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Abstract. Consider a partially balanced fractional 2m1+m2 factorial design derived
from a simple partially balanced array such that the general mean, all the m1 + m2

main effects, some linear combinations of the
�

m1
2

�
two-factor interactions and of the�

m2
2

�
two-factor ones and all the m1m2 two-factor ones are estimable, where the three-

factor and higher-order interactions are assumed to be negligible, and 2 ≤ mk (k =
1, 2). Furthermore we consider the situation in which the number of assemblies is less
than the number of non-negligible factorial effects. Under these situations, this paper
presents optimal designs with respect to the generalized A-optimality criterion, where
2 ≤ m1 ≤ m2 ≤ 4.

1 Introduction The characteristic roots of the information matrix of a balanced frac-
tional 2m factorial (2m-BFF) design of resolution V were obtained by Srivastava and Chopra
[12]. Using the algebraic structure of the triangular multidimensional partially balanced
(TMDPB) association scheme, Yamamoto et al. [15] extended their results to a 2m-BFF
design of resolution 2� + 1, where 2� ≤ m. A balanced array of two symbols and m con-
straints, which is a generalization of an orthogonal array, turns out to be a 2m-BFF design
under certain conditions (see [11, 14]).

As a special case of an asymmetrical balanced array introduced by Nishii [9], a partially
balanced array (PBA) of two symbols was presented by Kuwada [3]. A PBA of strength
m1+m2 is said to be simple, and such an array is briefly denoted by SPBA(m1+m2; {λi1,i2}),
where λi1,i2 are the indices of an SPBA (e.g., [7, 8]). A fractional factorial design derived
from an array of two symbols and m1+m2 constraints is called a partially balanced fractional
2m1+m2 factorial (2m1+m2-PBFF) design if the variance-covariance matrix of the estimators
of the factorial effects to be of interest is invariant under any permutation within mk factors
for k = 1, 2 each. Under certain conditions, a PBA of two symbols and m1 +m2 constraints
becomes a 2m1+m2-PBFF design (e.g., [3, 4]).

Kuwada et al. [7, 8] have obtained optimal 2m1+m2-PBFF designs with respect to
the generalized A-optimality (GA-optimality) criterion such that the general mean and all
the m1 + m2 main effects are estimable, and furthermore (A) (a) all the

(
m1
2

)
two-factor

interactions, all the
(
m2
2

)
two-factor ones and some linear combinations of the m1m2 two-

factor ones are estimable, and they are called resolution R({00, 10, 01, 20, 02}|Ω) designs,

2000 Mathematics Subject Classification. 62K05, 05B30.
Key words and phrases. Estimable parametric functions, ETMDPB association algebra, GA-optimality

criterion, PBFF designs, Resolution.



1104 SHUJIE LU, EIJI TANIGUCHI, YOSHIFUMI HYODO AND MASAHIDE KUWADA

where Ω = {00, 10, 01, 20, 02, 11} and 2 ≤ m1 ≤ m2 ≤ 4, (b) all the
(
m1
2

)
two-factor

ones, some linear combinations of the
(
m2
2

)
two-factor ones and all the m1m2 two-factor

ones are estimable, and they are called resolution R({00, 10, 01, 20, 11}|Ω) designs, where
2 ≤ m1, m2 ≤ 4, and (B) all the

(
m1
2

)
two-factor ones, and some linear combinations of the(

m2
2

)
two-factor ones and of the m1m2 two-factor ones are estimable, and they are called

resolution R({00, 10, 01, 20}|Ω) designs, where 2 ≤ m1, m2 ≤ 4.
In this paper, we consider a 2m1+m2-PBFF design such that the general mean, all the

m1 + m2 main effects, some linear combinations of the
(
m1
2

)
two-factor interactions and of

the
(
m2
2

)
two-factor ones and all the m1m2 two-factor ones are estimable, where the three-

factor and higher-order interactions are assumed to be negligible and 2 ≤ m1 ≤ m2 ≤ 4, and
it is called a resolution R({00, 10, 01, 11}|Ω) design. Furthermore, we present GA-optimal
2m1+m2 -PBFF designs of resolution R({00, 10, 01, 11}|Ω) when the number of assemblies
(or treatment combinations) is less than the number of factorial effects up to the two-factor
interactions.

