GA-OPTIMAL PARTIALLY BALANCED FRACTIONAL $2^{m_1+m_2}$ FACTORIAL DESIGNS OF RESOLUTION R({00, 10, 01, 11}| Ω) WITH $2 \le m_1 \le m_2 \le 4$

Shujie Lu, Eiji Taniguchi, Yoshifumi Hyodo and Masahide Kuwada

Received November 8, 2005; revised August 29, 2006

ABSTRACT. Consider a partially balanced fractional $2^{m_1+m_2}$ factorial design derived from a simple partially balanced array such that the general mean, all the $m_1 + m_2$ main effects, some linear combinations of the $\binom{m_1}{2}$ two-factor interactions and of the $\binom{m_2}{2}$ two-factor ones and all the m_1m_2 two-factor ones are estimable, where the threefactor and higher-order interactions are assumed to be negligible, and $2 \leq m_k$ (k =1,2). Furthermore we consider the situation in which the number of assemblies is less than the number of non-negligible factorial effects. Under these situations, this paper presents optimal designs with respect to the generalized A-optimality criterion, where $2 \leq m_1 \leq m_2 \leq 4$.

1 Introduction The characteristic roots of the information matrix of a balanced fractional 2^m factorial (2^m -BFF) design of resolution V were obtained by Srivastava and Chopra [12]. Using the algebraic structure of the triangular multidimensional partially balanced (TMDPB) association scheme, Yamamoto et al. [15] extended their results to a 2^m -BFF design of resolution $2\ell + 1$, where $2\ell \leq m$. A balanced array of two symbols and m constraints, which is a generalization of an orthogonal array, turns out to be a 2^m -BFF design under certain conditions (see [11, 14]).

As a special case of an asymmetrical balanced array introduced by Nishii [9], a partially balanced array (PBA) of two symbols was presented by Kuwada [3]. A PBA of strength m_1+m_2 is said to be simple, and such an array is briefly denoted by SPBA $(m_1+m_2; \{\lambda_{i_1,i_2}\})$, where λ_{i_1,i_2} are the indices of an SPBA (e.g., [7, 8]). A fractional factorial design derived from an array of two symbols and m_1+m_2 constraints is called a partially balanced fractional $2^{m_1+m_2}$ factorial $(2^{m_1+m_2}\text{-PBFF})$ design if the variance-covariance matrix of the estimators of the factorial effects to be of interest is invariant under any permutation within m_k factors for k = 1, 2 each. Under certain conditions, a PBA of two symbols and $m_1 + m_2$ constraints becomes a $2^{m_1+m_2}\text{-PBFF}$ design (e.g., [3, 4]).

Kuwada et al. [7, 8] have obtained optimal $2^{m_1+m_2}$ -PBFF designs with respect to the generalized A-optimality (GA-optimality) criterion such that the general mean and all the $m_1 + m_2$ main effects are estimable, and furthermore (A) (a) all the $\binom{m_1}{2}$ two-factor interactions, all the $\binom{m_2}{2}$ two-factor ones and some linear combinations of the m_1m_2 twofactor ones are estimable, and they are called resolution $R(\{00, 10, 01, 20, 02\}|\Omega)$ designs,

²⁰⁰⁰ Mathematics Subject Classification. 62K05, 05B30.

Key words and phrases. Estimable parametric functions, ETMDPB association algebra, GA-optimality criterion, PBFF designs, Resolution.

where $\Omega = \{00, 10, 01, 20, 02, 11\}$ and $2 \leq m_1 \leq m_2 \leq 4$, (b) all the $\binom{m_1}{2}$ two-factor ones, some linear combinations of the $\binom{m_2}{2}$ two-factor ones and all the m_1m_2 two-factor ones are estimable, and they are called resolution $R(\{00, 10, 01, 20, 11\} | \Omega)$ designs, where $2 \leq m_1, m_2 \leq 4$, and (B) all the $\binom{m_1}{2}$ two-factor ones, and some linear combinations of the $\binom{m_2}{2}$ two-factor ones and of the m_1m_2 two-factor ones are estimable, and they are called resolution $R(\{00, 10, 01, 20\} | \Omega)$ designs, where $2 \leq m_1, m_2 \leq 4$.

In this paper, we consider a $2^{m_1+m_2}$ -PBFF design such that the general mean, all the $m_1 + m_2$ main effects, some linear combinations of the $\binom{m_1}{2}$ two-factor interactions and of the $\binom{m_2}{2}$ two-factor ones and all the m_1m_2 two-factor ones are estimable, where the three-factor and higher-order interactions are assumed to be negligible and $2 \le m_1 \le m_2 \le 4$, and it is called a resolution $R(\{00, 10, 01, 11\} | \Omega)$ design. Furthermore, we present GA-optimal $2^{m_1+m_2}$ -PBFF designs of resolution $R(\{00, 10, 01, 11\} | \Omega)$ when the number of assemblies (or treatment combinations) is less than the number of factorial effects up to the two-factor interactions.

2 Preliminaries We consider a fractional $2^{m_1+m_2}$ factorial design T with N assemblies, where the three-factor and higher-order interactions are assumed to be negligible and $2 \leq m_k$ (k = 1, 2). Then the $1 \times \nu(m_1, m_2)$ vector of the non-negligible factorial effects is given by $(\theta'_{00}; \theta'_{10}; \theta'_{01}; \theta'_{20}; \theta'_{02}; \theta'_{11}) (= \Theta', \text{say})$, where $\nu(m_1, m_2) = 1 + (m_1 + m_2) + \binom{m_1 + m_2}{2}$, and $\theta'_{00} = \{\theta(\phi; \phi)\}, \ \theta'_{10} = \{\theta(u; \phi)|1 \leq u \leq m_1\}, \ \theta'_{01} = \{\theta(\phi; v)|1 \leq v \leq m_2\}, \ \theta'_{20} = \{\theta(u_1u_2; \phi)|1 \leq u_1 < u_2 \leq m_1\}, \ \theta'_{02} = \{\theta(\phi; v_1v_2)|1 \leq v_1 < v_2 \leq m_2\} \text{ and } \theta'_{11} = \{\theta(u; v)|1 \leq u \leq m_1, 1 \leq v \leq m_2\}.$ Here $\theta(\phi; \phi)$ is the general mean, $\theta(u; \phi)$ and $\theta(\phi; v)$ are the main effects of the u-th factor in the m_1 factors and of the v-th factor in the m_2 factors, respectively, and $\theta(u_1u_2; \phi), \ \theta(\phi; v_1v_2)$ and $\theta(u; v)$ are the two-factor interactions of the u_1 -th and u_2 -th factors in the m_1 factors, of the v_1 -th and v_2 -th factors, respectively. Thus the ordinary linear model based on T is given by

$$\boldsymbol{y}(T) = E_T \boldsymbol{\Theta} + \boldsymbol{e}_T,$$

where $\boldsymbol{y}(T)$, E_T and \boldsymbol{e}_T are an observation vector of size $N \times 1$, the $N \times \nu(m_1, m_2)$ design matrix whose elements are either 1 or -1, and an $N \times 1$ error vector with mean $\boldsymbol{\theta}_N$ and variance-covariance matrix $\sigma^2 I_N$, respectively. Here $\boldsymbol{\theta}_p$ and I_p denote the $p \times 1$ null vector and the identity matrix of order p, respectively. The normal equations for estimating $\boldsymbol{\Theta}$ are given by

(2.1)
$$M_T \hat{\boldsymbol{\Theta}} = E'_T \boldsymbol{y}(T),$$

where $M_T (= E'_T E_T)$ is the information matrix of order $\nu(m_1, m_2)$.

Let $A_{\alpha_1\alpha_2}^{(a_1a_2,b_1b_2)}$ and $D_{\alpha_1\alpha_2}^{(a_1a_2,b_1b_2)}$ for $a_1a_2, b_1b_2 \in S_{\alpha_1\alpha_2}$ ($\alpha_1\alpha_2 \in S^*$) be the local association matrices of size $n_{a_1a_2} \times n_{b_1b_2}$ and the ordered association matrices of order $\nu(m_1,m_2)$ of the extended TMDPB (ETMDPB) association scheme, respectively, where

$$\begin{split} S_{00} &= \{00, 10, 01, 20, 02, 11\}, \ S_{10} = \{10, 20 \text{ (if } m_1 \geq 3), 11\}, \ S_{01} = \{01, 02 \text{ (if } m_2 \geq 3), 11\}, \\ S_{20} &= \{20\} \text{ (if } m_1 \geq 4), \ S_{02} = \{02\} \text{ (if } m_2 \geq 4), \ S_{11} = \{11\}, \ S^* = \{00, 10, 01, 20 \text{ (if } m_1 \geq 4), 02 \text{ (if } m_2 \geq 4), 11\}, \text{ and } n_{p_1p_2} = \binom{m_1}{p_1}\binom{m_2}{p_2} \text{ (see [3])}. \text{ Note that } A^{(a_1a_2,b_1b_2)}_{\alpha_1\alpha_2} \text{ and } D^{(a_1a_2,b_1b_2)}_{\alpha_1\alpha_2} \text{ and } D^{(a_1a_2,b_1b_2)}_{\beta_1\beta_2} \text{ are the } (0,1) \text{ matrices. Further let } A^{\#(a_1a_2,b_1b_2)}_{\beta_1\beta_2} \text{ and } D^{\#(a_1a_2,b_1b_2)}_{\beta_1\beta_2} \text{ for } a_1a_2, b_1b_2 \in S_{\beta_1\beta_2} (\beta_1\beta_2 \in S^*) \text{ be the matrices of size } n_{a_1a_2} \times n_{b_1b_2} \text{ and of order } \nu(m_1,m_2), \text{ respectively. Then the relationships between } A^{(a_1a_2,b_1b_2)}_{\alpha_1\alpha_2} \text{ and } A^{\#(a_1a_2,b_1b_2)}_{\beta_1\beta_2}, \text{ and } D^{\#(a_1a_2,b_1b_2)}_{\alpha_1\alpha_2} \text{ and } D^{\#(a_1a_2,b_1b_2)}_{\beta_1\beta_2} \text{ are given by} \end{split}$$

