GA-OPTIMAL PARTIALLY BALANCED FRACTIONAL $2^{m_{1}+m_{2}}$ FACTORIAL DESIGNS OF RESOLUTION R(\{00, 10, 01, 11\}| Ω) WITH $2 \leq m_{1} \leq m_{2} \leq 4$

Shujie Lu, Eiji Taniguchi, Yoshifumi Hyodo and Masahide Kuwada

Received November 8, 2005; revised August 29, 2006

Abstract

Consider a partially balanced fractional $2^{m_{1}+m_{2}}$ factorial design derived from a simple partially balanced array such that the general mean, all the $m_{1}+m_{2}$ main effects, some linear combinations of the $\binom{m_{1}}{2}$ two-factor interactions and of the $\binom{m_{2}}{2}$ two-factor ones and all the $m_{1} m_{2}$ two-factor ones are estimable, where the threefactor and higher-order interactions are assumed to be negligible, and $2 \leq m_{k}(k=$ $1,2)$. Furthermore we consider the situation in which the number of assemblies is less than the number of non-negligible factorial effects. Under these situations, this paper presents optimal designs with respect to the generalized A-optimality criterion, where $2 \leq m_{1} \leq m_{2} \leq 4$.

1 Introduction The characteristic roots of the information matrix of a balanced fractional 2^{m} factorial ($2^{m}-\mathrm{BFF}$) design of resolution V were obtained by Srivastava and Chopra [12]. Using the algebraic structure of the triangular multidimensional partially balanced (TMDPB) association scheme, Yamamoto et al. [15] extended their results to a 2^{m}-BFF design of resolution $2 \ell+1$, where $2 \ell \leq m$. A balanced array of two symbols and m constraints, which is a generalization of an orthogonal array, turns out to be a 2^{m} - BFF design under certain conditions (see [11, 14]).

As a special case of an asymmetrical balanced array introduced by Nishii [9], a partially balanced array (PBA) of two symbols was presented by Kuwada [3]. A PBA of strength $m_{1}+m_{2}$ is said to be simple, and such an array is briefly denoted by $\operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$, where $\lambda_{i_{1}, i_{2}}$ are the indices of an SPBA (e.g., $[7,8]$). A fractional factorial design derived from an array of two symbols and $m_{1}+m_{2}$ constraints is called a partially balanced fractional $2^{m_{1}+m_{2}}$ factorial ($2^{m_{1}+m_{2}}-\mathrm{PBFF}$) design if the variance-covariance matrix of the estimators of the factorial effects to be of interest is invariant under any permutation within m_{k} factors for $k=1,2$ each. Under certain conditions, a PBA of two symbols and $m_{1}+m_{2}$ constraints becomes a $2^{m_{1}+m_{2}}$-PBFF design (e.g., $[3,4]$).

Kuwada et al. $[7,8]$ have obtained optimal $2^{m_{1}+m_{2}}-\mathrm{PBFF}$ designs with respect to the generalized A-optimality (GA-optimality) criterion such that the general mean and all the $m_{1}+m_{2}$ main effects are estimable, and furthermore (A) (a) all the $\binom{m_{1}}{2}$ two-factor interactions, all the $\binom{m_{2}}{2}$ two-factor ones and some linear combinations of the $m_{1} m_{2}$ twofactor ones are estimable, and they are called resolution $\mathrm{R}(\{00,10,01,20,02\} \mid \Omega)$ designs,

[^0]where $\Omega=\{00,10,01,20,02,11\}$ and $2 \leq m_{1} \leq m_{2} \leq 4$, (b) all the ($\left.\begin{array}{c}m_{1} \\ 2\end{array}\right)$ two-factor ones, some linear combinations of the $\binom{m_{2}}{2}$ two-factor ones and all the $m_{1} m_{2}$ two-factor ones are estimable, and they are called resolution $\mathrm{R}(\{00,10,01,20,11\} \mid \Omega)$ designs, where $2 \leq m_{1}, m_{2} \leq 4$, and (B) all the $\binom{m_{1}}{2}$ two-factor ones, and some linear combinations of the $\binom{m_{2}}{2}$ two-factor ones and of the $m_{1} m_{2}$ two-factor ones are estimable, and they are called resolution $\mathrm{R}(\{00,10,01,20\} \mid \Omega)$ designs, where $2 \leq m_{1}, m_{2} \leq 4$.

In this paper, we consider a $2^{m_{1}+m_{2}}$ - PBFF design such that the general mean, all the $m_{1}+m_{2}$ main effects, some linear combinations of the $\binom{m_{1}}{2}$ two-factor interactions and of the $\binom{m_{2}}{2}$ two-factor ones and all the $m_{1} m_{2}$ two-factor ones are estimable, where the threefactor and higher-order interactions are assumed to be negligible and $2 \leq m_{1} \leq m_{2} \leq 4$, and it is called a resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$ design. Furthermore, we present GA-optimal $2^{m_{1}+m_{2}}$-PBFF designs of resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$ when the number of assemblies (or treatment combinations) is less than the number of factorial effects up to the two-factor interactions.

2 Preliminaries We consider a fractional $2^{m_{1}+m_{2}}$ factorial design T with N assemblies, where the three-factor and higher-order interactions are assumed to be negligible and $2 \leq$ $m_{k}(k=1,2)$. Then the $1 \times \nu\left(m_{1}, m_{2}\right)$ vector of the non-negligible factorial effects is given by $\left(\boldsymbol{\theta}_{00}^{\prime} ; \boldsymbol{\theta}_{10}^{\prime} ; \boldsymbol{\theta}_{01}^{\prime} ; \boldsymbol{\theta}_{20}^{\prime} ; \boldsymbol{\theta}_{02}^{\prime} ; \boldsymbol{\theta}_{11}^{\prime}\right)\left(=\boldsymbol{\Theta}^{\prime}\right.$, say $)$, where $\nu\left(m_{1}, m_{2}\right)=1+\left(m_{1}+m_{2}\right)+\binom{m_{1}+m_{2}}{2}$, and $\boldsymbol{\theta}_{00}^{\prime}=\{\theta(\phi ; \phi)\}, \boldsymbol{\theta}_{10}^{\prime}=\left\{\theta(u ; \phi) \mid 1 \leq u \leq m_{1}\right\}, \boldsymbol{\theta}_{01}^{\prime}=\left\{\theta(\phi ; v) \mid 1 \leq v \leq m_{2}\right\}, \boldsymbol{\theta}_{20}^{\prime}=$ $\left\{\theta\left(u_{1} u_{2} ; \phi\right) \mid 1 \leq u_{1}<u_{2} \leq m_{1}\right\}, \boldsymbol{\theta}_{02}^{\prime}=\left\{\theta\left(\phi ; v_{1} v_{2}\right) \mid 1 \leq v_{1}<v_{2} \leq m_{2}\right\}$ and $\boldsymbol{\theta}_{11}^{\prime}=$ $\left\{\theta(u ; v) \mid 1 \leq u \leq m_{1}, 1 \leq v \leq m_{2}\right\}$. Here $\theta(\phi ; \phi)$ is the general mean, $\theta(u ; \phi)$ and $\theta(\phi ; v)$ are the main effects of the u-th factor in the m_{1} factors and of the v-th factor in the m_{2} factors, respectively, and $\theta\left(u_{1} u_{2} ; \phi\right), \theta\left(\phi ; v_{1} v_{2}\right)$ and $\theta(u ; v)$ are the two-factor interactions of the u_{1}-th and u_{2}-th factors in the m_{1} factors, of the v_{1}-th and v_{2}-th factors in the m_{2} factors, and of the u-th factor in the m_{1} factors and the v-th factor in the m_{2} factors, respectively. Thus the ordinary linear model based on T is given by

$$
\boldsymbol{y}(T)=E_{T} \boldsymbol{\Theta}+\boldsymbol{e}_{T}
$$

where $\boldsymbol{y}(T), E_{T}$ and \boldsymbol{e}_{T} are an observation vector of size $N \times 1$, the $N \times \nu\left(m_{1}, m_{2}\right)$ design matrix whose elements are either 1 or -1 , and an $N \times 1$ error vector with mean \boldsymbol{O}_{N} and variance-covariance matrix $\sigma^{2} I_{N}$, respectively. Here \boldsymbol{O}_{p} and I_{p} denote the $p \times 1$ null vector and the identity matrix of order p, respectively. The normal equations for estimating $\boldsymbol{\Theta}$ are given by

$$
\begin{equation*}
M_{T} \hat{\boldsymbol{\Theta}}=E_{T}^{\prime} \boldsymbol{y}(T) \tag{2.1}
\end{equation*}
$$

where $M_{T}\left(=E_{T}^{\prime} E_{T}\right)$ is the information matrix of order $\nu\left(m_{1}, m_{2}\right)$.
Let $A_{\alpha_{1} \alpha_{2}}^{\left(a_{1} a_{2}, b_{1} b_{2}\right)}$ and $D_{\alpha_{1} \alpha_{2}}^{\left(a_{1} a_{2}, b_{1} b_{2}\right)}$ for $a_{1} a_{2}, b_{1} b_{2} \in S_{\alpha_{1} \alpha_{2}}\left(\alpha_{1} \alpha_{2} \in S^{*}\right)$ be the local association matrices of size $n_{a_{1} a_{2}} \times n_{b_{1} b_{2}}$ and the ordered association matrices of order $\nu\left(m_{1}, m_{2}\right)$ of the extended TMDPB (ETMDPB) association scheme, respectively, where
$S_{00}=\{00,10,01,20,02,11\}, S_{10}=\left\{10,20\left(\right.\right.$ if $\left.\left.m_{1} \geq 3\right), 11\right\}, S_{01}=\left\{01,02\left(\right.\right.$ if $\left.\left.m_{2} \geq 3\right), 11\right\}$, $S_{20}=\{20\}$ (if $m_{1} \geq 4$), $S_{02}=\{02\}$ (if $m_{2} \geq 4$), $S_{11}=\{11\}, S^{*}=\left\{00,10,01,20\right.$ (if $m_{1} \geq$ 4), 02 (if $m_{2} \geq 4$), 11\}, and $n_{p_{1} p_{2}}=\binom{m_{1}}{p_{1}}\binom{m_{2}}{p_{2}}$ (see [3]). Note that $A_{\alpha_{1} \alpha_{2}}^{\left(a_{1} a_{2}, b_{1} b_{2}\right)}$ and $D_{\alpha_{1} \alpha_{2}}^{\left(a_{1} a_{2}, b_{1} b_{2}\right)}$ are the $(0,1)$ matrices. Further let $A_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, b_{1} b_{2}\right)}$ and $D_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, b_{1} b_{2}\right)}$ for $a_{1} a_{2}, b_{1} b_{2} \in S_{\beta_{1} \beta_{2}}\left(\beta_{1} \beta_{2}\right.$ $\left.\in S^{*}\right)$ be the matrices of size $n_{a_{1} a_{2}} \times n_{b_{1} b_{2}}$ and of order $\nu\left(m_{1}, m_{2}\right)$, respectively. Then the relationships between $A_{\alpha_{1} \alpha_{2}}^{\left(a_{1} a_{2}, b_{1} b_{2}\right)}$ and $A_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, b_{1} b_{2}\right)}$, and $D_{\alpha_{1} \alpha_{2}}^{\left(a_{1} a_{2}, b_{1} b_{2}\right)}$ and $D_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, b_{1} b_{2}\right)}$ are given by