2 Preliminaries We consider a fractional 2m1+m2 factorial design T with N assemblies,
where the three-factor and higher-order interactions are assumed to be negligible and 2 ≤
mk (k = 1, 2). Then the 1× ν(m1, m2) vector of the non-negligible factorial effects is given
by (θ′

00; θ
′
10; θ

′
01; θ

′
20; θ

′
02; θ

′
11) (= Θ′, say), where ν(m1, m2) = 1 + (m1 + m2) +

(
m1+m2

2

)
,

and θ′
00 = {θ(φ;φ)}, θ′

10 = {θ(u; φ)|1 ≤ u ≤ m1}, θ′
01 = {θ(φ; v)|1 ≤ v ≤ m2}, θ′

20 =
{θ(u1u2; φ)|1 ≤ u1 < u2 ≤ m1}, θ′

02 = {θ(φ; v1v2)|1 ≤ v1 < v2 ≤ m2} and θ′
11 =

{θ(u; v)|1 ≤ u ≤ m1, 1 ≤ v ≤ m2}. Here θ(φ;φ) is the general mean, θ(u; φ) and θ(φ; v) are
the main effects of the u-th factor in the m1 factors and of the v-th factor in the m2 factors,
respectively, and θ(u1u2; φ), θ(φ; v1v2) and θ(u; v) are the two-factor interactions of the
u1-th and u2-th factors in the m1 factors, of the v1-th and v2-th factors in the m2 factors,
and of the u-th factor in the m1 factors and the v-th factor in the m2 factors, respectively.
Thus the ordinary linear model based on T is given by

y(T ) = ET Θ + eT ,

where y(T ), ET and eT are an observation vector of size N × 1, the N × ν(m1, m2) design
matrix whose elements are either 1 or −1, and an N × 1 error vector with mean 0N and
variance-covariance matrix σ2IN , respectively. Here 0p and Ip denote the p× 1 null vector
and the identity matrix of order p, respectively. The normal equations for estimating Θ are
given by

MT Θ̂ = E′
T y(T ),(2.1)

where MT (= E′
T ET ) is the information matrix of order ν(m1, m2).

Let A
(a1a2,b1b2)
α1α2 and D

(a1a2,b1b2)
α1α2 for a1a2, b1b2 ∈ Sα1α2 (α1α2 ∈ S∗) be the local as-

sociation matrices of size na1a2 × nb1b2 and the ordered association matrices of order
ν(m1, m2) of the extended TMDPB (ETMDPB) association scheme, respectively, where
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S00 = {00, 10, 01, 20, 02, 11}, S10 = {10, 20 (if m1 ≥ 3), 11}, S01 = {01, 02 (if m2 ≥ 3), 11},
S20 = {20} (if m1 ≥ 4), S02 = {02} (if m2 ≥ 4), S11 = {11}, S∗ = {00, 10, 01, 20 (if m1 ≥
4), 02 (if m2 ≥ 4), 11}, and np1p2 =

(
m1
p1

)(
m2
p2

)
(see [3]). Note that A

(a1a2,b1b2)
α1α2 and D

(a1a2,b1b2)
α1α2

are the (0,1) matrices. Further let A
#(a1a2,b1b2)
β1β2

and D
#(a1a2,b1b2)
β1β2

for a1a2, b1b2 ∈ Sβ1β2 (β1β2

∈ S∗) be the matrices of size na1a2 × nb1b2 and of order ν(m1, m2), respectively. Then the
relationships between A