$$(2.2) \qquad A_{\alpha_1\alpha_2}^{(a_1a_2,b_1b_2)} \ (= A_{\alpha_1\alpha_2}^{(b_1b_2,a_1a_2)'}) = \sum_{\beta_1\beta_2} z_{\beta_1\beta_2\alpha_1\alpha_2}^{(a_1a_2,b_1b_2)} A_{\beta_1\beta_2}^{\#(a_1a_2,b_1b_2)},$$
$$(2.2) \qquad D_{\alpha_1\alpha_2}^{(a_1a_2,b_1b_2)} \ (= D_{\alpha_1\alpha_2}^{(b_1b_2,a_1a_2)'}) = \sum_{\beta_1\beta_2} z_{\beta_1\beta_2\alpha_1\alpha_2}^{(a_1a_2,b_1b_2)} D_{\beta_1\beta_2}^{\#(a_1a_2,b_1b_2)}$$

for $\alpha_k \leq a_k, b_k \leq 2$ and $0 \leq \alpha_k \leq 2$,

$$A_{\beta_{1}\beta_{2}}^{\#(a_{1}a_{2},b_{1}b_{2})} (= A_{\beta_{1}\beta_{2}}^{\#(b_{1}b_{2},a_{1}a_{2})'}) = \sum_{\alpha_{1}\alpha_{2}} z_{(a_{1}a_{2},b_{1}b_{2})}^{\beta_{1}\beta_{2}\alpha_{1}\alpha_{2}} A_{\alpha_{1}\alpha_{2}}^{(a_{1}a_{2},b_{1}b_{2})},$$

$$D_{\alpha_{1}\alpha_{2}}^{\#(a_{1}a_{2},b_{1}b_{2})} (-D_{\alpha_{1}\alpha_{2}}^{\#(b_{1}b_{2},a_{1}a_{2})'}) = \sum_{\alpha_{1}\alpha_{2}} z_{(a_{1}a_{2},b_{1}b_{2})}^{\beta_{1}\beta_{2}\alpha_{1}\alpha_{2}} D_{\alpha_{1}\alpha_{2}}^{(a_{1}a_{2},b_{1}b_{2})},$$

(2.3)
$$D_{\beta_1\beta_2}^{\#(a_1a_2,b_1b_2)} (= D_{\beta_1\beta_2}^{\#(b_1b_2,a_1a_2)'}) = \sum_{\alpha_1\alpha_2} z_{(a_1a_2,b_1b_2)}^{\beta_1\beta_2\alpha_1\alpha_2} D_{\alpha_1\alpha_2}^{(a_1a_2,b_1b_2)}$$

for $\beta_k \leq a_k, b_k \leq 2$ and $0 \leq \beta_k \leq 2$,

where $z_{\beta_1\beta_2\alpha_1\alpha_2}^{(a_1a_2,b_1b_2)} = z_{\beta_1\alpha_1}^{(a_1,b_1)} z_{\beta_2\alpha_2}^{(a_2,b_2)}$ and $z_{(a_1a_2,b_1b_2)}^{\beta_1\beta_2\alpha_1\alpha_2} = z_{(a_1,b_1)}^{\beta_1\alpha_1} z_{(a_2,b_2)}^{\beta_2\alpha_2}$. Here

$$z_{\beta_{k}\alpha_{k}}^{(a_{k},b_{k})} (= z_{\beta_{k}\alpha_{k}}^{(b_{k},a_{k})}) = \sum_{p=0}^{\alpha_{k}} (-1)^{\alpha_{k}-p} \binom{a_{k}-\beta_{k}}{p} \binom{a_{k}-p}{a_{k}-\alpha_{k}} \binom{m_{k}-a_{k}-\beta_{k}+p}{p} \times \sqrt{\binom{m_{k}-a_{k}-\beta_{k}}{b_{k}-a_{k}}} \binom{b_{k}-a_{k}}{p} \quad \text{for } a_{k} \leq b_{k},$$

$$z_{(a_{k},b_{k})}^{\beta_{k}\alpha_{k}} (= z_{(b_{k},a_{k})}^{\beta_{k}\alpha_{k}}) = \phi_{\beta_{k}} z_{\beta_{k}\alpha_{k}}^{(a_{k},b_{k})} / {\binom{m_{k}}{a_{k}}} \binom{m_{k}-a_{k}}{b_{k}-a_{k}+\alpha_{k}}} \quad \text{for } a_{k} \leq b_{k},$$

$$\phi_{\beta} = \binom{m}{\beta} - \binom{m}{\beta-1}}$$

(see [10, 15]). The properties of these matrices are cited in the following:

(2.4)
$$\begin{split} \sum_{\beta_{1}\beta_{2}} A_{\beta_{1}\beta_{2}}^{\#(a_{1}a_{2},a_{1}a_{2})} &= I_{n_{a_{1}a_{2}}}, \ A_{\beta_{1}\beta_{2}}^{\#(a_{1}a_{2},c_{1}c_{2})} A_{\gamma_{1}\gamma_{2}}^{\#(c_{1}c_{2},b_{1}b_{2})} &= \delta_{\beta_{1}\gamma_{1}}\delta_{\beta_{2}\gamma_{2}} A_{\beta_{1}\beta_{2}}^{\#(a_{1}a_{2},b_{1}b_{2})},\\ \operatorname{rank} \{A_{\beta_{1}\beta_{2}}^{\#(a_{1}a_{2},b_{1}b_{2})}\} &= \phi_{\beta_{1}\beta_{2}},\\ \sum_{a_{1}a_{2}} \sum_{\beta_{1}\beta_{2}} D_{\beta_{1}\beta_{2}}^{\#(a_{1}a_{2},a_{1}a_{2})} &= I_{\nu(m_{1},m_{2})},\\ D_{\beta_{1}\beta_{2}}^{\#(a_{1}a_{2},c_{1}c_{2})} D_{\gamma_{1}\gamma_{2}}^{\#(d_{1}d_{2},b_{1}b_{2})} &= \delta_{c_{1}d_{1}}\delta_{c_{2}d_{2}}\delta_{\beta_{1}\gamma_{1}}\delta_{\beta_{2}\gamma_{2}} D_{\beta_{1}\beta_{2}}^{\#(a_{1}a_{2},b_{1}b_{2})},\\ \operatorname{rank} \{D_{\beta_{1}\beta_{2}}^{\#(a_{1}a_{2},b_{1}b_{2})}\} &= \phi_{\beta_{1}\beta_{2}} \end{split}$$

(see [3]), where $\phi_{\beta_1\beta_2} = \phi_{\beta_1}\phi_{\beta_2}$ and δ_{pq} is the Kronecker delta.

Let \mathcal{A} be the algebra generated by the linear closure of the ordered association matrices $D_{\alpha_1\alpha_2}^{(a_1a_2,b_1b_2)}$, and it is denoted by $[D_{\alpha_1\alpha_2}^{(a_1a_2,b_1b_2)}|a_1a_2,b_1b_2 \in S_{\alpha_1\alpha_2} \ (\alpha_1\alpha_2 \in S^*)]$. Then from (2.2) and (2.3), we obtain $\mathcal{A} = [D_{\beta_1\beta_2}^{\#(a_1a_2,b_1b_2)}|a_1a_2,b_1b_2 \in S_{\beta_1\beta_2} \ (\beta_1\beta_2 \in S^*)]$. Note that \mathcal{A} is called the ETMDPB association algebra (see [3]). Using the properties of \mathcal{A} , the information matrix M_T is given by

(2.5)
$$M_T = \sum_{a_1 a_2} \sum_{b_1 b_2} \sum_{\alpha_1 \alpha_2} \gamma_{|a_1 - b_1| + 2\alpha_1, |a_2 - b_2| + 2\alpha_2} D^{(a_1 a_2, b_1 b_2)}_{\alpha_1 \alpha_2}$$
$$= \sum_{a_1 a_2} \sum_{b_1 b_2} \sum_{\beta_1 \beta_2} \kappa^{a_1 a_2, b_1 b_2}_{\beta_1 \beta_2} D^{\#(a_1 a_2, b_1 b_2)}_{\beta_1 \beta_2},$$

where T is a $2^{m_1+m_2}$ -PBFF design derived from an SPBA $(m_1 + m_2; \{\lambda_{i_1,i_2}\})$, and the relationships between γ_{i_1,i_2} and λ_{j_1,j_2} , and $\kappa_{\beta_1\beta_2}^{a_1a_2,b_1b_2}$ and γ_{i_1,i_2} are given by