$$
\begin{align*}
& A_{\alpha_{1} \alpha_{2}}^{\left(a_{1} a_{2}, b_{1} b_{2}\right)}\left(=A_{\alpha_{1} \alpha_{2}}^{\left(b_{1} b_{2}, a_{1} a_{2}\right)^{\prime}}\right)=\sum_{\beta_{1} \beta_{2}} z_{\beta_{1} \beta_{2} \alpha_{1} \alpha_{2}}^{\left(a_{1} a_{2}, b_{1} b_{2}\right)} A_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, b_{1} b_{2}\right)}, \\
& D_{\alpha_{1} \alpha_{2}}^{\left(a_{1} a_{2}, b_{1} b_{2}\right)}\left(=D_{\alpha_{1} \alpha_{2}}^{\left(b_{1} b_{2}, a_{1} a_{2}\right)^{\prime}}\right)=\sum_{\beta_{1} \beta_{2}} z_{\beta_{1} \beta_{2} \alpha_{1} \alpha_{2}}^{\left(a_{1} a_{2}, b_{1} b_{2}\right)} D_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, b_{1} b_{2}\right)} \tag{2.2}\\
& \quad \text { for } \alpha_{k} \leq a_{k}, b_{k} \leq 2 \text { and } 0 \leq \alpha_{k} \leq 2, \\
& A_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, b_{1} b_{2}\right)}\left(=A_{\beta_{1} \beta_{2}}^{\#\left(b_{1} b_{2}, a_{1} a_{2}\right)^{\prime}}\right)=\sum_{\alpha_{1} \alpha_{2}} z_{\left(a_{1} a_{2}, b_{1} b_{2}\right)}^{\beta_{1} \alpha_{1} \alpha_{2}} A_{\alpha_{1} \alpha_{2}}^{\left(a_{1} b_{1} b_{2}\right)} \\
& D_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, b_{1} b_{2}\right)}\left(=D_{\beta_{1} \beta_{2}}^{\#\left(b_{1} b_{2}, a_{1} a_{2}\right)^{\prime}}\right)=\sum_{\alpha_{1} \alpha_{2}} z_{\left(a_{1} a_{2}, b_{1} b_{2}\right)}^{\beta_{1} \beta_{2} \alpha_{2} \alpha_{1} \alpha_{2}} D_{\left.\alpha_{1} a_{1} a_{2}, b_{1} b_{2}\right)}^{\left(a_{1}\right.} \tag{2.3}
\end{align*}
$$

$$
\text { for } \beta_{k} \leq a_{k}, b_{k} \leq 2 \text { and } 0 \leq \beta_{k} \leq 2
$$

where $z_{\beta_{1} \beta_{2} \alpha_{1} \alpha_{2}}^{\left(a_{1} a_{2}, b_{1} b_{2}\right)}=z_{\beta_{1} \alpha_{1}}^{\left(a_{1}, b_{1}\right)} z_{\beta_{2} \alpha_{2}}^{\left(a_{2}, b_{2}\right)}$ and $z_{\left(a_{1} a_{2}, b_{1} b_{2}\right)}^{\beta_{1} \beta_{2} \alpha_{1} \alpha_{2}}=z_{\left(a_{1}, b_{1}\right)}^{\beta_{1} \alpha_{1}} z_{\left(a_{2}, b_{2}\right)}^{\beta_{2} \alpha_{2}}$. Here

$$
\begin{aligned}
z_{\beta_{k} \alpha_{k}}^{\left(a_{k}, b_{k}\right)}\left(=z_{\beta_{k} \alpha_{k}}^{\left(b_{k}, a_{k}\right)}\right)=\sum_{p=0}^{\alpha_{k}}(-1)^{\alpha_{k}-p}\binom{a_{k}-\beta_{k}}{p}\binom{a_{k}-p}{a_{k}-\alpha_{k}}\binom{m_{k}-a_{k}-\beta_{k}+p}{p} & \\
\times \sqrt{\binom{m_{k}-a_{k}-\beta_{k}}{b_{k}-a_{k}}\binom{b_{k}-\beta_{k}}{b_{k}-a_{k}} /\binom{b_{k}-a_{k}+p}{p}} & \text { for } a_{k} \leq b_{k}, \\
z_{\left(a_{k}, b_{k}\right)}^{\beta_{k} \alpha_{k}}\left(=z_{\left(b_{k}, a_{k}\right)}^{\beta_{k} \alpha_{k}}\right)=\phi_{\beta_{k}} z_{\beta_{k} \alpha_{k}}^{\left(a_{k}, b_{k}\right)} /\left\{\binom{m_{k}}{a_{k}}\binom{a_{k}}{\alpha_{k}}\binom{m_{k}-a_{k}}{b_{k}-a_{k}+\alpha_{k}}\right\} & \text { for } a_{k} \leq b_{k}, \\
\phi_{\beta}=\binom{m}{\beta}-\binom{m}{\beta-1} &
\end{aligned}
$$

(see $[10,15])$. The properties of these matrices are cited in the following:

$$
\begin{align*}
& \sum_{\beta_{1} \beta_{2}} A_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, a_{1} a_{2}\right)}=I_{n_{a_{1} a_{2}}}, A_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, c_{1} c_{2}\right)} A_{\gamma_{1} \gamma_{2}}^{\#\left(c_{1} c_{2}, b_{1} b_{2}\right)}=\delta_{\beta_{1} \gamma_{1}} \delta_{\beta_{2} \gamma_{2}} A_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, b_{1} b_{2}\right)} \\
& \operatorname{rank}\left\{A_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, b_{1} b_{2}\right)}\right\}=\phi_{\beta_{1} \beta_{2}}, \tag{2.4}\\
& \sum_{a_{1} a_{2}} \sum_{\beta_{1} \beta_{2}} D_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, a_{1} a_{2}\right)}=I_{\nu\left(m_{1}, m_{2}\right)} \\
& D_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, c_{1} c_{2}\right)} D_{\gamma_{1} \gamma_{2}}^{\#\left(d_{1} d_{2}, b_{1} b_{2}\right)}=\delta_{c_{1} d_{1}} \delta_{c_{2} d_{2}} \delta_{\beta_{1} \gamma_{1}} \delta_{\beta_{2} \gamma_{2}} D_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, b_{1} b_{2}\right)} \\
& \operatorname{rank}\left\{D_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, b_{1} b_{2}\right)}\right\}=\phi_{\beta_{1} \beta_{2}}
\end{align*}
$$

(see [3]), where $\phi_{\beta_{1} \beta_{2}}=\phi_{\beta_{1}} \phi_{\beta_{2}}$ and $\delta_{p q}$ is the Kronecker delta.
Let \mathcal{A} be the algebra generated by the linear closure of the ordered association matrices $D_{\alpha_{1} \alpha_{2}}^{\left(a_{1} a_{2}, b_{1} b_{2}\right)}$, and it is denoted by $\left[D_{\alpha_{1} \alpha_{2}}^{\left(a_{1} a_{2}, b_{1} b_{2}\right)} \mid a_{1} a_{2}, b_{1} b_{2} \in S_{\alpha_{1} \alpha_{2}}\left(\alpha_{1} \alpha_{2} \in S^{*}\right)\right]$. Then from (2.2) and (2.3), we obtain $\mathcal{A}=\left[D_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, b_{1} b_{2}\right)} \mid a_{1} a_{2}, b_{1} b_{2} \in S_{\beta_{1} \beta_{2}}\left(\beta_{1} \beta_{2} \in S^{*}\right)\right]$. Note that \mathcal{A} is called the ETMDPB association algebra (see [3]). Using the properties of \mathcal{A}, the information matrix M_{T} is given by

$$
\begin{align*}
M_{T} & =\sum_{a_{1} a_{2}} \sum_{b_{1} b_{2}} \sum_{\alpha_{1} \alpha_{2}} \gamma_{\left|a_{1}-b_{1}\right|+2 \alpha_{1},\left|a_{2}-b_{2}\right|+2 \alpha_{2}} D_{\alpha_{1} \alpha_{2}}^{\left(a_{1} a_{2}, b_{1} b_{2}\right)} \tag{2.5}\\
& =\sum_{a_{1} a_{2}} \sum_{b_{1} b_{2}} \sum_{\beta_{1} \beta_{2}} \kappa_{\beta_{1} \beta_{2}}^{a_{1} a_{2}, b_{1} b_{2}} D_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, b_{1} b_{2}\right)}
\end{align*}
$$

where T is a $2^{m_{1}+m_{2}}$ - PBFF design derived from an $\operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$, and the relationships between $\gamma_{i_{1}, i_{2}}$ and $\lambda_{j_{1}, j_{2}}$, and $\kappa_{\beta_{1} \beta_{2}}^{a_{1} a_{2}, b_{1} b_{2}}$ and $\gamma_{i_{1}, i_{2}}$ are given by

$$
\begin{align*}
& \gamma_{i_{1}, i_{2}}=\sum_{j_{1}, j_{2}}\left[\sum_{p_{1}, p_{2}}\left\{\prod_{k=1}^{2}(-1)^{p_{k}}\binom{i_{k}}{p_{k}}\binom{m_{k}-i_{k}}{j_{k}-i_{k}+p_{k}}\right\}\right] \lambda_{j_{1}, j_{2}}, \tag{2.6}\\
& \kappa_{\beta_{1} \beta_{2}}^{a_{1} a_{2}, b_{1} b_{2}}=\sum_{\alpha_{1} \alpha_{2}} z_{\beta_{1} \beta_{2} \alpha_{1} \alpha_{2}}^{\left(a_{1} \alpha_{2}, b_{1} b_{2}\right)} \gamma_{\left|a_{1}-b_{1}\right|+2 \alpha_{1},\left|a_{2}-b_{2}\right|+2 \alpha_{2},},
\end{align*}
$$

respectively. Thus from the properties of the algebra \mathcal{A}, the information matrix M_{T} is isomorphic to $\left\|\kappa_{\beta_{1} \beta_{2}}^{a_{1} a_{2}, b_{1} b_{2}}\right\|\left(=K_{\beta_{1} \beta_{2}}\right.$, say) of order 6 for $\beta_{1} \beta_{2}=00$, of order 3 (if $m_{1} \geq 3$) (or 2 (if $m_{1}=2$)) for $\beta_{1} \beta_{2}=10$, of order 3 (if $m_{2} \geq 3$) (or 2 (if $m_{2}=2$)) for $\beta_{1} \beta_{2}=01$, of order 1 (if $m_{1} \geq 4$) for $\beta_{1} \beta_{2}=20$, of order 1 (if $m_{2} \geq 4$) for $\beta_{1} \beta_{2}=02$ and of order 1 for $\beta_{1} \beta_{2}=11$ with multiplicities $\phi_{00}, \phi_{10}, \phi_{01}, \phi_{20}, \phi_{02}$ and ϕ_{11}, respectively (see [3]). Note that $K_{\beta_{1} \beta_{2}}$ are called the irreducible representations of M_{T} with respect to the ideals $\left[D_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, b_{1} b_{2}\right)} \mid a_{1} a_{2}, b_{1} b_{2} \in S_{\beta_{1} \beta_{2}}\right]\left(=\mathcal{A}_{\beta_{1} \beta_{2}}\right.$, say) of \mathcal{A} for $\beta_{1} \beta_{2} \in S^{*}$. From (2.6), we have

$$
\begin{equation*}
K_{\beta_{1} \beta_{2}}=\left(D_{\beta_{1} \beta_{2}} F_{\beta_{1} \beta_{2}} \Lambda_{\beta_{1} \beta_{2}}\right)\left(D_{\beta_{1} \beta_{2}} F_{\beta_{1} \beta_{2}} \Lambda_{\beta_{1} \beta_{2}}\right)^{\prime} \tag{2.7}
\end{equation*}
$$