(a1a2,b1b2)
α1α2 and A

#(a1a2,b1b2)
β1β2

, and D
(a1a2,b1b2)
α1α2 and D

#(a1a2,b1b2)
β1β2

are
given by

A
(a1a2,b1b2)
α1α2 (= A

(b1b2,a1a2)′
α1α2 ) =

∑
β1β2

z
(a1a2,b1b2)
β1β2α1α2

A
#(a1a2,b1b2)
β1β2

,

(2.2) D
(a1a2,b1b2)
α1α2 (= D

(b1b2,a1a2)′
α1α2 ) =

∑
β1β2

z
(a1a2,b1b2)
β1β2α1α2

D
#(a1a2,b1b2)
β1β2

for αk ≤ ak, bk ≤ 2 and 0 ≤ αk ≤ 2,

A
#(a1a2,b1b2)
β1β2

(= A
#(b1b2,a1a2)

′

β1β2
) =

∑
α1α2

zβ1β2α1α2
(a1a2,b1b2)A

(a1a2,b1b2)
α1α2 ,

(2.3) D
#(a1a2,b1b2)
β1β2

(= D
#(b1b2,a1a2)

′

β1β2
) =

∑
α1α2

zβ1β2α1α2
(a1a2,b1b2)D

(a1a2,b1b2)
α1α2

for βk ≤ ak, bk ≤ 2 and 0 ≤ βk ≤ 2,

where z
(a1a2,b1b2)
β1β2α1α2

= z
(a1,b1)
β1α1

z
(a2,b2)
β2α2

and zβ1β2α1α2
(a1a2,b1b2) = zβ1α1

(a1,b1)z
β2α2
(a2,b2)

. Here

z
(ak,bk)
βkαk

(= z
(bk,ak)
βkαk

) =
∑αk

p=0(−1)αk−p
(
ak−βk

p

)(
ak−p

ak−αk

)(
mk−ak−βk+p

p

)
×

√(
mk−ak−βk

bk−ak

)(
bk−βk

bk−ak

)
/
(
bk−ak+p

p

)
for ak ≤ bk,

zβkαk

(ak,bk) (= zβkαk

(bk,ak)) = φβk
z
(ak,bk)
βkαk

/{(mk

ak

)(
ak

αk

)(
mk−ak

bk−ak+αk

)} for ak ≤ bk,

φβ =
(
m
β

) − (
m

β−1

)
(see [10, 15]). The properties of these matrices are cited in the following:

(2.4)

∑
β1β2

A
#(a1a2,a1a2)
β1β2

= Ina1a2
, A

#(a1a2,c1c2)
β1β2

A
#(c1c2,b1b2)
γ1γ2 = δβ1γ1δβ2γ2A

#(a1a2,b1b2)
β1β2

,

rank{A#(a1a2,b1b2)
β1β2

} = φβ1β2 ,∑
a1a2

∑
β1β2

D
#(a1a2,a1a2)
β1β2

= Iν(m1,m2),

D
#(a1a2,c1c2)
β1β2

D
#(d1d2,b1b2)
γ1γ2 = δc1d1δc2d2δβ1γ1δβ2γ2D

#(a1a2,b1b2)
β1β2

,

rank{D#(a1a2,b1b2)
β1β2

} = φβ1β2

(see [3]), where φβ1β2 = φβ1φβ2 and δpq is the Kronecker delta.
Let A be the algebra generated by the linear closure of the ordered association matrices

D
(a1a2,b1b2)
α1α2 , and it is denoted by [D(a1a2,b1b2)

α1α2 |a1a2, b1b2 ∈ Sα1α2 (α1α2 ∈ S∗)]. Then from
(2.2) and (2.3), we obtain A = [D#(a1a2,b1b2)

β1β2
|a1a2, b1b2 ∈ Sβ1β2 (β1β2 ∈ S∗)]. Note that

A is called the ETMDPB association algebra (see [3]). Using the properties of A, the
information matrix MT is given by