(2.6)
$$\gamma_{i_1,i_2} = \sum_{j_1,j_2} \left[\sum_{p_1,p_2} \{ \prod_{k=1}^2 (-1)^{p_k} {i_k \choose p_k} {m_k - i_k \choose j_k - i_k + p_k} \} \right] \lambda_{j_1,j_2}, \\ \kappa^{a_1 a_2, b_1 b_2}_{\beta_1 \beta_2} = \sum_{\alpha_1 \alpha_2} z^{(a_1 a_2, b_1 b_2)}_{\beta_1 \beta_2 \alpha_1 \alpha_2} \gamma_{|a_1 - b_1| + 2\alpha_1, |a_2 - b_2| + 2\alpha_2},$$

respectively. Thus from the properties of the algebra \mathcal{A} , the information matrix M_T is isomorphic to $||\kappa_{\beta_1\beta_2}^{a_1a_2,b_1b_2}|| (= K_{\beta_1\beta_2}, \text{ say})$ of order 6 for $\beta_1\beta_2 = 00$, of order 3 (if $m_1 \ge 3$) (or 2 (if $m_1 = 2$)) for $\beta_1\beta_2 = 10$, of order 3 (if $m_2 \ge 3$) (or 2 (if $m_2 = 2$)) for $\beta_1\beta_2 = 01$, of order 1 (if $m_1 \ge 4$) for $\beta_1\beta_2 = 20$, of order 1 (if $m_2 \ge 4$) for $\beta_1\beta_2 = 02$ and of order 1 for $\beta_1\beta_2 = 11$ with multiplicities ϕ_{00} , ϕ_{10} , ϕ_{01} , ϕ_{20} , ϕ_{02} and ϕ_{11} , respectively (see [3]). Note that $K_{\beta_1\beta_2}$ are called the irreducible representations of M_T with respect to the ideals $[D_{\beta_1\beta_2}^{\#(a_1a_2,b_1b_2)}|a_1a_2,b_1b_2 \in S_{\beta_1\beta_2}] (= \mathcal{A}_{\beta_1\beta_2}, \text{ say})$ of \mathcal{A} for $\beta_1\beta_2 \in S^*$. From (2.6), we have

(2.7)
$$K_{\beta_1\beta_2} = (D_{\beta_1\beta_2}F_{\beta_1\beta_2}\Lambda_{\beta_1\beta_2})(D_{\beta_1\beta_2}F_{\beta_1\beta_2}\Lambda_{\beta_1\beta_2})$$

(see [7]), where

$$\begin{split} D_{00} &= \operatorname{diag}[1; -1/\sqrt{m_1}; -1/\sqrt{m_2}; 1/\sqrt{2m_1(m_1 - 1)}; 1/\sqrt{2m_2(m_2 - 1)}; 1/\sqrt{m_1m_2}], \\ D_{10} &= \begin{cases} \operatorname{diag}[2; -2/\sqrt{m_2}] & \text{if } m_1 = 2, \\ \operatorname{diag}[2; -2/\sqrt{m_1 - 2}; -2/\sqrt{m_2}] & \text{if } m_1 \geq 3, \end{cases} \\ D_{01} &= \begin{cases} \operatorname{diag}[2; -2/\sqrt{m_1}] & \text{if } m_2 = 2, \\ \operatorname{diag}[2; -2/\sqrt{m_2 - 2}; -2/\sqrt{m_1}] & \text{if } m_2 \geq 3, \end{cases} \\ D_{20} &= \begin{cases} \operatorname{vanishes} & \text{if } m_1 = 2, 3, \\ 2^2 & \text{if } m_1 \geq 4, \end{cases} D_{02} &= \begin{cases} \operatorname{vanishes} & \text{if } m_2 = 2, 3, \\ 2^2 & \text{if } m_2 \geq 4, \end{cases} D_{11} = 2^2, \end{split}$$

the column vectors of F_{00} corresponding to $\lambda_{a,x}$ $(0 \le a \le m_1; 0 \le x \le m_2)$, of F_{10} corresponding to $\lambda_{b,y}$ $(1 \le b \le m_1 - 1; 0 \le y \le m_2)$, of F_{01} corresponding to $\lambda_{c,z}$ $(0 \le c \le m_1 - 1; 0 \le y \le m_2)$ m_1 ; $1 \le z \le m_2 - 1$), of F_{20} (if $m_1 \ge 4$) corresponding to $\lambda_{d,u}$ ($2 \le d \le m_1 - 2$; $0 \le u \le m_2$), of F_{02} (if $m_2 \ge 4$) corresponding to $\lambda_{e,v}$ ($0 \le e \le m_1$; $2 \le v \le m_2 - 2$) and of F_{11} corresponding to $\lambda_{f,w}$ $(1 \leq f \leq m_1 - 1; 1 \leq w \leq m_2 - 1)$ are given by $\sqrt{\lambda_{a,x}}(1, m_1 - 1)$ $2a, m_2 - 2x, (m_1 - 2a)^2 - m_1, (m_2 - 2x)^2 - m_2, (m_1 - 2a)(m_2 - 2x))', \ \sqrt{\lambda_{b,y}}(1, m_1 - 2b, m_2 - 2x) = 0, \ \lambda_{b,y}(1, m_1 - 2b, m_$ 2y' (if $m_1 \ge 3$) (or $\sqrt{\lambda_{1,y}}(1, m_2 - 2y)'$ (if $m_1 = 2$)), $\sqrt{\lambda_{c,z}}(1, m_2 - 2z, m_1 - 2c)'$ (if $m_2 \ge 2z$) 3) (or $\sqrt{\lambda_{c,1}}(1, m_1 - 2c)'$ (if $m_2 = 2$)), $\sqrt{\lambda_{d,u}}$, $\sqrt{\lambda_{e,v}}$ and $\sqrt{\lambda_{f,w}}$, respectively, and the diagonal elements of $\Lambda_{\beta_1\beta_2}$ $(\underline{\beta_1\beta_2 \in S^*})$ corresponding to $\lambda_{g,s}$ $(\beta_1 \leq g \leq m_1 - \beta_1; \beta_2 \leq m_1 - \beta_1; \beta_1 \geq m_1 - \beta_1; \beta_2 \geq m_1 - \beta_1; \beta_1 \geq m_1 - \beta_1; \beta_2 \geq m_1 - \beta_1; \beta_1 \geq m_1 - \beta_1; \beta_1$ $s \leq m_2 - \beta_2$) are given by $\sqrt{\binom{m_1 - 2\beta_1}{g - \beta_1}\binom{m_2 - 2\beta_2}{s - \beta_2}}$ ((i) if $\beta_1 = \beta_2 = 0$, then g = a and s = x, (ii) if $\beta_1 = 1$ and $\beta_2 = 0$, then g = b and s = y, (iii) if $\beta_1 = 0$ and $\beta_2 = 1$, then g = c and s = z, (iv) if $m_1 \ge 4$, $\beta_1 = 2$ and $\beta_2 = 0$, then g = d and s = u, (v) if $m_2 \ge 4$, $\beta_1 = 0$ and $\beta_2 = 2$, then g = e and s = v, and (vi) if $\beta_1 = \beta_2 = 1$, then g = f and s = w) and the off-diagonal elements of them are all zero. Note that F_{00} is of size $6 \times \{(m_1 + 1)(m_2 + 1)\}$, F_{10} is of size $3 \times \{(m_1 - 1)(m_2 + 1)\}$ (if $m_1 \ge 3$) (or $2 \times (m_2 + 1)$ (if $m_1 = 2$)), F_{01} is of size $3 \times \{(m_1 + 1)(m_2 - 1)\}$ (if $m_2 \geq 3$) (or $2 \times (m_1 + 1)$ (if $m_2 = 2$)), F_{20} (if $m_1 \ge 4$) is of size $1 \times \{(m_1 - 3)(m_2 + 1)\}, F_{02}$ (if $m_2 \ge 4$) is of size $1 \times \{(m_1 + 1)(m_2 - 3)\}$

and F_{11} is of size $1 \times \{(m_1 - 1)(m_2 - 1)\}$, and $\Lambda_{\beta_1\beta_2}$ are of order $(m_1 + 1 - 2\beta_1)(m_2 + 1 - 2\beta_2)$.

Remark 2.1. From (2.5), the a_1a_2 -th row block and the b_1b_2 -th column block of $D_{\beta_1\beta_2}^{\#(a_1a_2,b_1b_2)}$ are concerned with $\theta_{a_1a_2}$ and $\theta_{b_1b_2}$, respectively. Thus from (2.7), the first, second, third, fourth, fifth and last rows of F_{00} correspond to θ_{00} , θ_{10} , θ_{01} , θ_{20} , θ_{02} and θ_{11} , respectively, the first, second (if $m_1 \geq 3$) and last rows of F_{10} correspond to θ_{10} , θ_{20} and θ_{11} , respectively, the first, second (if $m_2 \geq 3$) and last rows of F_{01} correspond to θ_{01} , θ_{02} and θ_{11} , respectively, and the rows of F_{20} (if $m_1 \geq 4$), F_{02} (if $m_2 \geq 4$) and F_{11} corresponds to θ_{20} , θ_{02} and θ_{11} , respectively.

It follows from the definitions of $D_{\beta_1\beta_2}$, $F_{\beta_1\beta_2}$ and $\Lambda_{\beta_1\beta_2}$ that rank $\{K_{\beta_1\beta_2}\}$ =r-rank $\{F_{\beta_1\beta_2}\}$, where r-rank $\{A\}$ denotes the row rank of a matrix A.

Definition 2.1. Let $(T^{(1)}; T^{(2)}) (= T, \text{ say})$ be an SPBA $(m_1 + m_2; \{\lambda_{i_1, i_2}\})$, where $T^{(k)}$ are of size $N \times m_k$ (k = 1, 2), and further let $\tilde{T} = (\bar{T}^{(1)}; T^{(2)})$, $\check{T} = (T^{(1)}; \bar{T}^{(2)})$ and $\bar{T} = (\bar{T}^{(1)}; \bar{T}^{(2)})$, where $\bar{T}^{(k)}$ denotes the complement of $T^{(k)}$. Then \tilde{T} , \check{T} and \bar{T} are called the former complementary array (FCA) of T, the latter complementary array (LCA) of T and the completely complementary array (CCA) of T, respectively.