(see [7]), where

$$
\begin{aligned}
& D_{00}=\operatorname{diag}\left[1 ;-1 / \sqrt{m_{1}} ;-1 / \sqrt{m_{2}} ; 1 / \sqrt{2 m_{1}\left(m_{1}-1\right)} ; 1 / \sqrt{2 m_{2}\left(m_{2}-1\right)} ; 1 / \sqrt{m_{1} m_{2}}\right], \\
& D_{10}
\end{aligned}=\left\{\begin{array}{ll}
\operatorname{diag}\left[2 ;-2 / \sqrt{m_{2}}\right] & \text { if } m_{1}=2, \\
\operatorname{diag}\left[2 ;-2 / \sqrt{m_{1}-2} ;-2 / \sqrt{m_{2}}\right] & \text { if } m_{1} \geq 3,
\end{array}, \begin{array}{ll}
\operatorname{diag}\left[2 ;-2 / \sqrt{m_{1}}\right] & \text { if } m_{2}=2, \\
\operatorname{diag}\left[2 ;-2 / \sqrt{m_{2}-2} ;-2 / \sqrt{m_{1}}\right] & \text { if } m_{2} \geq 3,
\end{array}, \begin{array}{lll}
D_{01} & =D_{02}=\left\{\begin{array}{ll}
\text { vanishes } & \text { if } m_{2}=2,3, \\
2^{2} & \text { if } m_{2} \geq 4,
\end{array} \quad D_{11}=2^{2},\right. \\
2^{2} & \text { if } m_{1} \geq 4,
\end{array},\right.
$$

the column vectors of F_{00} corresponding to $\lambda_{a, x}\left(0 \leq a \leq m_{1} ; 0 \leq x \leq m_{2}\right)$, of F_{10} corresponding to $\lambda_{b, y}\left(1 \leq b \leq m_{1}-1 ; 0 \leq y \leq m_{2}\right)$, of F_{01} corresponding to $\lambda_{c, z}(0 \leq c \leq$ $m_{1} ; 1 \leq z \leq m_{2}-1$), of F_{20} (if $m_{1} \geq 4$) corresponding to $\lambda_{d, u}\left(2 \leq d \leq m_{1}-2 ; 0 \leq u \leq m_{2}\right.$), of F_{02} (if $m_{2} \geq 4$) corresponding to $\lambda_{e, v}\left(0 \leq e \leq m_{1} ; 2 \leq v \leq m_{2}-2\right)$ and of F_{11} corresponding to $\lambda_{f, w}\left(1 \leq f \leq m_{1}-1 ; 1 \leq w \leq m_{2}-1\right)$ are given by $\sqrt{\lambda_{a, x}}\left(1, m_{1}-\right.$ $\left.2 a, m_{2}-2 x,\left(m_{1}-2 a\right)^{2}-m_{1},\left(m_{2}-2 x\right)^{2}-m_{2},\left(m_{1}-2 a\right)\left(m_{2}-2 x\right)\right)^{\prime}, \sqrt{\lambda_{b, y}}\left(1, m_{1}-2 b, m_{2}-\right.$ $2 y)^{\prime}\left(\right.$ if $\left.m_{1} \geq 3\right)\left(\right.$ or $\sqrt{\lambda_{1, y}}\left(1, m_{2}-2 y\right)^{\prime}\left(\right.$ if $\left.m_{1}=2\right)$), $\sqrt{\lambda_{c, z}}\left(1, m_{2}-2 z, m_{1}-2 c\right)^{\prime}$ (if $m_{2} \geq$ 3) (or $\sqrt{\lambda_{c, 1}}\left(1, m_{1}-2 c\right)^{\prime}\left(\right.$ if $\left.m_{2}=2\right)$), $\sqrt{\lambda_{d, u}}, \sqrt{\lambda_{e, v}}$ and $\sqrt{\lambda_{f, w}}$, respectively, and the diagonal elements of $\Lambda_{\beta_{1} \beta_{2}}\left(\beta_{1} \beta_{2} \in S^{*}\right)$ corresponding to $\lambda_{g, s}\left(\beta_{1} \leq g \leq m_{1}-\beta_{1} ; \beta_{2} \leq\right.$ $s \leq m_{2}-\beta_{2}$) are given by $\sqrt{\binom{m_{1}-2 \beta_{1}}{g-\beta_{1}}\binom{m_{2}-2 \beta_{2}}{s-\beta_{2}}}\left((\right.$ i $)$ if $\beta_{1}=\beta_{2}=0$, then $g=a$ and $s=x$, (ii) if $\beta_{1}=1$ and $\beta_{2}=0$, then $g=b$ and $s=y$, (iii) if $\beta_{1}=0$ and $\beta_{2}=1$, then $g=c$ and $s=z$, (iv) if $m_{1} \geq 4, \beta_{1}=2$ and $\beta_{2}=0$, then $g=d$ and $s=u$, (v) if $m_{2} \geq 4, \beta_{1}=0$ and $\beta_{2}=2$, then $g=e$ and $s=v$, and (vi) if $\beta_{1}=\beta_{2}=1$, then $g=f$ and $s=w$) and the off-diagonal elements of them are all zero. Note that F_{00} is of size $6 \times\left\{\left(m_{1}+1\right)\left(m_{2}+1\right)\right\}$, F_{10} is of size $3 \times\left\{\left(m_{1}-1\right)\left(m_{2}+1\right)\right\}$ (if $\left.m_{1} \geq 3\right)\left(\right.$ or $2 \times\left(m_{2}+1\right)\left(\right.$ if $\left.\left.m_{1}=2\right)\right), F_{01}$ is of size $3 \times\left\{\left(m_{1}+1\right)\left(m_{2}-1\right)\right\}$ (if $m_{2} \geq 3$) (or $2 \times\left(m_{1}+1\right)$ (if $\left.m_{2}=2\right)$), F_{20} (if $\left.m_{1} \geq 4\right)$ is of size $1 \times\left\{\left(m_{1}-3\right)\left(m_{2}+1\right)\right\}, F_{02}\left(\right.$ if $\left.m_{2} \geq 4\right)$ is of size $1 \times\left\{\left(m_{1}+1\right)\left(m_{2}-3\right)\right\}$
and F_{11} is of size $1 \times\left\{\left(m_{1}-1\right)\left(m_{2}-1\right)\right\}$, and $\Lambda_{\beta_{1} \beta_{2}}$ are of order $\left(m_{1}+1-2 \beta_{1}\right)\left(m_{2}+1-2 \beta_{2}\right)$.
Remark 2.1. From (2.5), the $a_{1} a_{2}$-th row block and the $b_{1} b_{2}$-th column block of $D_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, b_{1} b_{2}\right)}$ are concerned with $\boldsymbol{\theta}_{a_{1} a_{2}}$ and $\boldsymbol{\theta}_{b_{1} b_{2}}$, respectively. Thus from (2.7), the first, second, third, fourth, fifth and last rows of F_{00} correspond to $\boldsymbol{\theta}_{00}, \boldsymbol{\theta}_{10}, \boldsymbol{\theta}_{01}, \boldsymbol{\theta}_{20}, \boldsymbol{\theta}_{02}$ and $\boldsymbol{\theta}_{11}$, respectively, the first, second (if $m_{1} \geq 3$) and last rows of F_{10} correspond to $\boldsymbol{\theta}_{10}, \boldsymbol{\theta}_{20}$ and $\boldsymbol{\theta}_{11}$, respectively, the first, second (if $m_{2} \geq 3$) and last rows of F_{01} correspond to $\boldsymbol{\theta}_{01}, \boldsymbol{\theta}_{02}$ and $\boldsymbol{\theta}_{11}$, respectively, and the rows of $F_{20}\left(\right.$ if $\left.m_{1} \geq 4\right), F_{02}\left(\right.$ if $\left.m_{2} \geq 4\right)$ and F_{11} corresponds to $\boldsymbol{\theta}_{20}, \boldsymbol{\theta}_{02}$ and $\boldsymbol{\theta}_{11}$, respectively.

It follows from the definitions of $D_{\beta_{1} \beta_{2}}, F_{\beta_{1} \beta_{2}}$ and $\Lambda_{\beta_{1} \beta_{2}}$ that $\operatorname{rank}\left\{K_{\beta_{1} \beta_{2}}\right\}$ $=\mathrm{r}-\operatorname{rank}\left\{F_{\beta_{1} \beta_{2}}\right\}$, where $\mathrm{r}-\mathrm{rank}\{A\}$ denotes the row rank of a matrix A.

Definition 2.1. Let $\left(T^{(1)} ; T^{(2)}\right)(=T$, say $)$ be an $\operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$, where $T^{(k)}$ are of size $N \times m_{k}(k=1,2)$, and further let $\tilde{T}=\left(\bar{T}^{(1)} ; T^{(2)}\right), \breve{T}=\left(T^{(1)} ; \bar{T}^{(2)}\right)$ and $\bar{T}=\left(\bar{T}^{(1)} ; \bar{T}^{(2)}\right)$, where $\bar{T}^{(k)}$ denotes the complement of $T^{(k)}$. Then \tilde{T}, \breve{T} and \bar{T} are called the former complementary array (FCA) of T, the latter complementary array (LCA) of T and the completely complementary array (CCA) of T, respectively.