(2.5) MT =
∑

a1a2

∑
b1b2

∑
α1α2

γ|a1−b1|+2α1,|a2−b2|+2α2D
(a1a2,b1b2)
α1α2

=
∑

a1a2

∑
b1b2

∑
β1β2

κa1a2,b1b2
β1β2

D
#(a1a2,b1b2)
β1β2

,
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where T is a 2m1+m2-PBFF design derived from an SPBA(m1 + m2; {λi1,i2}), and the
relationships between γi1,i2 and λj1,j2 , and κa1a2,b1b2

β1β2
and γi1,i2 are given by

(2.6)
γi1,i2 =

∑
j1,j2

[
∑

p1,p2
{∏2

k=1(−1)pk
(

ik

pk

)(
mk−ik

jk−ik+pk

)}]λj1,j2 ,

κa1a2,b1b2
β1β2

=
∑

α1α2
z
(a1a2,b1b2)
β1β2α1α2

γ|a1−b1|+2α1,|a2−b2|+2α2 ,

respectively. Thus from the properties of the algebra A, the information matrix MT is
isomorphic to ||κa1a2,b1b2

β1β2
|| (= Kβ1β2 , say) of order 6 for β1β2 = 00, of order 3 (if m1 ≥ 3)

(or 2 (if m1 = 2)) for β1β2 = 10, of order 3 (if m2 ≥ 3) (or 2 (if m2 = 2)) for β1β2 = 01,
of order 1 (if m1 ≥ 4) for β1β2 = 20, of order 1 (if m2 ≥ 4) for β1β2 = 02 and of order
1 for β1β2 = 11 with multiplicities φ00, φ10, φ01, φ20, φ02 and φ11, respectively (see [3]).
Note that Kβ1β2 are called the irreducible representations of MT with respect to the ideals
[D#(a1a2,b1b2)

β1β2
|a1a2, b1b2 ∈ Sβ1β2 ] (= Aβ1β2 , say) of A for β1β2 ∈ S∗. From (2.6), we have

(2.7) Kβ1β2 = (Dβ1β2Fβ1β2Λβ1β2)(Dβ1β2Fβ1β2Λβ1β2)
′

(see [7]), where

D00 = diag[1;−1/
√

m1;−1/
√

m2; 1/
√

2m1(m1 − 1); 1/
√

2m2(m2 − 1); 1/
√

m1m2 ],

D10 =
{

diag[2;−2/
√

m2 ] if m1 = 2,
diag[2;−2/

√
m1 − 2;−2/

√
m2 ] if m1 ≥ 3,

D01 =
{

diag[2;−2/
√

m1 ] if m2 = 2,
diag[2;−2/

√
m2 − 2;−2/

√
m1 ] if m2 ≥ 3,

D20 =
{

vanishes if m1 = 2, 3,
22 if m1 ≥ 4,

D02 =
{

vanishes if m2 = 2, 3,
22 if m2 ≥ 4,

D11 = 22,

the column vectors of F00 corresponding to λa,x (0 ≤ a ≤ m1; 0 ≤ x ≤ m2), of F10 cor-
responding to λb,y (1 ≤ b ≤ m1 − 1; 0 ≤ y ≤ m2), of F01 corresponding to λc,z (0 ≤ c ≤
m1; 1 ≤ z ≤ m2−1), of F20 (if m1 ≥ 4) corresponding to λd,u (2 ≤ d ≤ m1−2; 0 ≤ u ≤ m2),
of F02 (if m2 ≥ 4) corresponding to λe,v (0 ≤ e ≤ m1; 2 ≤ v ≤ m2 − 2) and of F11