Note that if T is an SPBA $(m_1 + m_2; \{\lambda_{i_1,i_2}\})$, then \overline{T} , \overline{T} and \overline{T} are the SPBA $(m_1 + m_2; \{\lambda_{m_1-i_1,i_2}\})$, SPBA $(m_1 + m_2; \{\lambda_{i_1,m_2-i_2}\})$ and SPBA $(m_1 + m_2; \{\lambda_{m_1-i_1,m_2-i_2}\})$, respectively. Let $M_{\tilde{T}}$, $M_{\tilde{T}}$ and $M_{\bar{T}}$ be the information matrices associated with \tilde{T} , \tilde{T} and \bar{T} , respectively, where T is an SPBA $(m_1 + m_2; \{\lambda_{i_1,i_2}\})$. Further let $\tilde{K}_{\beta_1\beta_2}$, $\check{K}_{\beta_1\beta_2}$ and $\bar{K}_{\beta_1\beta_2}$, respectively, denote the irreducible representations of $M_{\tilde{T}}$, $M_{\tilde{T}}$ and $M_{\bar{T}}$ with respect to the ideals $\mathcal{A}_{\beta_1\beta_2}$ of the algebra \mathcal{A} . Then from (2.7), we can get

(2.8)
$$\tilde{K}_{\beta_1\beta_2} = \tilde{\Delta}_{\beta_1\beta_2} K_{\beta_1\beta_2} \tilde{\Delta}_{\beta_1\beta_2}, \quad \check{K}_{\beta_1\beta_2} = \check{\Delta}_{\beta_1\beta_2} K_{\beta_1\beta_2} \check{\Delta}_{\beta_1\beta_2}, \\ \bar{K}_{\beta_1\beta_2} = \bar{\Delta}_{\beta_1\beta_2} K_{\beta_1\beta_2} \bar{\Delta}_{\beta_1\beta_2} \quad \text{ for } \beta_1\beta_2 \in S^*$$

(see [7]), where $\tilde{\Delta}_{00} = \text{diag}[1; -1; 1; 1; 1; -1]$, $\tilde{\Delta}_{00} = \text{diag}[1; 1; -1; 1; 1; -1]$, $\bar{\Delta}_{00} = \text{diag}[1; -1; 1]$, $\bar{\Delta}_{10} = \text{diag}[1; -1; 1]$, $\tilde{\Delta}_{10} = \text{diag}[1; 1; -1]$, $\tilde{\Delta}_{10} = \text{diag}[1; -1; -1]$, $\tilde{\Delta}_{01} = \tilde{\Delta}_{02} = \tilde{\Delta}_{02} = 1$, $\tilde{\Delta}_{02} = \tilde{\Delta}_{20} = 1$, $\tilde{\Delta}_{01} = \text{diag}[1; -1; -1]$, $\tilde{\Delta}_{01} = \tilde{\Delta}_{02} = \tilde{\Delta}_{02} = 1$, $\tilde{\Delta}_{02} = \tilde{\Delta}_{02} = 1$, $\tilde{\Delta}_{01} = 2, 3$, $\tilde{\Delta}_{01} = \tilde{\Delta}_{02} = \tilde{\Delta}_{02} = 1$, $\tilde{\Delta}_{02} = \tilde{\Delta}_{02} = 1$, $\tilde{\Delta}_{01} = 2, 3$, $\tilde{\Delta}_{01} = \tilde{\Delta}_{02} = 1$, $\tilde{\Delta}_{02} = \tilde{\Delta}_{02} = 1$, $\tilde{\Delta}_{02} = \tilde{\Delta}_{02} = 1$, $\tilde{\Delta}_{01} = 2, 3$, $\tilde{\Delta}_{01} = 1$.

3 Estimable parametric functions Linear parametric functions $C\Theta$ of Θ are estimable for some matrix C of order $\nu(m_1, m_2)$ if and only if there exists a matrix X of order $\nu(m_1, m_2)$ such that $XM_T = C$ (e.g., [13]). In this section, we consider a $2^{m_1+m_2}$ -PBFF design of resolution $R(\{00, 10, 01, 11\} | \Omega)$ derived from an SPBA $(m_1 + m_2; \{\lambda_{i_1, i_2}\})$.

Since M_T belongs to the ETMDPB association algebra \mathcal{A} , we impose some restrictions on C and X such that

$$(3.1) \quad C = D_{00}^{\#(00,00)} + \{D_{00}^{\#(10,10)} + D_{10}^{\#(10,10)}\} + \{D_{00}^{\#(01,01)} + D_{01}^{\#(01,01)}\} \\ + \{g_{00}^{20,20} D_{00}^{\#(20,20)} + g_{10}^{20,20} D_{10}^{\#(20,20)} \text{ (if } m_1 \ge 3) + g_{20}^{20,20} D_{20}^{\#(20,20)} \text{ (if } m_1 \ge 4)\} \\ + \{g_{00}^{20,02} D_{00}^{\#(02,02)} + g_{00}^{20,20} D_{00}^{\#(02,20)}\} \\ + \{g_{00}^{02,02} D_{00}^{\#(02,02)} + g_{01}^{20,20} D_{01}^{\#(02,02)} \text{ (if } m_2 \ge 3) + g_{02}^{20,20} D_{02}^{\#(02,02)} \text{ (if } m_2 \ge 4)\} \\ + \{D_{00}^{\#(11,11)} + D_{10}^{\#(11,11)} + D_{01}^{\#(11,11)} + D_{11}^{\#(11,11)}\}, \\ X = \sum_{a_1a_2} \sum_{b_1b_2} \sum_{\beta_1\beta_2} \chi_{\beta_1\beta_2}^{a_1a_2,b_1b_2} D_{\beta_1\beta_2}^{\#(a_1a_2,b_1b_2)},$$

respectively, where $g_{\gamma_1\gamma_2}^{a_1a_2,b_1b_2}$ are some constants, and $\chi_{\beta_1\beta_2}^{a_1a_2,b_1b_2}$ are also some constants which depend on $\kappa_{\beta_1\beta_2}^{a_1a_2,b_1b_2}$ and $g_{\beta_1\beta_2}^{a_1a_2,b_1b_2}$. It then follows from the properties of \mathcal{A} that the matrices X and C are isomorphic to $X_{\beta_1\beta_2}$ and $\Gamma_{\beta_1\beta_2}$ for $\beta_1\beta_2 \in S^*$, respectively. Here

$$\begin{split} X_{\beta_1\beta_2} &= ||\chi_{\beta_1\beta_2}^{a_1a_2,b_1b_2}||, \\ \Gamma_{00} &= \operatorname{diag}[I_3; \begin{pmatrix} g_{00}^{20,20} & g_{00}^{20,02} \\ g_{00}^{02,20} & g_{00}^{02,02} \end{pmatrix}; 1], \\ \Gamma_{10} &= \begin{cases} I_2 & \text{if } m_1 = 2, \\ \operatorname{diag}[1; g_{10}^{20,20}; 1] & \text{if } m_1 \geq 3, \end{cases} \quad \Gamma_{01} = \begin{cases} I_2 & \text{if } m_2 = 2, \\ \operatorname{diag}[1; g_{01}^{02,02}; 1] & \text{if } m_2 \geq 3, \end{cases} \\ \Gamma_{20} &= \begin{cases} \operatorname{vanishes} & \text{if } m_1 = 2, 3, \\ g_{20}^{20,20} & \text{if } m_1 \geq 4, \end{cases} \quad \Gamma_{02} = \begin{cases} \operatorname{vanishes} & \text{if } m_2 = 2, 3, \\ g_{02}^{02,02} & \text{if } m_2 \geq 4, \end{cases} \quad \Gamma_{11} = 1. \end{split}$$

Let $M_T^* = P'M_TP$, $X^* = P'XP$, $C^* = P'CP$, and $\Theta^* = P'\Theta$, where $P = \text{diag}[I_{1+m_1+m_2}; \begin{pmatrix} 0 & I_{\binom{m_1}{2}} & 0 \\ 0 & 0 & I_{\binom{m_2}{2}} \\ I_{m_1m_2} & 0 & 0 \end{pmatrix}]$. If there exists X such that $XM_T = C$, then

there also exists X^* such that $X^*M_T^* = C^*$, and vice versa. Thus the estimability of $C\boldsymbol{\Theta}$ is equivalent to that of $C^*\boldsymbol{\Theta}^*$. The matrices M_T^* , X^* and C^* are isomorphic to $K_{\beta_1\beta_2}^*$, $X_{\beta_1\beta_2}^*$ and $\Gamma_{\beta_1\beta_2}^*$ for $\beta_1\beta_2 \in S^*$, respectively. Here $K_{00}^* = P'_{00}K_{00}P_{00}$, $K_{\gamma_1\gamma_2}^* = P'_{\gamma_1\gamma_2}K_{\gamma_1\gamma_2}P_{\gamma_1\gamma_2}$, $K_{\omega_1\omega_2}^* = K_{\omega_1\omega_2}$, $X_{00}^* = P'_{00}X_{00}P_{00}$, $X_{\gamma_1\gamma_2}^* = P'_{\gamma_1\gamma_2}X_{\gamma_1\gamma_2}P_{\gamma_1\gamma_2}$, $X_{\omega_1\omega_2}^* = X_{\omega_1\omega_2}$, $\Gamma_{00}^* = P'_{00}\Gamma_{00}P_{00}$, $\Gamma_{\gamma_1\gamma_2}^* = P'_{\gamma_1\gamma_2}\Gamma_{\gamma_1\gamma_2}P_{\gamma_1\gamma_2}$ and $\Gamma_{\omega_1\omega_2}^* = \Gamma_{\omega_1\omega_2}$ for $\gamma_1\gamma_2 = 10$ (if $m_1 \geq 3$), 01 (if $m_2 \geq 3$), and $\omega_1\omega_2 = 10$ (if $m_1 = 2$), 01 (if $m_2 = 2$), 20 (if $m_1 \geq 4$), 02 (if $m_2 \geq 4$), 11, where $P_{00} = \text{diag}[I_3; \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}]$ and $P_{\gamma_1\gamma_2} = \text{diag}[1; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}]$. Then $X^*M_T^* = C^*$ is isomorphic to $X_{\beta_1\beta_2}^*K_{\beta_1\beta_2}^* = \Gamma_{\beta_1\beta_2}^*$ for $\beta_1\beta_2 \in S^*$. Note that if $C\boldsymbol{\Theta}$ is estimable (and hence $C^*\boldsymbol{\Theta}^*$ is also estimable), where C is given by (3.1), then a design is of resolution $\mathbb{R}(\{00, 10, 01, 11\}|\Omega)$.