Note that if T is an $\operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$, then \tilde{T}, \breve{T} and \bar{T} are the $\operatorname{SPBA}\left(m_{1}+\right.$ $\left.m_{2} ;\left\{\lambda_{m_{1}-i_{1}, i_{2}}\right\}\right), \operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, m_{2}-i_{2}}\right\}\right)$ and $\operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{m_{1}-i_{1}, m_{2}-i_{2}}\right\}\right)$, respectively. Let $M_{\tilde{T}}, M_{\breve{T}}$ and $M_{\bar{T}}$ be the information matrices associated with \tilde{T}, \breve{T} and \bar{T}, respectively, where T is an $\operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$. Further let $\tilde{K}_{\beta_{1} \beta_{2}}, \breve{K}_{\beta_{1} \beta_{2}}$ and $\bar{K}_{\beta_{1} \beta_{2}}$, respectively, denote the irreducible representations of $M_{\tilde{T}}, M_{\breve{T}}$ and $M_{\bar{T}}$ with respect to the ideals $\mathcal{A}_{\beta_{1} \beta_{2}}$ of the algebra \mathcal{A}. Then from (2.7), we can get

$$
\begin{align*}
\tilde{K}_{\beta_{1} \beta_{2}}=\tilde{\Delta}_{\beta_{1} \beta_{2}} K_{\beta_{1} \beta_{2}} \tilde{\Delta}_{\beta_{1} \beta_{2}}, \breve{K}_{\beta_{1} \beta_{2}} & =\breve{\Delta}_{\beta_{1} \beta_{2}} K_{\beta_{1} \beta_{2}} \breve{\Delta}_{\beta_{1} \beta_{2}}, \tag{2.8}\\
\bar{K}_{\beta_{1} \beta_{2}} & =\bar{\Delta}_{\beta_{1} \beta_{2}} K_{\beta_{1} \beta_{2}} \bar{\Delta}_{\beta_{1} \beta_{2}} \quad \text { for } \beta_{1} \beta_{2} \in S^{*}
\end{align*}
$$

(see [7]), where $\tilde{\Delta}_{00}=\operatorname{diag}[1 ;-1 ; 1 ; 1 ; 1 ;-1], \breve{\Delta}_{00}=\operatorname{diag}[1 ; 1 ;-1 ; 1 ; 1 ;-1], \bar{\Delta}_{00}=\operatorname{diag}[1 ;$ $-1 ;-1 ; 1 ; 1 ; 1], \quad \tilde{\Delta}_{10}=\operatorname{diag}[1 ;-1 ; 1]\left(\right.$ if $\left.m_{1} \geq 3\right)\left(\right.$ or $\operatorname{diag}[1 ; 1]\left(\right.$ if $\left.m_{1}=2\right)$), $\breve{\Delta}_{10}=$ $\operatorname{diag}[1 ; 1 ;-1]$ (if $\left.m_{1} \geq 3\right)\left(\operatorname{or} \operatorname{diag}[1 ;-1]\left(\right.\right.$ if $\left.m_{1}=2\right)$), $\bar{\Delta}_{10}=\operatorname{diag}[1 ;-1 ;-1]$ (if $m_{1} \geq 3$) (or $\operatorname{diag}[1 ;-1]$ (if $m_{1}=2$)), $\tilde{\Delta}_{01}=\operatorname{diag}[1 ; 1 ;-1]$ (if $m_{2} \geq 3$) (or $\operatorname{diag}[1 ;-1]$ (if $m_{2}=$ 2)), $\breve{\Delta}_{01}=\operatorname{diag}[1 ;-1 ; 1]$ (if $m_{2} \geq 3$) (or $\operatorname{diag}[1 ; 1]$ (if $m_{2}=2$)), $\bar{\Delta}_{01}=\operatorname{diag}[1 ;-1 ;-1]$ (if $\left.m_{2} \geq 3\right)\left(\right.$ or $\operatorname{diag}[1 ;-1]$ (if $\left.m_{2}=2\right)$), $\tilde{\Delta}_{20}=\breve{\Delta}_{20}=\bar{\Delta}_{20}=1$ (if $m_{1} \geq 4$) (or vanishes (if $m_{1}=2,3$)), $\tilde{\Delta}_{02}=\breve{\Delta}_{02}=\bar{\Delta}_{02}=1$ (if $m_{2} \geq 4$) (or vanishes (if $m_{2}=2,3$)) and $\tilde{\Delta}_{11}=$ $\breve{\Delta}_{11}=\bar{\Delta}_{11}=1$.

3 Estimable parametric functions Linear parametric functions $C \boldsymbol{\Theta}$ of $\boldsymbol{\Theta}$ are estimable for some matrix C of order $\nu\left(m_{1}, m_{2}\right)$ if and only if there exists a matrix X of order $\nu\left(m_{1}, m_{2}\right)$ such that $X M_{T}=C$ (e.g., [13]). In this section, we consider a $2^{m_{1}+m_{2}}$ PBFF design of resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$ derived from an $\operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$.

Since M_{T} belongs to the ETMDPB association algebra \mathcal{A}, we impose some restrictions on C and X such that

$$
\begin{aligned}
(3.1) C= & D_{00}^{\#(00,00)}+\left\{D_{00}^{\#(10,10)}+D_{10}^{\#(10,10)}\right\}+\left\{D_{00}^{\#(01,01)}+D_{01}^{\#(01,01)}\right\} \\
& +\left\{g_{00}^{20,20} D_{00}^{\#(20,20)}+g_{10}^{20,20} D_{10}^{\#(20,20)}\left(\text { if } m_{1} \geq 3\right)+g_{20}^{20,20} D_{20}^{\#(20,20)}\left(\text { if } m_{1} \geq 4\right)\right\} \\
& +\left\{g_{00}^{20,02} D_{00}^{\#(20,02)}+g_{00}^{02,20} D_{00}^{\#(02,20)}\right\} \\
& +\left\{g_{00}^{02,02} D_{00}^{\#(02,02)}+g_{01}^{02,02} D_{01}^{\#(02,02)}\left(\text { if } m_{2} \geq 3\right)+g_{02}^{02,02} D_{02}^{\#(02,02)}\left(\text { if } m_{2} \geq 4\right)\right\} \\
& +\left\{D_{00}^{\#(11,11)}+D_{10}^{\#(11,11)}+D_{01}^{\#(11,11)}+D_{11}^{\#(11,11)}\right\}, \\
X= & \sum_{a_{1} a_{2}} \sum_{b_{1} b_{2}} \sum_{\beta_{1} \beta_{2}} \chi_{\beta_{1} \beta_{2}}^{a_{1} a_{2}, b_{1} b_{2}} D_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, b_{1} b_{2}\right)},
\end{aligned}
$$

respectively, where $g_{\gamma_{1} \gamma_{2}}^{a_{1} a_{2}, b_{1} b_{2}}$ are some constants, and $\chi_{\beta_{1} \beta_{2}}^{a_{1} a_{2}, b_{1} b_{2}}$ are also some constants which depend on $\kappa_{\beta_{1} \beta_{2}}^{a_{1} a_{2} b_{1} b_{2}}$ and $g_{\beta_{1} \beta_{2}}^{a_{1} a_{2}, b_{1} b_{2}}$. It then follows from the properties of \mathcal{A} that the matrices X and C are isomorphic to $X_{\beta_{1} \beta_{2}}$ and $\Gamma_{\beta_{1} \beta_{2}}$ for $\beta_{1} \beta_{2} \in S^{*}$, respectively. Here

$$
\begin{aligned}
& X_{\beta_{1} \beta_{2}}=\left\|\chi_{\beta_{1} \beta_{2}}^{a_{1} a_{2}, b_{1} b_{2}}\right\|, \\
& \Gamma_{00}=\operatorname{diag}\left[I_{3} ;\left(\begin{array}{ll}
g_{00}^{20,20} & g_{00}^{20,02} \\
g_{00}^{02,20} & g_{00}^{02,02}
\end{array}\right) ; 1\right], \\
& \Gamma_{10}=\left\{\begin{array}{ll}
I_{2} & \text { if } m_{1}=2, \\
\operatorname{diag}\left[1 ; g_{10}^{20,20} ; 1\right] & \text { if } m_{1} \geq 3,
\end{array} \quad \Gamma_{01}= \begin{cases}I_{2} & \text { if } m_{2}=2 \\
\operatorname{diag}\left[1 ; g_{01}^{02,02} ; 1\right] & \text { if } m_{2} \geq 3\end{cases} \right. \\
& \Gamma_{20}=\left\{\begin{array}{ll}
\text { vanishes } & \text { if } m_{1}=2,3, \\
g_{20}^{20,20} & \text { if } m_{1} \geq 4,
\end{array} \quad \Gamma_{02}=\left\{\begin{array}{ll}
\text { vanishes } & \text { if } m_{2}=2,3, \\
g_{02}^{02,02} & \text { if } m_{2} \geq 4,
\end{array} \quad \Gamma_{11}=1\right.\right.
\end{aligned}
$$

Let $M_{T}^{*}=P^{\prime} M_{T} P, X^{*}=P^{\prime} X P, C^{*}=P^{\prime} C P$, and $\boldsymbol{\Theta}^{*}=P^{\prime} \boldsymbol{\Theta}$, where $P=$ $\operatorname{diag}\left[I_{1+m_{1}+m_{2}} ;\left(\begin{array}{ccc}0 & I_{\binom{m_{1}}{2}} & 0 \\ 0 & 0 & I_{\binom{m_{2}}{2}} \\ I_{m_{1} m_{2}} & 0 & 0\end{array}\right)\right]$. If there exists X such that $X M_{T}=C$, then there also exists X^{*} such that $X^{*} M_{T}^{*}=C^{*}$, and vice versa. Thus the estimability of $C \boldsymbol{\Theta}$ is equivalent to that of $C^{*} \boldsymbol{\Theta}^{*}$. The matrices M_{T}^{*}, X^{*} and C^{*} are isomorphic to $K_{\beta_{1} \beta_{2}}^{*}, X_{\beta_{1} \beta_{2}}^{*}$ and $\Gamma_{\beta_{1} \beta_{2}}^{*}$ for $\beta_{1} \beta_{2} \in S^{*}$, respectively. Here $K_{00}^{*}=P_{00}^{\prime} K_{00} P_{00}, K_{\gamma_{1} \gamma_{2}}^{*}=$ $P_{\gamma_{1} \gamma_{2}}^{\prime} K_{\gamma_{1} \gamma_{2}} P_{\gamma_{1} \gamma_{2}}, K_{\omega_{1} \omega_{2}}^{*}=K_{\omega_{1} \omega_{2}}, X_{00}^{*}=P_{00}^{\prime} X_{00} P_{00}, X_{\gamma_{1} \gamma_{2}}^{*}=P_{\gamma_{1} \gamma_{2}}^{\prime} X_{\gamma_{1} \gamma_{2}} P_{\gamma_{1} \gamma_{2}}, X_{\omega_{1} \omega_{2}}^{*}=$ $X_{\omega_{1} \omega_{2}}, \Gamma_{00}^{*}=P_{00}^{\prime} \Gamma_{00} P_{00}, \Gamma_{\gamma_{1} \gamma_{2}}^{*}=P_{\gamma_{1} \gamma_{2}}^{\prime} \Gamma_{\gamma_{1} \gamma_{2}} P_{\gamma_{1} \gamma_{2}}$ and $\Gamma_{\omega_{1} \omega_{2}}^{*}=\Gamma_{\omega_{1} \omega_{2}}$ for $\gamma_{1} \gamma_{2}=10$ (if $m_{1} \geq 3$), 01 (if $m_{2} \geq 3$), and $\omega_{1} \omega_{2}=10$ (if $m_{1}=2$), 01 (if $m_{2}=2$), 20 (if $m_{1} \geq 4$), 02 (if $m_{2} \geq 4$), 11, where $P_{00}=\operatorname{diag}\left[I_{3} ;\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)\right]$ and $P_{\gamma_{1} \gamma_{2}}=\operatorname{diag}\left[1 ;\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)\right]$. Then $X^{*} M_{T}^{*}=C^{*}$ is isomorphic to $X_{\beta_{1} \beta_{2}}^{*} K_{\beta_{1} \beta_{2}}^{*}=\Gamma_{\beta_{1} \beta_{2}}^{*}$ for $\beta_{1} \beta_{2} \in S^{*}$. Note that if $C \Theta$ is estimable (and hence $C^{*} \boldsymbol{\Theta}^{*}$ is also estimable), where C is given by (3.1), then a design is of resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$.

