathbb{C}$ with $A = \alpha B$.

This follows from more general one, which might be well-known, but we have a proof for the reader's convenience:

Proposition 3. Let X, Y be complex vector spaces and let $\varphi_i : X \times Y \longrightarrow \mathbb{C}$ be bilinear (i = 1, 2). Then

$$\varphi_1(x,y) = 0 \Longrightarrow \varphi_2(x,y) = 0$$

if and only if

$$\varphi_2(x,y) = \alpha \varphi_1(x,y) \quad (x \in X, y \in Y)$$

for a complex number α .

Proof. Since the sufficiency is clear, we show the necessity. Case 1: either X or Y is of dimension 1. For instance, assume that dim $Y = 1 : Y = \mathbb{C}y_0$ for some $y_0 \in Y$. Then by assumption,

$$\varphi_1(x, y_0) = 0 \Longrightarrow \varphi_2(x, y_0) = 0.$$

By the standard fact on linear functionals ([3, Proposition 1.1.1] or [2, Appendix A]), there is a complex number α such that

$$\varphi_2(x, y_0) = \alpha \varphi_1(x, y_0) \quad (x \in X),$$

and the assertion follows.

Case 2: dim X, dim $Y \ge 2$. For each $x \in X$, since the linear functionals $\varphi_1(x, \cdot), \varphi_2(x, \cdot)$ on Y satisfy the assumption, we have a complex number $\alpha(x) \in \mathbb{C}$ such that

$$\varphi_2(x,\cdot) = \alpha(x)\varphi_1(x,\cdot).$$

Similarly, for each $y \in Y$ we have a complex number $\beta(y)$ such that

$$\varphi_2(\cdot, y) = \beta(y)\varphi_1(\cdot, y).$$

If $\varphi_1(x, \cdot) = 0$ for all $x \in X$, then $\varphi_2(x, \cdot) = 0$ for all $x \in X$ by assumption, and the conclusion follows for any α . Hence, we assume that there is a vector $x_0 \in X$ with $\varphi_1(x_0, \cdot) \neq 0$ and take any $x \in X$. Our claim is that $\alpha(\cdot)$ can be taken to be identical.

If the linear functionals $\varphi_1(x_0, \cdot), \varphi_1(x, \cdot)$ are linearly independent, then there are vectors $y_1, y_2 \in Y$ such that $\varphi_1(x_0, y_1) = \varphi_1(x, y_2) = 1$ and $\varphi_1(x_0, y_2) = \varphi_1(x, y_1) = 0$. Put $y_3 := y_1 + y_2 \in Y$, then we have $\varphi_1(x_0, y_3) = \varphi_1(x, y_3) = 1$. Hence, it follows that

$$\begin{aligned} \alpha(x) &= \alpha(x)\varphi_1(x, y_3) = \varphi_2(x, y_3) = \beta(y_3)\varphi_1(x, y_3) = \beta(y_3) \\ &= \beta(y_3)\varphi_1(x_0, y_3) = \varphi_2(x_0, y_3) = \alpha(x_0)\varphi_1(x_0, y_3) = \alpha(x_0). \end{aligned}$$

If $\varphi_1(x_0, \cdot)$ and $\varphi_1(x, \cdot)$ are linearly dependent and $\varphi_1(x, \cdot) \neq 0$, then there is a complex number $\lambda \neq 0$ such that $\varphi_1(x, \cdot) = \lambda \varphi_1(x_0, \cdot)$. Taking a vector $y_4 \in Y$ with $\varphi_1(x_0, y_4) = 1$, we have

$$\begin{aligned} \alpha(x) &= \alpha(x)\varphi_1(x_0, y_4) = \frac{1}{\lambda}\alpha(x)\lambda\varphi_1(x_0, y_4) = \frac{1}{\lambda}\alpha(x)\varphi_1(x, y_4) = \frac{1}{\lambda}\varphi_2(x, y_4) \\ &= \frac{1}{\lambda}\beta(y_4)\varphi_1(x, y_4) = \beta(y_4)\varphi_1(x_0, y_4) = \varphi_2(x_0, y_4) = \alpha(x_0)\varphi_1(x_0, y_4) = \alpha(x_0). \end{aligned}$$

When $\varphi_1(x, \cdot) = 0$, we can take any number as $\alpha(x)$.