If $N \ge \nu(m_1, m_2)$, then there exists a $2^{m_1+m_2}$ -PBFF design of resolution $R(\Omega|\Omega)$, i.e., of resolution V (e.g., [3]). Thus in this paper, we would like to focus the attention on obtaining a $2^{m_1+m_2}$ -PBFF design of resolution $R(\{00, 10, 01, 11\}|\Omega)$ derived from an SPBA $(m_1 + m_2; \{\lambda_{i_1,i_2}\})$ with $N < \nu(m_1, m_2)$. Since $N < \nu(m_1, m_2)$, the information matrix M_T is singular, and hence at least one of $K^*_{\beta_1\beta_2}$ ($\beta_1\beta_2 \in S^*$) is singular, which yields that at least one of $F_{\beta_1\beta_2}$ is not of full row rank. If $F_{\gamma_1\gamma_2}$ ($\gamma_1\gamma_2 = 00, 10, 01, 20$ (if $m_1 \ge 4$), 02 (if $m_2 \ge 4$)) is of full row rank (and hence $K^*_{\gamma_1\gamma_2}$ is of full rank), then in the matrix equation $X^*_{\gamma_1\gamma_2}K^*_{\gamma_1\gamma_2} = \Gamma^*_{\gamma_1\gamma_2}$, there always exists $X^*_{\gamma_1\gamma_2}$ such that $X^*_{\gamma_1\gamma_2} = (K^*_{\gamma_1\gamma_2})^{-1}$. Hence $\Gamma^*_{\gamma_1\gamma_2}$ is the identity matrix. Thus if $F_{\gamma_1\gamma_2}$ is of full row rank, then without loss of generality, we can put $g^{a_1a_2,b_1b_2}_{\gamma_1\gamma_2} = 1$ ($\gamma_1\gamma_2 = 00, 10$ (if $m_1 \ge 3$), 01 (if $m_2 \ge 3$), 20 (if $m_1 \ge 4$), 02 (if $m_2 \ge 4$)) if $a_1a_2 = b_1b_2$, and $g^{a_1a_2,b_1b_2}_{00} = 0$ if $a_1a_2 \ne b_1b_2$.

Theorem 3.1. Let T be a $2^{m_1+m_2}$ -PBFF design of resolution $R(\{00, 10, 01, 11\}|\Omega)$ derived from an SPBA $(m_1+m_2; \{\lambda_{i_1,i_2}\})$ with $N < \nu(m_1, m_2)$. Then we have that r-rank $\{F_{11}\} = 1$, and hence $A_{11}^{\#(11,11)} \boldsymbol{\theta}_{11}$ is estimable, and furthermore that the following holds:

- (I) If the matrix $F_{\beta_1\beta_2}$ is of full row rank, then $A_{\beta_1\beta_2}^{\#(a_1a_2,a_1a_2)}\boldsymbol{\theta}_{a_1a_2}$ are estimable for $a_1a_2 \in S_{\beta_1\beta_2}^{*}$ and $\beta_1\beta_2 \in S^*_{F_{00}}$ = 4 and the fourth and fifth rows of F_{00} are zero, then $A_{00}^{\#(a_1a_2,a_1a_2)}$ (II)
- (II) (A) if r-rank $\{F_{00}\} = 4$ and the fourth and fifth rows of F_{00} are zero, then A_{00}^{*} (I) $\times \boldsymbol{\theta}_{a_1a_2}$ $(a_1a_2 = 00, 10, 01, 11)$ are estimable, and
 - (B) if r-rank $\{F_{00}\} = 5$ and the first three and last rows of F_{00} are linearly independent, then $A_{00}^{\#(a_1a_2,a_1a_2)} \boldsymbol{\theta}_{a_1a_2}$ $(a_1a_2 = 00, 10, 01, 11)$ are estimable, and moreover
 - (a) if the fifth row of F_{00} is zero, then $g_{00}^{20,20} A_{00}^{\#(20,20)} \boldsymbol{\theta}_{20}$ and $g_{00}^{02,20} A_{00}^{\#(02,20)} \boldsymbol{\theta}_{20} = g_{00}^{02,20} A_{00}^{\#(02,20)} (A_{00}^{\#(20,20)} \boldsymbol{\theta}_{20})$ are estimable,
 - (b) if the fourth row of F_{00} is zero, then $g_{00}^{02,02}A_{00}^{\#(02,02)}\boldsymbol{\theta}_{02}$ and $g_{00}^{20,02}A_{00}^{\#(20,02)}\boldsymbol{\theta}_{02} = g_{00}^{20,02}A_{00}^{\#(20,02)}(A_{00}^{\#(02,02)}\boldsymbol{\theta}_{02})$ are estimable, and

(c) if the fifth row of F_{00} equals $w_{00} (\neq 0)$ times the fourth, then $g_{00}^{20,20} A_{00}^{\#(20,20)} \theta_{20} + g_{00}^{20,02} A_{00}^{\#(20,02)} \theta_{02} = g_{00}^{20,20} (A_{00}^{\#(20,20)} \theta_{20} + w_{00}^* A_{00}^{\#(20,02)} \theta_{02}),$ $g_{00}^{02,20} A_{00}^{\#(02,20)} \theta_{20} + g_{00}^{02,02} A_{00}^{\#(02,02)} \theta_{02}$ $= g_{00}^{02,20} A_{00}^{\#(02,20)} (A_{00}^{\#(20,20)} \theta_{20} + w_{00}^* A_{00}^{\#(20,02)} \theta_{02})$ are estimable, where $g_{00}^{a_{1}a_{2},02} = w_{0}^* g_{00}^{a_{1}a_{2},20} (g_{1}g_{2} - 20, 02)$ and $w_{0}^* = \sqrt{m(m-1)/(m(m-1))}$

$$g_{00}^{a_1a_2,0_2} = w_{00}^*g_{00}^{a_1a_2,2_0} \ (a_1a_2 = 20,02) \ and \ w_{00}^* = \sqrt{m_1(m_1 - 1)} / \{m_2(m_2 - 1)\} w_{00},$$

(ii) if $m_1 \ge 3$, r-rank $\{F_{10}\} = 2$ and the second row of F_{10} is zero, then $A_{10}^{\#(b_1b_2,b_1b_2)}$

- $\times \theta_{b_1b_2}$ ($b_1b_2 = 10, 11$) are estimable,
- (iii) if $m_2 \ge 3$, r-rank $\{F_{01}\} = 2$ and the second row of F_{01} is zero, then $A_{01}^{\#(c_1c_2,c_1c_2)} \times \boldsymbol{\theta}_{c_1c_2}$ ($c_1c_2 = 01, 11$) are estimable.

Proof. From (2.4), (3.1), Remark 2.1 and Lemma A.1, the results can be easily proved.

Remark 3.1. It follows from Lemma A.1 that in Theorem 3.1(II)(i)(B), since $g_{00}^{a_1a_2,b_1b_2}$ $(a_1a_2, b_1b_2 = 20, 02)$ are arbitrary, without loss of generality, we can put $g_{00}^{20,20} = 1$ and $g_{00}^{02,20} \neq 0$ for (a), and $g_{00}^{02,02} = 1$ and $g_{00}^{20,02} \neq 0$ for (b). Furthermore we define $g_{00}^{20,20} (= g_{00}^{20,20}(\alpha),$ say) = 1 if $\alpha = 0, 1/(1 + |w_{00}^*|)$ if $\alpha = 1$ and $1/\sqrt{1 + (w_{00}^*)^2}$ if $\alpha = 2$, and $g_{00}^{02,20} \neq 0$ for (c).

From the relations among the rows of $F_{\beta_1\beta_2}$, and applying Lemma A.1 to the matrix equations $X^*_{\beta_1\beta_2}K^*_{\beta_1\beta_2} = \Gamma^*_{\beta_1\beta_2}$, we have the following:

Lemma 3.1. A necessary condition for T to be a $2^{m_1+m_2}$ -PBFF design of resolution $R(\{00, 10, 01, 11\} | \Omega)$ derived from an SPBA $(m_1 + m_2; \{\lambda_{i_1, i_2}\})$ with $N < \nu(m_1, m_2)$ is that r-rank $\{F_{11}\} = 1$, and in addition

- (a) $r-rank{F_{00}} = 4$ and the fourth and fifth rows of F_{00} are zero,
- (b) r-rank{F₀₀} = 5 and the fourth row of F₀₀ is zero, and furthermore
 (i) m₂ ≥ 3, r-rank{F₀₁} = 2 and the second row of F₀₁ is zero, or
 - (ii) $m_2 \ge 4$ and r-rank $\{F_{02}\} = 0$,
- (c) r-rank{ F_{00} } = 5 and the fifth row of F_{00} equals $w_{00} (\neq 0)$ times the fourth,
- (d) $m_1 \ge 3$, r-rank $\{F_{10}\} = 2$ and the second row of F_{10} is zero, and furthermore
 - (i) $r-rank{F_{00}} = 5$ and the fifth row of F_{00} is zero,
 - (ii) $m_2 \ge 3$, r-rank $\{F_{01}\} = 2$ and the second row of F_{01} is zero, or
- (iii) $m_2 \ge 4$ and r-rank $\{F_{02}\} = 0$, or
- (e) $m_1 \ge 4$ and r-rank $\{F_{20}\} = 0$, and furthermore
 - (i) $r-rank{F_{00}} = 5$ and the fifth row of F_{00} is zero,
 - (ii) $m_2 \geq 3$, r-rank $\{F_{01}\} = 2$ and the second row of F_{01} is zero, or
- (iii) $m_2 \ge 4$ and r-rank $\{F_{02}\} = 0$.