If $N \geq \nu\left(m_{1}, m_{2}\right)$, then there exists a $2^{m_{1}+m_{2}}-\mathrm{PBFF}$ design of resolution $\mathrm{R}(\Omega \mid \Omega)$, i.e., of resolution V (e.g., [3]). Thus in this paper, we would like to focus the attention on obtaining a $2^{m_{1}+m_{2}}$ - PBFF design of resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$ derived from an $\operatorname{SPBA}\left(m_{1}+\right.$ $\left.m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$ with $N<\nu\left(m_{1}, m_{2}\right)$. Since $N<\nu\left(m_{1}, m_{2}\right)$, the information matrix M_{T} is
singular, and hence at least one of $K_{\beta_{1} \beta_{2}}^{*}\left(\beta_{1} \beta_{2} \in S^{*}\right)$ is singular, which yields that at least one of $F_{\beta_{1} \beta_{2}}$ is not of full row rank. If $F_{\gamma_{1} \gamma_{2}}\left(\gamma_{1} \gamma_{2}=00,10,01,20\right.$ (if $m_{1} \geq 4$), 02 (if $m_{2} \geq$ 4)) is of full row rank (and hence $K_{\gamma_{1} \gamma_{2}}^{*}$ is of full rank), then in the matrix equation $X_{\gamma_{1} \gamma_{2}}^{*} K_{\gamma_{1} \gamma_{2}}^{*}=\Gamma_{\gamma_{1} \gamma_{2}}^{*}$, there always exists $X_{\gamma_{1} \gamma_{2}}^{*}$ such that $X_{\gamma_{1} \gamma_{2}}^{*}=\left(K_{\gamma_{1} \gamma_{2}}^{*}\right)^{-1}$. Hence $\Gamma_{\gamma_{1} \gamma_{2}}^{*}$ is the identity matrix. Thus if $F_{\gamma_{1} \gamma_{2}}$ is of full row rank, then without loss of generality, we can put $g_{\gamma_{1} \gamma_{2}}^{a_{1} a_{2}, b_{1} b_{2}}=1\left(\gamma_{1} \gamma_{2}=00,10\left(\right.\right.$ if $\left.m_{1} \geq 3\right), 01\left(\right.$ if $\left.m_{2} \geq 3\right), 20\left(\right.$ if $\left.m_{1} \geq 4\right), 02\left(\right.$ if $\left.m_{2} \geq 4\right)$) if $a_{1} a_{2}=b_{1} b_{2}$, and $g_{00}^{a_{1} a_{2}, b_{1} b_{2}}=0$ if $a_{1} a_{2} \neq b_{1} b_{2}$.

Theorem 3.1. Let T be a $2^{m_{1}+m_{2}}$-PBFF design of resolution $R(\{00,10,01,11\} \mid \Omega)$ derived from an $\operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$ with $N<\nu\left(m_{1}, m_{2}\right)$. Then we have that $\mathrm{r}-\mathrm{rank}\left\{F_{11}\right\}=1$, and hence $A_{11}^{\#(11,11)} \boldsymbol{\theta}_{11}$ is estimable, and furthermore that the following holds:
(I) If the matrix $F_{\beta_{1} \beta_{2}}$ is of full row rank, then $A_{\beta_{1} \beta_{2}}^{\#\left(a_{1} a_{2}, a_{1} a_{2}\right)} \boldsymbol{\theta}_{a_{1} a_{2}}$ are estimable for $a_{1} a_{2} \in$
$S_{\beta_{2}\left(\beta_{2}\right)}$ (A) ind $\beta_{1} \beta_{2} \in S_{\text {r-rank }}\left\{F_{00}^{*}\right\}=4$ and the fourth and fifth rows of F_{00} are zero, then $A_{00}^{\#\left(a_{1} a_{2}, a_{1} a_{2}\right)}$ $\times \boldsymbol{\theta}_{a_{1} a_{2}}\left(a_{1} a_{2}=00,10,01,11\right)$ are estimable, and
(B) if r-rank $\left\{F_{00}\right\}=5$ and the first three and last rows of F_{00} are linearly independent, then $A_{00}^{\#\left(a_{1} a_{2}, a_{1} a_{2}\right)} \boldsymbol{\theta}_{a_{1} a_{2}}\left(a_{1} a_{2}=00,10,01,11\right)$ are estimable, and moreover
(a) if the fifth row of F_{00} is zero, then $g_{00}^{20,20} A_{00}^{\#(20,20)} \boldsymbol{\theta}_{20}$ and $g_{00}^{02,20} A_{00}^{\#(02,20)} \boldsymbol{\theta}_{20}=$ $g_{00}^{02,20} A_{00}^{\#(02,20)}\left(A_{00}^{\#(20,20)} \boldsymbol{\theta}_{20}\right)$ are estimable,
(b) if the fourth row of F_{00} is zero, then $g_{00}^{02,02} A_{00}^{\#(02,02)} \boldsymbol{\theta}_{02}$ and $g_{00}^{20,02} A_{00}^{\#(20,02)} \boldsymbol{\theta}_{02}=$ $g_{00}^{20,02} A_{00}^{\#(20,02)}\left(A_{00}^{\#(02,02)} \boldsymbol{\theta}_{02}\right)$ are estimable, and
(c) if the fifth row of F_{00} equals $w_{00}(\neq 0)$ times the fourth, then

$$
\begin{aligned}
& g_{00}^{20,20} A_{00}^{\#(20,20)} \boldsymbol{\theta}_{20}+g_{00}^{20,02} A_{00}^{\#(20,02)} \boldsymbol{\theta}_{02}=g_{00}^{20,20}\left(A_{00}^{\#(20,20)} \boldsymbol{\theta}_{20}+w_{00}^{*} A_{00}^{\#(20,02)} \boldsymbol{\theta}_{02}\right) \\
& g_{00}^{02,20} A_{00}^{\#(02,20)} \boldsymbol{\theta}_{20}+g_{00}^{02,02} A_{00}^{\#(02,02)} \boldsymbol{\theta}_{02}
\end{aligned}
$$

$$
=g_{00}^{02,20} A_{00}^{\#(02,20)}\left(A_{00}^{\#(20,20)} \boldsymbol{\theta}_{20}+w_{00}^{*} A_{00}^{\#(20,02)} \boldsymbol{\theta}_{02}\right) \text { are estimable, where }
$$

$$
g_{00}^{a_{1} a_{2}, 02}=w_{00}^{*} g_{00}^{a_{1} a_{2}, 20}\left(a_{1} a_{2}=20,02\right) \text { and } w_{00}^{*}=\sqrt{m_{1}\left(m_{1}-1\right) /\left\{m_{2}\left(m_{2}-1\right)\right\}} w_{00},
$$

(ii) if $m_{1} \geq 3, \operatorname{r-rank}\left\{F_{10}\right\}=2$ and the second row of F_{10} is zero, then $A_{10}^{\#\left(b_{1} b_{2}, b_{1} b_{2}\right)}$ $\times \boldsymbol{\theta}_{b_{1} b_{2}}\left(b_{1} b_{2}=10,11\right)$ are estimable,
(iii) if $m_{2} \geq 3$, r-rank $\left\{F_{01}\right\}=2$ and the second row of F_{01} is zero, then $A_{01}^{\#\left(c_{1} c_{2}, c_{1} c_{2}\right)}$ $\times \boldsymbol{\theta}_{c_{1} c_{2}}\left(c_{1} c_{2}=01,11\right)$ are estimable.

Proof. From (2.4), (3.1), Remark 2.1 and Lemma A.1, the results can be easily proved.
Remark 3.1. It follows from Lemma A. 1 that in Theorem 3.1(II)(i)(B), since $g_{00}^{a_{1} a_{2}, b_{1} b_{2}}$ $\left(a_{1} a_{2}, b_{1} b_{2}=20,02\right)$ are arbitrary, without loss of generality, we can put $g_{00}^{20,20}=1$ and $g_{00}^{02,20}$ $\neq 0$ for (a), and $g_{00}^{02,02}=1$ and $g_{00}^{20,02} \neq 0$ for (b). Furthermore we define $g_{00}^{20,20}\left(=g_{00}^{20,20}(\alpha)\right.$, say) $=1$ if $\alpha=0,1 /\left(1+\left|w_{00}^{*}\right|\right)$ if $\alpha=1$ and $1 / \sqrt{1+\left(w_{00}^{*}\right)^{2}}$ if $\alpha=2$, and $g_{00}^{02,20} \neq 0$ for (c).

From the relations among the rows of $F_{\beta_{1} \beta_{2}}$, and applying Lemma A. 1 to the matrix equations $X_{\beta_{1} \beta_{2}}^{*} K_{\beta_{1} \beta_{2}}^{*}=\Gamma_{\beta_{1} \beta_{2}}^{*}$, we have the following:
Lemma 3.1. A necessary condition for T to be a $2^{m_{1}+m_{2}}-\mathrm{PBFF}$ design of resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$ derived from an $\operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$ with $N<\nu\left(m_{1}, m_{2}\right)$ is that r-rank $\left\{F_{11}\right\}=1$, and in addition
(a) $\operatorname{r-rank}\left\{F_{00}\right\}=4$ and the fourth and fifth rows of F_{00} are zero,
(b) $\operatorname{r-rank}\left\{F_{00}\right\}=5$ and the fourth row of F_{00} is zero, and furthermore
(i) $m_{2} \geq 3$, r-rank $\left\{F_{01}\right\}=2$ and the second row of F_{01} is zero, or
(ii) $m_{2} \geq 4$ and $\mathrm{r}-\mathrm{rank}\left\{F_{02}\right\}=0$,
(c) $\operatorname{r}-\operatorname{rank}\left\{F_{00}\right\}=5$ and the fifth row of F_{00} equals $w_{00}(\neq 0)$ times the fourth,
(d) $m_{1} \geq 3, \operatorname{r}-\operatorname{rank}\left\{F_{10}\right\}=2$ and the second row of F_{10} is zero, and furthermore
(i) $\mathrm{r}-\mathrm{rank}\left\{F_{00}\right\}=5$ and the fifth row of F_{00} is zero,
(ii) $m_{2} \geq 3, \operatorname{r}-\operatorname{rank}\left\{F_{01}\right\}=2$ and the second row of F_{01} is zero, or
(iii) $m_{2} \geq 4$ and $r-\operatorname{rank}\left\{F_{02}\right\}=0$, or
(e) $m_{1} \geq 4$ and $\mathrm{r}-\mathrm{rank}\left\{F_{20}\right\}=0$, and furthermore
(i) $\mathrm{r}-\mathrm{rank}\left\{F_{00}\right\}=5$ and the fifth row of F_{00} is zero,
(ii) $m_{2} \geq 3, \operatorname{r}-\operatorname{rank}\left\{F_{01}\right\}=2$ and the second row of F_{01} is zero, or
(iii) $m_{2} \geq 4$ and $\mathrm{r}-\mathrm{rank}\left\{F_{02}\right\}=0$.