Therefore, the proof is complete.

Proof of Theorem 1. It suffices to show the necessity. Applying Theorem 2, we have a complex number β ($|\beta| \leq 1$) such that

$$A^*JA = \beta J.$$

When $\beta = |\beta|e^{i\theta} \neq 0$, then

$$\Big[\frac{A}{\sqrt{|\beta|}}x, \frac{A}{\sqrt{|\beta|}}y\Big] = e^{i\theta}[x, y].$$

Therefore, $V := \frac{A}{\sqrt{|\beta|}}$ is absolutely *J*-isometric. For $\alpha := \sqrt{|\beta|}$, the proof is complete. \Box

We remark that since A^*JA and J are selfadjoint β should be real and that the existence of V with $[Vx, Vy] = -[x, y] \ (\forall x, y)$ depends on each Krein space.

Let J = I, the identity operator on \mathcal{H} . Then in the above proof, the scalar β with $A^*A = \beta I$ should be non-negative, since A^*A is positive. When $\beta = 0$, that is, $A^*A = O$, then $A = O = 0 \cdot I$. When $\beta > 0$, $\frac{A}{\sqrt{\beta}}$ is isometric. Therefore, we have:

Corollary 4. Let A be a linear operator on \mathcal{H} . Then A is absolutely contractive if and only if $A = \alpha V$ for a real number α ($0 \leq \alpha \leq 1$) and an isometric operator V.

Finally, we have a comment on the condition that $A^*JA = O$. Assume that

$$P_+ := \frac{1}{2}(I+J) \neq O, \ P_- := \frac{1}{2}(I-J) \neq O,$$

that is, J is indefinite. Denote the corresponding subspaces by $\mathcal{H}_+, \mathcal{H}_-$ and consider the decomposition $\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$. In correspondence to this decomposition, $J, A \in B(\mathcal{H})$ are represented as

$$J = \begin{pmatrix} I_+ & O \\ O & -I_- \end{pmatrix}, \quad A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}.$$

In this case, $A^*JA = O$ if and only if there is a partial isometry W from \mathcal{H}_+ to \mathcal{H}_- such that

 $WA_{11} = A_{21}, \quad WA_{12} = A_{22}.$

In fact, $A^*JA = O$ means that

$$|A_{11}x + A_{12}y|| = ||A_{21}x + A_{22}y|| \quad (x \in \mathcal{H}_+, y \in \mathcal{H}_-).$$

Hence, $W_0: A_{11}x + A_{12}y \mapsto A_{21}x + A_{22}y$ $(x \in \mathcal{H}_+, y \in \mathcal{H}_-)$ is well-defined and we extend this to a desired partial isometry $W: \mathcal{H}_+ \to \mathcal{H}_-$. Therefore, we conclude:

Proposition 5. Let $J \in B(\mathcal{H})$ be an indefinite selfadjoint involution, $A \in B(\mathcal{H})$, and let us represent them as

$$J = \begin{pmatrix} I_+ & O \\ O & -I_- \end{pmatrix}, \quad A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$

Then $A^*JA = O$ if and only if there is a partial isometry W from \mathcal{H}_+ to \mathcal{H}_- such that

$$WA_{11} = A_{21}, \quad WA_{12} = A_{22}.$$

Acknowledgement: We would like to thank the members of Tohoku-Seminar for valuable advice, especially Professor Sin-ei Takahashi for fruitful suggestion on Proposition 3. We are grateful to the referee for careful reading of the manuscripts and for helpful comments.

References

 T. Ya. Azizov and I. S. Iokhvidov, *Linear Operators in Spaces with an Indefinite Metric*, Nauka, Moscow 1986 English translation: Wiley, New York, 1989.

[2] J. B. Conway, A Course in Functional Analysis, 2nd Ed., Springer-Verlag, 1990.

[3] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, vol. 1, Academic Press, 1983.

DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE, YAMAGATA UNI-VERSITY, YAMAGATA 990-8560, JAPAN

E-mail; sano@sci.kj.yamagata-u.ac.jp