In Lemma 3.1, it can be easily shown that there does not exist a $2^{m_1+m_2}$ -PBFF design of resolution $R(\{00, 10, 01, 11\} | \Omega)$ derived from an $SPBA(m_1 + m_2; \{\lambda_{i_1, i_2}\})$ with $N < \nu(m_1, m_2)$ and $2 \le m_1, m_2 \le 4$ satisfying the conditions (a)-(d) and (e)(i),(ii).

If $(T^{(1)}; T^{(2)})$ is an SPBA $(m_1 + m_2; \{\lambda_{i_1, i_2}\})$, then $(T^{(2)}; T^{(1)})$ is also the SPBA $(m_2 + m_1; \{\lambda_{i_1, i_2}\})$, where $\lambda_{i_1, i_2}^* = \lambda_{i_2, i_1}$. Thus if $(T^{(1)}; T^{(2)})$ derived from an SPBA $(m_1 + m_2; \{\lambda_{i_1, i_2}\})$ is of resolution R($\{00, 10, 01, 11\} | \Omega$), then $(T^{(2)}; T^{(1)})$ is also of resolution R($\{00, 10, 01, 11\} | \Omega$), and hence we only consider the case $2 \le m_1 \le m_2$.

Theorem 3.2. Let T be an SPBA $(m_1 + m_2; \{\lambda_{i_1,i_2}\})$ with $N < \nu(m_1, m_2)$, where $2 \le m_1 \le m_2 \le 4$. Then T is a $2^{m_1+m_2}$ -PBFF design of resolution $R(\{00, 10, 01, 11\} | \Omega)$ if and only if one of the following holds, or one of its FCA, LCA and CCA holds:

- (I) When $m_1 = 2,3$ and $m_1 \leq m_2 \leq 4$, there does not exist a design of resolution $R(\{00, 10, 01, 11\} | \Omega),$
- (II) when $m_1 = m_2 = 4$ ($\nu(4, 4) = 37$), $\lambda_{1,1} = 1$ and $\lambda_{a,2} = \lambda_{1,3} = \lambda_{2,x} = \lambda_{3,1} = \lambda_{3,3} = 0$ ($0 \le a \le 4$; x = 0, 1, 3, 4), and furthermore
 - (i) exactly three of $\{\lambda_{0,1}, \lambda_{0,3}, \lambda_{4,1}, \lambda_{4,3}\}$ are 1, exactly two of $\{\lambda_{1,0}, \lambda_{1,4}, \lambda_{3,0}, \lambda_{3,4}\}$ except for $\{\lambda_{1,0}, \lambda_{1,4}\}$ are 1 and $\lambda_{0,0} = \lambda_{0,4} = \lambda_{4,0} = \lambda_{4,4} = 0$, or
 - (ii) (a) exactly two of $\{\lambda_{0,1}, \lambda_{0,3}, \lambda_{4,1}, \lambda_{4,3}\}$ except for $\{\lambda_{0,1}, \lambda_{4,1}\}$, $\{\lambda_{0,3}, \lambda_{4,1}\}$ and $\{\lambda_{0,3}, \lambda_{4,3}\}$ are 1, and moreover
 - (1) exactly three of $\{\lambda_{1,0}, \lambda_{1,4}, \lambda_{3,0}, \lambda_{3,4}\}$ are 1 and $\lambda_{0,0} = \lambda_{0,4} = \lambda_{4,0} = \lambda_{4,4} = 0$, or
 - (2) exactly two of $\{\lambda_{1,0}, \lambda_{1,4}, \lambda_{3,0}, \lambda_{3,4}\}$ except for $\{\lambda_{1,0}, \lambda_{1,4}\}$ are 1 and $1 \le \lambda_{0,0} + \lambda_{0,4} + \lambda_{4,0} + \lambda_{4,4} \le 4$,
 - (b) $\lambda_{0,3} = \lambda_{4,1} = 1$ and $\lambda_{0,1} = \lambda_{4,3} = 0$, and moreover
 - (1) exactly three of $\{\lambda_{1,0}, \lambda_{1,4}, \lambda_{3,0}, \lambda_{3,4}\}$ are 1 and $\lambda_{0,0} = \lambda_{0,4} = \lambda_{4,0} = \lambda_{4,4} = 0$,
 - (2) exactly two of $\{\lambda_{1,0}, \lambda_{1,4}, \lambda_{3,0}, \lambda_{3,4}\}$ except for $\{\lambda_{1,0}, \lambda_{1,4}\}$ and $\{\lambda_{3,0}, \lambda_{3,4}\}$ are 1 and $1 \le \lambda_{0,0} + \lambda_{0,4} + \lambda_{4,0} + \lambda_{4,4} \le 4$, or

- (3) $\lambda_{3,0} = \lambda_{3,4} = 1$, $1 \leq \lambda_{0,0} + \lambda_{4,0} + \lambda_{4,4}$, $\lambda_{0,0} + \lambda_{0,4} + \lambda_{4,0} + \lambda_{4,4} \leq 4$ and $\lambda_{1,0} = \lambda_{1,4} = 0$, or
- (c) $\lambda_{0,3} = \lambda_{4,3} = 1$ and $\lambda_{0,1} = \lambda_{4,1} = 0$, and moreover
- (1) exactly three of $\{\lambda_{1,0}, \lambda_{1,4}, \lambda_{3,0}, \lambda_{3,4}\}$ are 1 and $\lambda_{0,0} = \lambda_{0,4} = \lambda_{4,0} = \lambda_{4,4} = 0$,
- (2) exactly two of $\{\lambda_{1,0}, \lambda_{1,4}, \lambda_{3,0}, \lambda_{3,4}\}$ except for $\{\lambda_{1,0}, \lambda_{1,4}\}$ and $\{\lambda_{1,4}, \lambda_{3,0}\}$ are 1 and $1 \le \lambda_{0,0} + \lambda_{0,4} + \lambda_{4,0} + \lambda_{4,4} \le 4$, or
- (3) $\lambda_{1,4} = \lambda_{3,0} = 1$, $1 \le \lambda_{0,0} + \lambda_{0,4} + \lambda_{4,4}$, $\lambda_{0,0} + \lambda_{0,4} + \lambda_{4,0} + \lambda_{4,4} \le 4$ and $\lambda_{1,0} = \lambda_{3,4} = 0$.

Proof. Checking the sufficiency of Lemma 3.1 for given indices λ_{i_1,i_2} , the results can be easily obtained.

Remark 3.2. In Theorem 3.2, the matrices $F_{\gamma_1\gamma_2}$ ($\gamma_1\gamma_2 = 00, 10, 01, 11$) are of full row rank and r-rank{ F_{20} } =r-rank{ F_{02} } = 0. Furthermore we have N = 36 for (II)(i), (ii)(a)(1), (b)(1), (c)(1), and $33 \le N \le 36$ for (II)(ii)(a)(2), (b)(2), (3), (c)(2), (3).

Example 3.1. Let T be the SPBA $(m_1 + m_2 = 4 + 4; \{\lambda_{0,0} = \lambda_{0,3} = \lambda_{1,1} = \lambda_{3,0} = \lambda_{3,4} = \lambda_{4,3} = 1, \lambda_{j_1,j_2} = 0 \ (j_1j_2 \neq 00, 03, 11, 30, 34, 43)\})$, which is GA-optimal as in Table 4.1 of Section 4. Then T is given by

which yields that

$$F_{20} = \boldsymbol{0} (1 \times 5), \quad F_{02} = \boldsymbol{0} (1 \times 5), \quad F_{11} = (1 \ 0 \cdots \cdots 0) \ (1 \times 9).$$

Thus the matrices $F_{\beta_1\beta_2}$ $(\beta_1\beta_2 = 00, 10, 01, 11)$ are of full row rank, and r-rank{ F_{20} } =r-rank{ F_{02} } = 0. Hence from (2.4), $A_{00}^{\#(00,00)}\theta_{00}$, i.e., θ_{00} , $A_{00}^{\#(10,10)}\theta_{00}$ and $A_{10}^{\#(10,10)}\theta_{10}$, i.e., θ_{10} , $A_{00}^{\#(01,01)}\theta_{01}$ and $A_{01}^{\#(01,01)}\theta_{01}$, i.e., θ_{01} , $A_{00}^{\#(20,20)}\theta_{20}$ and $A_{10}^{\#(20,20)}\theta_{20}$, $A_{00}^{\#(02,02)}\theta_{02}$ and $A_{01}^{\#(02,02)}\theta_{02}$, $A_{00}^{\#(11,11)}\theta_{11}$, $A_{10}^{\#(11,11)}\theta_{11}$, $A_{01}^{\#(11,11)}\theta_{11}$ and $A_{11}^{\#(11,11)}\theta_{11}$, i.e., θ_{11} are estimable, but $A_{20}^{\#(20,20)}\theta_{20}$ and $A_{02}^{\#(02,02)}\theta_{02}$ are not estimable. Therefore T is of resolution $R(\{00, 10, 01, 11\}|\Omega)$.