In Lemma 3.1, it can be easily shown that there does not exist a $2^{m_{1}+m_{2}}$-PBFF design of resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$ derived from an $\operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$ with $N<$ $\nu\left(m_{1}, m_{2}\right)$ and $2 \leq m_{1}, m_{2} \leq 4$ satisfying the conditions (a)-(d) and (e)(i),(ii).

If $\left(T^{(1)} ; T^{(2)}\right)$ is an $\operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$, then $\left(T^{(2)} ; T^{(1)}\right)$ is also the $\operatorname{SPBA}\left(m_{2}+\right.$ $\left.m_{1} ;\left\{\lambda_{i_{1}, i_{2}}^{*}\right\}\right)$, where $\lambda_{i_{1}, i_{2}}^{*}=\lambda_{i_{2}, i_{1}}$. Thus if $\left(T^{(1)} ; T^{(2)}\right)$ derived from an $\operatorname{SPBA}\left(m_{1}+\right.$ $\left.m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$ is of resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$, then $\left(T^{(2)} ; T^{(1)}\right)$ is also of resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$, and hence we only consider the case $2 \leq m_{1} \leq m_{2}$.

Theorem 3.2. Let T be an $\operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$ with $N<\nu\left(m_{1}, m_{2}\right)$, where $2 \leq$ $m_{1} \leq m_{2} \leq 4$. Then T is a $2^{m_{1}+m_{2}}$-PBFF design of resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$ if and only if one of the following holds, or one of its FCA, LCA and CCA holds:
(I) When $m_{1}=2,3$ and $m_{1} \leq m_{2} \leq 4$, there does not exist a design of resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$,
(II) when $m_{1}=m_{2}=4(\nu(4,4)=37), \lambda_{1,1}=1$ and $\lambda_{a, 2}=\lambda_{1,3}=\lambda_{2, x}=\lambda_{3,1}=\lambda_{3,3}=$ 0 ($0 \leq a \leq 4 ; x=0,1,3,4$), and furthermore
(i) exactly three of $\left\{\lambda_{0,1}, \lambda_{0,3}, \lambda_{4,1}, \lambda_{4,3}\right\}$ are 1 , exactly two of $\left\{\lambda_{1,0}, \lambda_{1,4}, \lambda_{3,0}, \lambda_{3,4}\right\}$ except for $\left\{\lambda_{1,0}, \lambda_{1,4}\right\}$ are 1 and $\lambda_{0,0}=\lambda_{0,4}=\lambda_{4,0}=\lambda_{4,4}=0$, or
(ii) (a) exactly two of $\left\{\lambda_{0,1}, \lambda_{0,3}, \lambda_{4,1}, \lambda_{4,3}\right\}$ except for $\left\{\lambda_{0,1}, \lambda_{4,1}\right\}$, $\left\{\lambda_{0,3}, \lambda_{4,1}\right\}$ and $\left\{\lambda_{0,3}\right.$, $\left.\lambda_{4,3}\right\}$ are 1 , and moreover
(1) exactly three of $\left\{\lambda_{1,0}, \lambda_{1,4}, \lambda_{3,0}, \lambda_{3,4}\right\}$ are 1 and $\lambda_{0,0}=\lambda_{0,4}=\lambda_{4,0}=\lambda_{4,4}=0$, or
(2) exactly two of $\left\{\lambda_{1,0}, \lambda_{1,4}, \lambda_{3,0}, \lambda_{3,4}\right\}$ except for $\left\{\lambda_{1,0}, \lambda_{1,4}\right\}$ are 1 and $1 \leq \lambda_{0,0}+$ $\lambda_{0,4}+\lambda_{4,0}+\lambda_{4,4} \leq 4$,
(b) $\lambda_{0,3}=\lambda_{4,1}=1$ and $\lambda_{0,1}=\lambda_{4,3}=0$, and moreover
(1) exactly three of $\left\{\lambda_{1,0}, \lambda_{1,4}, \lambda_{3,0}, \lambda_{3,4}\right\}$ are 1 and $\lambda_{0,0}=\lambda_{0,4}=\lambda_{4,0}=\lambda_{4,4}=0$,
(2) exactly two of $\left\{\lambda_{1,0}, \lambda_{1,4}, \lambda_{3,0}, \lambda_{3,4}\right\}$ except for $\left\{\lambda_{1,0}, \lambda_{1,4}\right\}$ and $\left\{\lambda_{3,0}, \lambda_{3,4}\right\}$ are 1 and $1 \leq \lambda_{0,0}+\lambda_{0,4}+\lambda_{4,0}+\lambda_{4,4} \leq 4$, or
(3) $\lambda_{3,0}=\lambda_{3,4}=1,1 \leq \lambda_{0,0}+\lambda_{4,0}+\lambda_{4,4}, \quad \lambda_{0,0}+\lambda_{0,4}+\lambda_{4,0}+\lambda_{4,4} \leq 4$ and $\lambda_{1,0}=\lambda_{1,4}=0$, or
(c) $\lambda_{0,3}=\lambda_{4,3}=1$ and $\lambda_{0,1}=\lambda_{4,1}=0$, and moreover
(1) exactly three of $\left\{\lambda_{1,0}, \lambda_{1,4}, \lambda_{3,0}, \lambda_{3,4}\right\}$ are 1 and $\lambda_{0,0}=\lambda_{0,4}=\lambda_{4,0}=\lambda_{4,4}=0$,
(2) exactly two of $\left\{\lambda_{1,0}, \lambda_{1,4}, \lambda_{3,0}, \lambda_{3,4}\right\}$ except for $\left\{\lambda_{1,0}, \lambda_{1,4}\right\}$ and $\left\{\lambda_{1,4}, \lambda_{3,0}\right\}$ are 1 and $1 \leq \lambda_{0,0}+\lambda_{0,4}+\lambda_{4,0}+\lambda_{4,4} \leq 4$, or
(3) $\lambda_{1,4}=\lambda_{3,0}=1,1 \leq \lambda_{0,0}+\lambda_{0,4}+\lambda_{4,4}, \quad \lambda_{0,0}+\lambda_{0,4}+\lambda_{4,0}+\lambda_{4,4} \leq 4$ and $\lambda_{1,0}=\lambda_{3,4}=0$.

Proof. Checking the sufficiency of Lemma 3.1 for given indices $\lambda_{i_{1}, i_{2}}$, the results can be easily obtained.

Remark 3.2. In Theorem 3.2, the matrices $F_{\gamma_{1} \gamma_{2}}\left(\gamma_{1} \gamma_{2}=00,10,01,11\right)$ are of full row rank and $\operatorname{r}-\operatorname{rank}\left\{F_{20}\right\}=\operatorname{r-rank}\left\{F_{02}\right\}=0$. Furthermore we have $N=36$ for (II)(i), (ii)(a)(1), (b)(1), (c)(1), and $33 \leq N \leq 36$ for (II)(ii)(a)(2), (b)(2), (3), (c)(2), (3).

Example 3.1. Let T be the $\operatorname{SPBA}\left(m_{1}+m_{2}=4+4 ;\left\{\lambda_{0,0}=\lambda_{0,3}=\lambda_{1,1}=\lambda_{3,0}=\lambda_{3,4}=\right.\right.$ $\left.\left.\lambda_{4,3}=1, \lambda_{j_{1}, j_{2}}=0\left(j_{1} j_{2} \neq 00,03,11,30,34,43\right)\right\}\right)$, which is GA-optimal as in Table 4.1 of Section 4. Then T is given by

$$
T^{\prime}=\left(\begin{array}{lllllllllllllllllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

which yields that

$$
\begin{aligned}
F_{00} & =\left(\begin{array}{rrrrrrrrrrrrrrrrr}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
4 & 0 & 0 & 4 & 0 & 0 & 2 & 0 & 0 & -2 & 0 & 0 & -2 & 0 & 0 & -4 & 0 \\
4 & 0 & 0 & -2 & 0 & 0 & 2 & 0 & \cdots & 0 & 4 & 0 & \cdots & 0 & -4 & 0 & \cdots \\
0 & -2 & 0 \\
12 & 0 & 0 & 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 12 & 0 \\
12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 12 & 0 & 0 & 12 & 0 & 0 & 0 & 0 \\
16 & 0 & 0 & -8 & 0 & 0 & 4 & 0 & 0 & -8 & 0 & 0 & 8 & 0 & 0 & 8 & 0
\end{array}\right)(6 \times 25), \\
F_{10} & =\left(\begin{array}{rrrrrrrrr}
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 2 & 0 & \cdots & \cdots & 0 & -2 & 0 & \cdots \\
0 & 2 & 0 & 0 & 4 & 0 & 0 & -4
\end{array}\right)(3 \times 15), \\
F_{01} & =\left(\begin{array}{rrrrrrrrr}
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & -2 & 2 & 0 & \cdots & 0 & -2 \\
0 & 0 & 4 & 4 & 0 & 0 & -4
\end{array}\right)(3 \times 15),
\end{aligned}
$$

$$
F_{20}=\boldsymbol{O}(1 \times 5), \quad F_{02}=\boldsymbol{O}(1 \times 5), \quad F_{11}=\left(\begin{array}{lll}
1 & 0 & \cdots
\end{array}\right)(1 \times 9)
$$

Thus the matrices $F_{\beta_{1} \beta_{2}}\left(\beta_{1} \beta_{2}=00,10,01,11\right)$ are of full row rank, and r-rank $\left\{F_{20}\right\}$ $=\mathrm{r}-\mathrm{rank}\left\{F_{02}\right\}=0$. Hence from $(2.4), A_{00}^{\#(00,00)} \boldsymbol{\theta}_{00}$, i.e., $\boldsymbol{\theta}_{00}, A_{00}^{\#(10,10)} \boldsymbol{\theta}_{00}$ and $A_{10}^{\#(10,10)} \boldsymbol{\theta}_{10}$, i.e., $\boldsymbol{\theta}_{10}, A_{00}^{\#(01,01)} \boldsymbol{\theta}_{01}$ and $A_{01}^{\#(01,01)} \boldsymbol{\theta}_{01}$, i.e., $\boldsymbol{\theta}_{01}, A_{00}^{\#(20,20)} \boldsymbol{\theta}_{20}$ and $A_{10}^{\#(20,20)} \boldsymbol{\theta}_{20}, A_{00}^{\#(02,02)} \boldsymbol{\theta}_{02}$ and $A_{01}^{\#(02,02)} \boldsymbol{\theta}_{02}, A_{00}^{\#(11,11)} \boldsymbol{\theta}_{11}, A_{10}^{\#(11,11)} \boldsymbol{\theta}_{11}, A_{01}^{\#(11,11)} \boldsymbol{\theta}_{11}$ and $A_{11}^{\#(11,11)} \boldsymbol{\theta}_{11}$, i.e., $\boldsymbol{\theta}_{11}$ are estimable, but $A_{20}^{\#(20,20)} \boldsymbol{\theta}_{20}$ and $A_{02}^{\#(02,02)} \boldsymbol{\theta}_{02}$ are not estimable. Therefore T is of resolution $R(\{00,10,01,11\} \mid \Omega)$.

4 GA-optimal designs In this section, we present GA-optimal $2^{m_{1}+m_{2}}$-PBFF designs of resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$ derived from $\operatorname{SPBAs}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$ with $N<\nu\left(m_{1}, m_{2}\right)$, where $2 \leq m_{1} \leq m_{2} \leq 4$. Since $\boldsymbol{\Theta}^{*}=P^{\prime} \boldsymbol{\Theta}$ and $C^{*}=P^{\prime} C P$, where P is the permutation matrix given in the previous section, $C^{*} \boldsymbol{\Theta}^{*}$ is estimable if and only if $C \boldsymbol{\Theta}$ is estimable. Thus if $C \boldsymbol{\Theta}$ is estimable (and hence there exists a matrix X such that $X M_{T}=C$), then its unbiased estimator is given by $C \hat{\boldsymbol{\Theta}}$, where $\hat{\boldsymbol{\Theta}}$ is a solution of the equations (2.1), and furthermore $\operatorname{Var}[C \hat{\boldsymbol{\Theta}}]=\sigma^{2} X M_{T} X^{\prime}$. Here $\operatorname{Var}[\boldsymbol{y}]$ denotes the variance-covariance matrix of a random vector \boldsymbol{y}. By use of the algebraic structure of the ETMDPB association scheme, $X M_{T} X^{\prime}$ is isomorphic to $X_{\beta_{1} \beta_{2}} K_{\beta_{1} \beta_{2}} X_{\beta_{1} \beta_{2}}^{\prime}$ for $\beta_{1} \beta_{2} \in S^{*}$.

Let $\sigma^{2} V_{T}$ be the variance-covariance matrix of the linearly independent estimators in $C \hat{\boldsymbol{\Theta}}$. Then from Lemma A.2, we have the following:

Lemma 4.1. Let T be a $2^{m_{1}+m_{2}}$-PBFF design of resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$ derived from an $\operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$ with $N<\nu\left(m_{1}, m_{2}\right)$. Then the matrix $V_{T}\left(=V_{T}(\alpha)\right.$, say $)$ is isomorphic to $V_{\beta_{1} \beta_{2}}(\alpha)\left(\beta_{1} \beta_{2} \in S^{*}\right)$ for $0 \leq \alpha \leq 2$, where

$$
\begin{aligned}
& V_{\beta_{1} \beta_{2}}(\alpha)=\left(K_{\beta_{1} \beta_{2}}\right)^{-1} \quad \text { if } F_{\beta_{1} \beta_{2}} \text { is of full row rank, } \\
& V_{00}(\alpha)=\left\{\begin{array}{l}
\left(K_{00}^{a}\right)^{-1} \\
\quad \text { if r-rank }\left\{F_{00}\right\}=4 \text { and the fourth and fifth rows of } F_{00} \text { are } \\
\text { zero, } \\
\left(K_{00}^{b}\right)^{-1} \\
\left(K_{00}^{c}\right)^{-1} \\
\text { if r-rank }\left\{F_{00}\right\}=5 \text { and the fifth row of } F_{00} \text { is zero, } \\
\left(\begin{array}{ccc}
I_{3} & 0 & 0 \\
0 & g_{00}^{20,20}(\alpha) & 0 \\
0 & 0 & 1
\end{array}\right)\left(K_{00}^{b}\right)^{-1}\left(\begin{array}{ccc}
I_{3} & 0 & 0 \\
0 & g_{00}^{20,20}(\alpha) & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array}\right. \\
& \text { if r-rank }\left\{F_{00}\right\}=5 \text { and the fifth row of } F_{00} \text { equals } w_{00}(\neq 0) \\
& \text { times the fourth, } \\
& V_{10}(\alpha)=\left(K_{10}^{a}\right)^{-1} \quad \text { if } m_{1} \geq 3, \operatorname{r-rank}\left\{F_{10}\right\}=2 \text { and the second row of } F_{10} \text { is } \\
& \text { zero, } \\
& V_{01}(\alpha)=\left(K_{01}^{a}\right)^{-1} \quad \text { if } m_{2} \geq 3, \operatorname{r-rank}\left\{F_{01}\right\}=2 \text { and the second row of } F_{01} \text { is } \\
& \text { zero, }
\end{aligned}
$$

$$
\begin{aligned}
& V_{20}(\alpha)= \begin{cases}0 & \text { if } m_{1} \geq 4 \text { and } r-\operatorname{rank}\left\{F_{20}\right\}=0, \\
\text { vanishes } & \text { if } m_{1}=2,3,\end{cases} \\
& V_{02}(\alpha)= \begin{cases}0 & \text { if } m_{2} \geq 4 \text { and } \mathrm{r}-\mathrm{rank}\left\{F_{02}\right\}=0, \\
\text { vanishes } & \text { if } m_{2}=2,3 .\end{cases}
\end{aligned}
$$

Here K_{00}^{a}, K_{00}^{b} and K_{00}^{c} are the $4 \times 4,5 \times 5$ and 5×5 submatrices of K_{00} corresponding to the first three, and furthermore the last, the fourth and last, and the fifth and last rows and columns, respectively, and both K_{10}^{a} and K_{01}^{a} are, respectively, the 2×2 submatrices of K_{10} and of K_{01} corresponding to the first and last rows and columns, and $g_{00}^{20,20}(\alpha)$ for $0 \leq \alpha \leq 2$ are given in Remark 3.1.

From Lemma 4.1, the following holds:
Theorem 4.1. Let T be a $2^{m_{1}+m_{2}}$-PBFF design of resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$ derived from an $\operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$ with N assemblies, where $N<\nu\left(m_{1}, m_{2}\right)$. Then we get

$$
\begin{aligned}
\operatorname{tr}\left\{V_{T}(\alpha)\right\}= & \phi_{00} \operatorname{tr}\left\{V_{00}(\alpha)\right\}+\phi_{10} \operatorname{tr}\left\{V_{10}(\alpha)\right\}+\phi_{01} \operatorname{tr}\left\{V_{01}(\alpha)\right\} \\
& +\phi_{20} \operatorname{tr}\left\{V_{20}(\alpha)\right\}\left(\text { if } m_{1} \geq 4\right)+\phi_{02} \operatorname{tr}\left\{V_{02}(\alpha)\right\}\left(\text { if } m_{2} \geq 4\right)+\phi_{11} \operatorname{tr}\left\{V_{11}(\alpha)\right\} \\
& \text { for } 0 \leq \alpha \leq 2 .
\end{aligned}
$$

Remark 4.1. As shown in Section 3, if $\left(T^{(1)} ; T^{(2)}\right)\left(=T\right.$, say) is a $2^{m_{1}+m_{2}}$-PBFF design of resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$, then $\left(T^{(2)} ; T^{(1)}\right)\left(=T^{*}\right.$, say) is also the $2^{m_{2}+m_{1}}$ PBFF design of resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$. Thus we have $\operatorname{tr}\left\{V_{T}(\alpha)\right\}=\operatorname{tr}\left\{V_{T^{*}}(\alpha)\right\}$ for $0 \leq \alpha \leq 2$.

As a generalization of the A-optimality criterion, Kuwada et al. [6] introduced the GAoptimality criterion for selecting a design. For resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$ designs, we recall the definition of GA_{α}-optimality criteria:

Definition 4.1. Let T be a $2^{m_{1}+m_{2}}$-PBFF design of resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$ derived from an $\operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$ with N assemblies, where $N<\nu\left(m_{1}, m_{2}\right)$. If $\operatorname{tr}\left\{V_{T}(\alpha)\right\} \leq \operatorname{tr}\left\{V_{T^{\star}}(\alpha)\right\}$ for any T^{\star}, which is a resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$ design derived from an $\operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, i_{2}}^{\star}\right\}\right)$ with the same number of assemblies, then T is said to be GA_{α}-optimal for $0 \leq \alpha \leq 2$.

The GA_{1} - and GA_{2}-optimality criteria are suitable for comparison of designs in the sense that they reflect the confounding (or aliasing) structure of the parametric vectors (see [8]). Using Theorems 3.2 and 4.1, we can obtain GA_{α}-optimal 2^{4+4}-PBFF designs of resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$ derived from $\operatorname{SPBAs}\left(4+4 ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$ with $N<\nu(4,4)(=37)$, which are given by Table 4.1. In this table, from Remark 3.2 and Lemma 4.1, we have $33 \leq N \leq 36$, and $V_{T}(0)=V_{T}(1)=V_{T}(2)$. Furthermore GA_{α}-optimal designs for each N except for $N=36$ are derived from the same SPBAs for $0 \leq \alpha \leq 2$. Note that in Table 4.1,
$\boldsymbol{\lambda}^{\prime}=\left(\lambda_{0,0}, \lambda_{0,1}, \ldots, \lambda_{0,4}, \lambda_{1,0}, \ldots, \lambda_{1,4}, \ldots, \lambda_{4,0}, \ldots, \lambda_{4,4}\right)$, and the number (II)(ii)(c)(2) of the last column corresponds to Theorem 3.2 (II)(ii)(c)(2). Moreover from (2.8), if a resolution $\mathrm{R}(\{00,10,01,11\} \mid \Omega)$ design derived from an $\operatorname{SPBA}\left(m_{1}+m_{2} ;\left\{\lambda_{i_{1}, i_{2}}\right\}\right)$ is $\mathrm{GA}_{\alpha^{-}}$ optimal for $0 \leq \alpha \leq 2$, then the designs derived from its FCA, LCA and/or CCA are also GA_{α}-optimal.

Note that GA-optimal $2^{m_{1}+m_{2}}$-PBFF designs with (A) $\operatorname{det}\left(K_{\gamma_{1} \gamma_{2}}\right) \neq 0\left(\gamma_{1} \gamma_{2}=00,10,01\right.$, 20 (if $m_{1} \geq 4$), 02 (if $m_{2} \geq 4$)) and $K_{11}=0$ for $4 \leq m_{1}+m_{2} \leq 6$, and (B) $\operatorname{det}\left(K_{\gamma_{1} \gamma_{2}}\right) \neq$ $0\left(\gamma_{1} \gamma_{2}=00,10,01\right)$, and furthermore (a) $K_{20} \neq 0$ (if $m_{1} \geq 4$) or vanishes ($m_{1}=2,3$) and $K_{02}=K_{11}=0$ for $2 \leq m_{1} \leq 4$ and $m_{2}=4$, and (b) $K_{20}=K_{02}=K_{11}=0$ for $m_{1}=m_{2}=4$ were obtained by Kuwada [2] and Kuwada and Matsuura [5], respectively, where $\operatorname{det}(A)$ denotes the determinant of a matrix A. Moreover GA_{α}-optimal $2^{m_{1}+m_{2}}-\mathrm{PBFF}$ designs of resolutions $\mathrm{R}(\{00,10,01,20,02\} \mid \Omega)$ and $\mathrm{R}(\{00,10,01,20,11\} \mid \Omega)$, and of resolution $\mathrm{R}(\{00,10,01,20\} \mid \Omega)$ with $N<\nu\left(m_{1}, m_{2}\right)$ and $2 \leq m_{1}, m_{2} \leq 4$ have been obtained by Kuwada et al. [7, 8], respectively.