4 GA-optimal designs In this section, we present GA-optimal $2^{m_1+m_2}$ -PBFF designs of resolution $\mathbb{R}(\{00, 10, 01, 11\} | \Omega)$ derived from SPBAs $(m_1+m_2; \{\lambda_{i_1,i_2}\})$ with $N < \nu(m_1, m_2)$, where $2 \le m_1 \le m_2 \le 4$. Since $\Theta^* = P'\Theta$ and $C^* = P'CP$, where P is the permutation matrix given in the previous section, $C^*\Theta^*$ is estimable if and only if $C\Theta$ is estimable. Thus if $C\Theta$ is estimable (and hence there exists a matrix X such that $XM_T = C$), then its unbiased estimator is given by $C\hat{\Theta}$, where $\hat{\Theta}$ is a solution of the equations (2.1), and furthermore $\operatorname{Var}[C\hat{\Theta}] = \sigma^2 X M_T X'$. Here $\operatorname{Var}[y]$ denotes the variance-covariance matrix of a random vector y. By use of the algebraic structure of the ETMDPB association scheme, $XM_T X'$ is isomorphic to $X_{\beta_1\beta_2} K_{\beta_1\beta_2} X'_{\beta_1\beta_2}$ for $\beta_1\beta_2 \in S^*$.

Let $\sigma^2 V_T$ be the variance-covariance matrix of the linearly independent estimators in $C\hat{\Theta}$. Then from Lemma A.2, we have the following:

Lemma 4.1. Let T be a $2^{m_1+m_2}$ -PBFF design of resolution $\mathbb{R}(\{00, 10, 01, 11\} | \Omega)$ derived from an SPBA $(m_1+m_2; \{\lambda_{i_1,i_2}\})$ with $N < \nu(m_1, m_2)$. Then the matrix V_T (= $V_T(\alpha)$, say) is isomorphic to $V_{\beta_1\beta_2}(\alpha)$ ($\beta_1\beta_2 \in S^*$) for $0 \le \alpha \le 2$, where

$$\begin{split} V_{\beta_1\beta_2}(\alpha) &= (K_{\beta_1\beta_2})^{-1} & \text{if } F_{\beta_1\beta_2} \text{ is of full row rank,} \\ V_{\beta_1\beta_2}(\alpha) &= \begin{cases} (K_{00}^a)^{-1} & \text{if } \text{r-rank}\{F_{00}\} = 4 \text{ and the fourth and fifth rows of } F_{00} \text{ are } zero, \\ (K_{00}^b)^{-1} & \text{if } \text{r-rank}\{F_{00}\} = 5 \text{ and the fifth row of } F_{00} \text{ is zero,} \\ (K_{00}^c)^{-1} & \text{if } \text{r-rank}\{F_{00}\} = 5 \text{ and the fourth row of } F_{00} \text{ is zero,} \\ \begin{pmatrix} I_3 & 0 & 0 \\ 0 & g_{00}^{20,20}(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix} (K_{00}^b)^{-1} \begin{pmatrix} I_3 & 0 & 0 \\ 0 & g_{00}^{20,20}(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ & \text{if } \text{r-rank}\{F_{00}\} = 5 \text{ and the fifth row of } F_{00} \text{ equals } w_{00} \ (\neq 0) \\ & \text{times the fourth,} \end{cases} \\ V_{10}(\alpha) &= (K_{10}^a)^{-1} & \text{if } m_1 \geq 3, \text{ r-rank}\{F_{10}\} = 2 \text{ and the second row of } F_{10} \text{ is } zero, \end{cases} \\ V_{01}(\alpha) &= (K_{01}^a)^{-1} & \text{if } m_2 \geq 3, \text{ r-rank}\{F_{01}\} = 2 \text{ and the second row of } F_{01} \text{ is } zero, \end{cases}$$

$$V_{20}(\alpha) = \begin{cases} 0 & \text{if } m_1 \ge 4 \text{ and } r\text{-rank}\{F_{20}\} = 0, \\ vanishes & \text{if } m_1 = 2, 3, \end{cases}$$
$$V_{02}(\alpha) = \begin{cases} 0 & \text{if } m_2 \ge 4 \text{ and } r\text{-rank}\{F_{02}\} = 0, \\ vanishes & \text{if } m_2 = 2, 3. \end{cases}$$

Here K_{00}^{a} , K_{00}^{b} and K_{00}^{c} are the 4 × 4, 5 × 5 and 5 × 5 submatrices of K_{00} corresponding to the first three, and furthermore the last, the fourth and last, and the fifth and last rows and columns, respectively, and both K_{10}^{a} and K_{01}^{a} are, respectively, the 2 × 2 submatrices of K_{10} and of K_{01} corresponding to the first and last rows and columns, and $g_{00}^{20,20}(\alpha)$ for $0 \le \alpha \le 2$ are given in Remark 3.1.

From Lemma 4.1, the following holds:

Theorem 4.1. Let T be a $2^{m_1+m_2}$ -PBFF design of resolution $R(\{00, 10, 01, 11\}|\Omega)$ derived from an SPBA $(m_1 + m_2; \{\lambda_{i_1, i_2}\})$ with N assemblies, where $N < \nu(m_1, m_2)$. Then we get

$$\operatorname{tr}\{V_{T}(\alpha)\} = \phi_{00}\operatorname{tr}\{V_{00}(\alpha)\} + \phi_{10}\operatorname{tr}\{V_{10}(\alpha)\} + \phi_{01}\operatorname{tr}\{V_{01}(\alpha)\}$$

$$+ \phi_{20}\operatorname{tr}\{V_{20}(\alpha)\} (if \ m_{1} \ge 4) + \phi_{02}\operatorname{tr}\{V_{02}(\alpha)\} (if \ m_{2} \ge 4) + \phi_{11}\operatorname{tr}\{V_{11}(\alpha)\}$$

$$for \ 0 \le \alpha \le 2.$$

Remark 4.1. As shown in Section 3, if $(T^{(1)}; T^{(2)})$ (= T, say) is a $2^{m_1+m_2}$ -PBFF design of resolution $R(\{00, 10, 01, 11\} | \Omega)$, then $(T^{(2)}; T^{(1)})$ (= T^* , say) is also the $2^{m_2+m_1}$ -PBFF design of resolution $R(\{00, 10, 01, 11\} | \Omega)$. Thus we have $tr\{V_T(\alpha)\} = tr\{V_{T^*}(\alpha)\}$ for $0 \le \alpha \le 2$.

As a generalization of the A-optimality criterion, Kuwada et al. [6] introduced the GAoptimality criterion for selecting a design. For resolution $R(\{00, 10, 01, 11\}|\Omega)$ designs, we recall the definition of GA_{α} -optimality criteria:

Definition 4.1. Let T be a $2^{m_1+m_2}$ -PBFF design of resolution $\mathbb{R}(\{00, 10, 01, 11\}|\Omega)$ derived from an SPBA $(m_1 + m_2; \{\lambda_{i_1, i_2}\})$ with N assemblies, where $N < \nu(m_1, m_2)$. If $\operatorname{tr}\{V_T(\alpha)\} \leq \operatorname{tr}\{V_{T^*}(\alpha)\}$ for any T^* , which is a resolution $\mathbb{R}(\{00, 10, 01, 11\}|\Omega)$ design derived from an SPBA $(m_1 + m_2; \{\lambda_{i_1, i_2}^*\})$ with the same number of assemblies, then T is said to be $\operatorname{GA}_{\alpha}$ -optimal for $0 \leq \alpha \leq 2$.

The GA₁- and GA₂-optimality criteria are suitable for comparison of designs in the sense that they reflect the confounding (or aliasing) structure of the parametric vectors (see [8]). Using Theorems 3.2 and 4.1, we can obtain GA_{α}-optimal 2⁴⁺⁴-PBFF designs of resolution R({00, 10, 01, 11}| Ω) derived from SPBAs(4+4; { λ_{i_1,i_2} }) with $N < \nu(4, 4)$ (= 37), which are given by Table 4.1. In this table, from Remark 3.2 and Lemma 4.1, we have $33 \leq N \leq 36$, and $V_T(0) = V_T(1) = V_T(2)$. Furthermore GA_{α}-optimal designs for each N except for N = 36 are derived from the same SPBAs for $0 \leq \alpha \leq 2$. Note that in Table 4.1,

 $\lambda' = (\lambda_{0,0}, \lambda_{0,1}, \dots, \lambda_{0,4}, \lambda_{1,0}, \dots, \lambda_{1,4}, \dots, \lambda_{4,0}, \dots, \lambda_{4,4})$, and the number (II)(ii)(c)(2) of the last column corresponds to Theorem 3.2 (II)(ii)(c)(2). Moreover from (2.8), if a resolution R({00, 10, 01, 11}|\Omega) design derived from an SPBA($m_1 + m_2$; { λ_{i_1,i_2} }) is GA_{α}-optimal for $0 \leq \alpha \leq 2$, then the designs derived from its FCA, LCA and/or CCA are also GA_{α}-optimal.

Note that GA-optimal $2^{m_1+m_2}$ -PBFF designs with (A) det $(K_{\gamma_1\gamma_2}) \neq 0$ ($\gamma_1\gamma_2 = 00, 10, 01, 20$ (if $m_1 \geq 4$), 02 (if $m_2 \geq 4$)) and $K_{11} = 0$ for $4 \leq m_1 + m_2 \leq 6$, and (B) det $(K_{\gamma_1\gamma_2}) \neq 0$ ($\gamma_1\gamma_2 = 00, 10, 01$), and furthermore (a) $K_{20} \neq 0$ (if $m_1 \geq 4$) or vanishes ($m_1 = 2, 3$) and $K_{02} = K_{11} = 0$ for $2 \leq m_1 \leq 4$ and $m_2 = 4$, and (b) $K_{20} = K_{02} = K_{11} = 0$ for $m_1 = m_2 = 4$ were obtained by Kuwada [2] and Kuwada and Matsuura [5], respectively, where det(A) denotes the determinant of a matrix A. Moreover GA_{α} -optimal $2^{m_1+m_2}$ -PBFF designs of resolutions $R(\{00, 10, 01, 20, 02\}|\Omega)$ and $R(\{00, 10, 01, 20\}|\Omega)$, and of resolution $R(\{00, 10, 01, 20\}|\Omega)$ with $N < \nu(m_1, m_2)$ and $2 \leq m_1, m_2 \leq 4$ have been obtained by Kuwada et al. [7, 8], respectively.