Table 4.1. $\quad \mathrm{GA}_{\alpha}$-optimal 2^{4+4}-PBFF designs.

N	$\boldsymbol{\lambda}^{\prime}$		$\operatorname{tr}\left\{V_{T}(0)\right\}$	$\operatorname{tr}\left\{V_{T}(1)\right\}$	$\operatorname{tr}\left\{V_{T}(2)\right\}$	Theorem
33	10010	01000	00000	1000100010	1.48337	1.48337
34	20010	01000	00000	10001	00010	1.43209
35	30010	01000	00000	1000100010	1.43209	1.43209
36	30011	01000	00000	1000100010	1.40511	(II)(ii)(c)(ii)(c)(2)
	30010	01000	00000	10001	10010	1.41500

Appendix Matrix equation Consider a matrix equation $Z L=H$ with a variable matrix Z of order n, where $L=\left\|L_{i j}\right\|$ and $H=\left\|H_{i j}\right\|(1 \leq i, j \leq 3)$ are the positive semidefinite matrix of order n with $\operatorname{rank}\{L\}=\operatorname{rank}\left\{\left(\begin{array}{ll}L_{11} & L_{12} \\ L_{21} & L_{22}\end{array}\right)\right\}=n_{1}+n_{2}(\geq 1)$ and a matrix of order n with $H_{11}=I_{n_{1}}, H_{12}=H_{21}^{\prime}=O_{n_{1} \times n_{2}}$ and $H_{13}=H_{31}^{\prime}=O_{n_{1} \times n_{3}}$, respectively. Here $L_{i j}$ and $H_{i j}$ are of size $n_{i} \times n_{j}, n_{1}+n_{2}+n_{3}=n$, and $O_{p \times q}$ is the null matrix of size $p \times q$. The matrix equation $Z L=H$ has a solution if and only if $\operatorname{rank}\left\{L^{\prime}\right\}=\operatorname{rank}\left\{\left(L^{\prime} ; H^{\prime}\right)\right\}$. Thus we have the following (see [1]):

Lemma A.1. A matrix equation $Z L=H$ has a solution, where Z is a variable matrix of order n, if and only if
(I) $n_{3}=0$, where $H_{22}\left(\right.$ if $\left.n_{2} \geq 1\right)$ is arbitrary, or
(II) $n_{3} \geq 1$ and in addition
(i) when $n_{2}=0, L_{33}=O_{n_{3} \times n_{3}}$, and furthermore $H_{33}=O_{n_{3} \times n_{3}}$, or
(ii) when $n_{2} \geq 1$, there exists a matrix W of size $n_{3} \times n_{2}$ such that $\left(L_{31} ; L_{32} ; L_{33}\right)=$ $W\left(L_{21} ; L_{22} ; L_{23}\right)$, and furthermore $H_{23}^{\prime}=W H_{22}^{\prime}$ and $H_{33}^{\prime}=W H_{32}^{\prime}$, where H_{22} and H_{32} are arbitrary.

In Lemma A.1, the matrix equation $Z L=H$ has a solution Z such that $Z=H L^{-1}$ for the case (I), $Z=\left(\begin{array}{cc}L_{11}^{-1} & Z_{13} \\ 0 & Z_{33}\end{array}\right)$ for the case (II)(i), where $Z_{i 3}(i=1,3)$ are arbitrary, and $Z=\left(\left(\begin{array}{cc}I_{n_{1}} & 0 \\ 0 & H_{22} \\ 0 & H_{32}\end{array}\right)\left(\begin{array}{cc}L_{11} & L_{12} \\ L_{21} & L_{22}\end{array}\right)^{-1}-\left(\begin{array}{cc}0 & Z_{13} W^{\prime} \\ 0 & Z_{23} W^{\prime} \\ 0 & Z_{33} W^{\prime}\end{array}\right) ;\left(\begin{array}{l}Z_{13} \\ Z_{23} \\ Z_{33}\end{array}\right)\right)$ for the case (II)(ii), where $Z_{i 3}(i=1,2,3)$ are arbitrary. Thus we obtain the following (see [7]):

$$
Z L Z^{\prime}=\left\{\begin{array}{ll}
L_{11}^{-1} & \text { if } n_{2}=n_{3}=0, \\
\binom{I_{n_{1}}}{0} L_{11}^{-1}\left(I_{n_{1}} ;\right. & 0
\end{array}\right) \quad \text { if } n_{2}=0 \text { and } n_{3} \geq 1, ~ \begin{array}{ll}
\left(\begin{array}{cc}
I_{n_{1}} & 0 \\
0 & H_{22}
\end{array}\right)\left(\begin{array}{ll}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right)^{-1}\left(\begin{array}{cc}
I_{n_{1}} & 0 \\
0 & H_{22}^{\prime}
\end{array}\right) & \text { if } n_{2} \geq 1 \text { and } n_{3}=0 \\
\left(\begin{array}{cc}
I_{n_{1}} & 0 \\
0 & H_{22} \\
0 & H_{32}
\end{array}\right)\left(\begin{array}{ll}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right)^{-1}\left(\begin{array}{ccc}
I_{n_{1}} & 0 & 0 \\
0 & H_{22}^{\prime} & H_{32}^{\prime}
\end{array}\right) & \text { if } n_{2} \geq 1 \text { and } n_{3} \geq 1,
\end{array}
$$

where H_{22} and H_{32} are arbitrary. Let Z^{*} be an $\left(n_{1}+n_{2}\right) \times n$ submatrix of a solution Z whose rows are linearly independent. Then from $Z L Z^{\prime}$ given above, we have the following lemma:

Lemma A.2.

$$
Z^{*} L Z^{* \prime}= \begin{cases}L_{11}^{-1} & \text { if } n_{2}=0 \\
\left(\begin{array}{cc}
I_{n_{1}} & 0 \\
0 & H_{22}
\end{array}\right)\left(\begin{array}{ll}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right)^{-1}\left(\begin{array}{cc}
I_{n_{1}} & 0 \\
0 & H_{22}^{\prime}
\end{array}\right) & \text { if } n_{2} \geq 1\end{cases}
$$

Acknowledgments

The authors would like to express their hearty thanks to the referee for his/her valuable comments and suggestions which have improved the early draft of this paper. The last author's work was partially supported by Grant-in-Aid for Scientific Research (C) of the JSPS under Contract Number 14580348.

References

[1] S. Ghosh and M. Kuwada, Estimable parametric functions for balanced fractional 2^{m} factorial designs, Statistical Research Group, Technical Report 01-7 (2001), Hiroshima University.
[2] M. Kuwada, Optimal partially balanced fractional $2^{m_{1}+m_{2}}$ factorial designs of resolution IV, Ann. Inst. Statist. Math., A38 (1986), 343-351.
[3] M. Kuwada, A-optimal partially balanced fractional $2^{m_{1}+m_{2}}$ factorial designs of resolution V, with $2 \leq m_{1}+m_{2} \leq 6$, J. Statist. Plann. Inference, 18 (1988), 177-193.
[4] M. Kuwada and K. Ikeda, On some partially balanced fractional $2^{m_{1}+m_{2}}$ factorial designs of resolution IV, J. Japan Statist. Soc., 28 (1998). 89-100.
[5] M. Kuwada and M. Matsuura, Further results on partially balanced fractional $2^{m_{1}+m_{2}}$ factorial designs of resolution IV, J. Japan Statist. Soc., 14 (1984), 69-83.
[6] M. Kuwada, Y. Hyodo and H. Yumiba, GA-optimal balanced fractional 2^{m} factorial designs of resolution $\mathrm{R}^{*}(\{0,1\} \mid 3)$, Sankhyā, 66 (2004), 343-361.
[7] M. Kuwada, S. Lu, Y. Hyodo and E. Taniguchi, GA-optimal partially balanced fractional $2^{m_{1}+m_{2}}$ factorial designs of resolutions $\mathrm{R}(\{00,10,01,20,02\} \mid \Omega)$ and $\mathrm{R}(\{00,10,01,20$, $11\} \mid \Omega)$ with $2 \leq m_{1}, m_{2} \leq 4$, (2006a), (to appear in) J. Japan Statist. Soc.
[8] M. Kuwada, S. Lu, Y. Hyodo and E. Taniguchi, GA-optimal partially balanced fractional $2^{m_{1}+m_{2}}$ factorial designs of resolution $\mathrm{R}(\{00,10,01,20\} \mid \Omega)$ with $2 \leq m_{1}, m_{2} \leq 4$, (2006b), (to appear in) Commun. Statist.-Theory Meth., 35(11).
[9] R. Nishii, Balanced fractional $r^{m} \times s^{n}$ factorial designs and their analysis, Hiroshima Math. J., 11 (1981), 379-413.
[10] T. Shirakura and M. Kuwada, Covariance matrices of the estimates for balanced fractional 2^{m} factorial designs of resolution $2 \ell+1$, J. Japan Statist. Soc., 6 (1976), 27-31.
[11] J. N. Srivastava, Optimal balanced 2^{m} fractional factorial designs, Essays in Probability and Statistics, (eds. Bose, R. C. et al.), The University of North Carolina Press, Chapel Hill, 1970, 689-706.
[12] J. N. Srivastava and D. V. Chopra, On the characteristic roots of the information matrix of 2^{m} balanced factorial designs of resolution V, with applications, Ann. Math. Statist., 42 (1971), 722-734.
[13] S. Yamamoto and Y. Hyodo, Extended concept of resolution and the designs derived from balanced arrays, TRU Math., 20 (1984), 341-349.
[14] S. Yamamoto, T. Shirakura and M. Kuwada, Balanced arrays of strength 2ℓ and balanced fractional 2^{m} factorial designs, Ann. Inst. Statist. Math., A27 (1975), 143-157.
[15] S. Yamamoto, T. Shirakura and M. Kuwada, Characteristic polynomials of the information matrices of balanced fractional 2^{m} factorial designs of higher $(2 \ell+1)$ resolution, Essays in Probability and Statistics, (eds. Ikeda, S. et al.), Shinko Tsusho, Tokyo, 1976, 73-94.

Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan e-mail : lushujie@mis.hiroshima-u.ac.jp

Graduate School of Informatics, Okayama University of Science,
Okayama 700-0005, Japan e-mail : hyodo@gs.finfo.ous.ac.jp

Graduate School of Informatics, Okayama University of Science, Okayama 700-0005, Japan e-mail : nabu_ru@yahoo.co.jp

Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan Now at
Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan e-mail : kuwada@mis.hiroshima-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. 62K05, 05B30.
 Key words and phrases. Estimable parametric functions, ETMDPB association algebra, GA-optimality criterion, PBFF designs, Resolution.