Table 4.1. GA_{α} -optimal 2⁴⁺⁴-PBFF designs.

N	λ'	$\mathrm{tr}\{V_T(0)\}$	$\operatorname{tr}\{V_T(1)\}$	$\mathrm{tr}\{V_T(2)\}$	Theorem
33	10010 01000 00000 10001 00010	1.48337	1.48337	1.48337	(II)(ii)(c)(2)
34	$20010\ 01000\ 00000\ 10001\ 00010$	1.43209	1.43209	1.43209	(II)(ii)(c)(2)
35	30010 01000 00000 10001 00010	1.41500	1.41500	1.41500	(II)(ii)(c)(2)
36	30011 01000 00000 10001 00010	1.40511	1.40511	1.40511	(II)(ii)(c)(2)
	30010 01000 00000 10001 10010	1.40511	1.40511	1.40511	(II)(ii)(c)(2)

Appendix Matrix equation Consider a matrix equation ZL = H with a variable matrix Z of order n, where $L = ||L_{ij}||$ and $H = ||H_{ij}||$ $(1 \le i, j \le 3)$ are the positive semidefinite matrix of order n with rank $\{L\} = \operatorname{rank}\left\{\begin{pmatrix}L_{11} & L_{12} \\ L_{21} & L_{22}\end{pmatrix}\right\} = n_1 + n_2 (\ge 1)$ and a matrix of order n with $H_{11} = I_{n_1}$, $H_{12} = H'_{21} = O_{n_1 \times n_2}$ and $H_{13} = H'_{31} = O_{n_1 \times n_3}$, respectively. Here L_{ij} and H_{ij} are of size $n_i \times n_j$, $n_1 + n_2 + n_3 = n$, and $O_{p \times q}$ is the null matrix of size $p \times q$. The matrix equation ZL = H has a solution if and only if $\operatorname{rank}\{L'\} = \operatorname{rank}\{(L'; H')\}$. Thus we have the following (see [1]):

Lemma A.1. A matrix equation ZL = H has a solution, where Z is a variable matrix of order n, if and only if

- (I) $n_3 = 0$, where H_{22} (if $n_2 \ge 1$) is arbitrary, or
- (II) $n_3 \ge 1$ and in addition
 - (i) when $n_2 = 0$, $L_{33} = O_{n_3 \times n_3}$, and furthermore $H_{33} = O_{n_3 \times n_3}$, or
 - (ii) when $n_2 \ge 1$, there exists a matrix W of size $n_3 \times n_2$ such that $(L_{31}; L_{32}; L_{33}) = W(L_{21}; L_{22}; L_{23})$, and furthermore $H'_{23} = WH'_{22}$ and $H'_{33} = WH'_{32}$, where H_{22} and H_{32} are arbitrary.

In Lemma A.1, the matrix equation ZL = H has a solution Z such that $Z = HL^{-1}$ for the case (I), $Z = \begin{pmatrix} L_{11}^{-1} & Z_{13} \\ 0 & Z_{33} \end{pmatrix}$ for the case (II)(i), where Z_{i3} (i = 1, 3) are arbitrary, and $Z = \begin{pmatrix} \begin{pmatrix} I_{n_1} & 0 \\ 0 & H_{22} \\ 0 & H_{32} \end{pmatrix} \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix}^{-1} - \begin{pmatrix} 0 & Z_{13}W' \\ 0 & Z_{23}W' \\ 0 & Z_{33}W' \end{pmatrix}$; $\begin{pmatrix} Z_{13} \\ Z_{23} \\ Z_{33} \end{pmatrix}$ for the case (II)(ii), where Z_{i3} (i = 1, 2, 3) are arbitrary. Thus we obtain the following (see [7]):

$$ZLZ' = \begin{cases} L_{11}^{-1} & \text{if } n_2 = n_3 = 0, \\ \begin{pmatrix} I_{n_1} \\ 0 \end{pmatrix} L_{11}^{-1} \begin{pmatrix} I_{n_1}; & 0 \end{pmatrix} & \text{if } n_2 = 0 \text{ and } n_3 \ge 1, \\ \begin{pmatrix} I_{n_1} & 0 \\ 0 & H_{22} \end{pmatrix} \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix}^{-1} \begin{pmatrix} I_{n_1} & 0 \\ 0 & H_{22}' \end{pmatrix} & \text{if } n_2 \ge 1 \text{ and } n_3 = 0, \\ \begin{pmatrix} I_{n_1} & 0 \\ 0 & H_{22} \\ 0 & H_{32} \end{pmatrix} \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix}^{-1} \begin{pmatrix} I_{n_1} & 0 & 0 \\ 0 & H_{22}' & H_{32}' \end{pmatrix} & \text{if } n_2 \ge 1 \text{ and } n_3 \ge 1, \end{cases}$$

where H_{22} and H_{32} are arbitrary. Let Z^* be an $(n_1 + n_2) \times n$ submatrix of a solution Z whose rows are linearly independent. Then from ZLZ' given above, we have the following lemma:

Lemma A.2.

$$Z^*LZ^{*\prime} = \begin{cases} L_{11}^{-1} & \text{if } n_2 = 0, \\ \begin{pmatrix} I_{n_1} & 0 \\ 0 & H_{22} \end{pmatrix} \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix}^{-1} \begin{pmatrix} I_{n_1} & 0 \\ 0 & H'_{22} \end{pmatrix} & \text{if } n_2 \ge 1. \end{cases}$$

Acknowledgments

The authors would like to express their hearty thanks to the referee for his/her valuable comments and suggestions which have improved the early draft of this paper. The last author's work was partially supported by Grant-in-Aid for Scientific Research (C) of the JSPS under Contract Number 14580348.

References

- S. Ghosh and M. Kuwada, Estimable parametric functions for balanced fractional 2^m factorial designs, *Statistical Research Group*, Technical Report 01-7 (2001), Hiroshima University.
- [2] M. Kuwada, Optimal partially balanced fractional 2^{m1+m2} factorial designs of resolution IV, Ann. Inst. Statist. Math., A38 (1986), 343-351.
- [3] M. Kuwada, A-optimal partially balanced fractional $2^{m_1+m_2}$ factorial designs of resolution V, with $2 \le m_1 + m_2 \le 6$, J. Statist. Plann. Inference, **18** (1988), 177-193.
- [4] M. Kuwada and K. Ikeda, On some partially balanced fractional 2^{m1+m2} factorial designs of resolution IV, J. Japan Statist. Soc., 28 (1998). 89-100.

- [5] M. Kuwada and M. Matsuura, Further results on partially balanced fractional 2^{m1+m2} factorial designs of resolution IV, J. Japan Statist. Soc., 14 (1984), 69-83.
- [6] M. Kuwada, Y. Hyodo and H. Yumiba, GA-optimal balanced fractional 2^m factorial designs of resolution R^{*}({0,1}|3), Sankhyā, 66 (2004), 343-361.
- [7] M. Kuwada, S. Lu, Y. Hyodo and E. Taniguchi, GA-optimal partially balanced fractional 2^{m₁+m₂} factorial designs of resolutions R({00, 10, 01, 20, 02}|Ω) and R({00, 10, 01, 20, 11}|Ω) with 2 ≤ m₁, m₂ ≤ 4, (2006a), (to appear in) J. Japan Statist. Soc.
- [8] M. Kuwada, S. Lu, Y. Hyodo and E. Taniguchi, GA-optimal partially balanced fractional $2^{m_1+m_2}$ factorial designs of resolution $\mathbb{R}(\{00, 10, 01, 20\} | \Omega)$ with $2 \le m_1, m_2 \le 4$, (2006b), (to appear in) Commun. Statist.-Theory Meth., **35**(11).
- [9] R. Nishii, Balanced fractional r^m × sⁿ factorial designs and their analysis, *Hiroshima Math. J.*, **11** (1981), 379-413.
- [10] T. Shirakura and M. Kuwada, Covariance matrices of the estimates for balanced fractional 2^m factorial designs of resolution $2\ell + 1$, J. Japan Statist. Soc., 6 (1976), 27-31.
- [11] J. N. Srivastava, Optimal balanced 2^m fractional factorial designs, *Essays in Probability and Statistics*, (eds. Bose, R. C. et al.), The University of North Carolina Press, Chapel Hill, 1970, 689-706.
- [12] J. N. Srivastava and D. V. Chopra, On the characteristic roots of the information matrix of 2^m balanced factorial designs of resolution V, with applications, Ann. Math. Statist., 42 (1971), 722-734.
- [13] S. Yamamoto and Y. Hyodo, Extended concept of resolution and the designs derived from balanced arrays, *TRU Math.*, **20** (1984), 341-349.
- [14] S. Yamamoto, T. Shirakura and M. Kuwada, Balanced arrays of strength 2ℓ and balanced fractional 2^m factorial designs, Ann. Inst. Statist. Math., A27 (1975), 143-157.
- [15] S. Yamamoto, T. Shirakura and M. Kuwada, Characteristic polynomials of the information matrices of balanced fractional 2^m factorial designs of higher $(2\ell + 1)$ resolution, *Essays in Probability and Statistics*, (eds. Ikeda, S. et al.), Shinko Tsusho, Tokyo, 1976, 73-94.

Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan e-mail : lushujie@mis.hiroshima-u.ac.jp

Graduate School of Informatics, Okayama University of Science, Okayama 700-0005, Japan e-mail : hyodo@gs.finfo.ous.ac.jp Graduate School of Informatics, Okayama University of Science, Okayama 700-0005, Japan e-mail : nabu_ru@yahoo.co.jp

Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan Now at Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan e-mail : kuwada@mis.hiroshima-u.ac.jp