corresponding to λf,w (1 ≤ f ≤ m1 − 1; 1 ≤ w ≤ m2 − 1) are given by
√

λa,x(1, m1 −
2a, m2−2x, (m1−2a)2−m1, (m2−2x)2−m2, (m1−2a)(m2−2x))′,

√
λb,y(1, m1−2b, m2−

2y)′ (if m1 ≥ 3) (or
√

λ1,y(1, m2 − 2y)′ (if m1 = 2)),
√

λc,z(1, m2 − 2z, m1 − 2c)′ (if m2 ≥
3) (or

√
λc,1(1, m1 − 2c)′ (if m2 = 2)),

√
λd,u,

√
λe,v and

√
λf,w, respectively, and the

diagonal elements of Λβ1β2 (β1β2 ∈ S∗) corresponding to λg,s (β1 ≤ g ≤ m1 − β1; β2 ≤
s ≤ m2 − β2) are given by

√(
m1−2β1

g−β1

)(
m2−2β2

s−β2

)
((i) if β1 = β2 = 0, then g = a and s = x,

(ii) if β1 = 1 and β2 = 0, then g = b and s = y, (iii) if β1 = 0 and β2 = 1, then g = c and
s = z, (iv) if m1 ≥ 4, β1 = 2 and β2 = 0, then g = d and s = u, (v) if m2 ≥ 4, β1 = 0
and β2 = 2, then g = e and s = v, and (vi) if β1 = β2 = 1, then g = f and s = w) and the
off-diagonal elements of them are all zero. Note that F00 is of size 6 × {(m1 + 1)(m2 + 1)},
F10 is of size 3 × {(m1 − 1)(m2 + 1)} (if m1 ≥ 3) (or 2 × (m2 + 1) (if m1 = 2)), F01

is of size 3 × {(m1 + 1)(m2 − 1)} (if m2 ≥ 3) (or 2 × (m1 + 1) (if m2 = 2)), F20 (if
m1 ≥ 4) is of size 1×{(m1 − 3)(m2 + 1)}, F02 (if m2 ≥ 4) is of size 1×{(m1 + 1)(m2 − 3)}
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and F11 is of size 1×{(m1−1)(m2−1)}, and Λβ1β2 are of order (m1+1−2β1)(m2+1−2β2).

Remark 2.1. From (2.5), the a1a2-th row block and the b1b2-th column block of
D

#(a1a2,b1b2)
β1β2

are concerned with θa1a2 and θb1b2 , respectively. Thus from (2.7), the first,
second, third, fourth, fifth and last rows of F00 correspond to θ00, θ10, θ01, θ20, θ02 and
θ11, respectively, the first, second (if m1 ≥ 3) and last rows of F10 correspond to θ10, θ20

and θ11, respectively, the first, second (if m2 ≥ 3) and last rows of F01 correspond to
θ01, θ02 and θ11, respectively, and the rows of F20 (if m1 ≥ 4), F02 (if m2 ≥ 4) and F11

corresponds to θ20, θ02 and θ11, respectively.

It follows from the definitions of Dβ1β2 , Fβ1β2 and Λβ1β2 that rank{Kβ1β2}
=r-rank{Fβ1β2}, where r-rank{A} denotes the row rank of a matrix A.

Definition 2.1. Let (T (1); T (2)) (= T, say) be an SPBA(m1 + m2; {λi1,i2}), where T (k)

are of size N × mk (k = 1, 2), and further let T̃ = (T̄ (1); T (2)), T̆ = (T (1); T̄ (2)) and
T̄ = (T̄ (1); T̄ (2)), where T̄ (k) denotes the complement of T (k). Then T̃ , T̆ and T̄ are called
the former complementary array (FCA) of T, the latter complementary array (LCA) of T

and the completely complementary array (CCA) of T, respectively.

Note that if T is an SPBA(m1 + m2; {λi1,i2}), then T̃ , T̆ and T̄ are the SPBA(m1 +
m2; {λm1−i1,i2}), SPBA(m1 + m2; {λi1,m2−i2}) and SPBA(m1 + m2; {λm1−i1,m2−i2}), re-
spectively. Let MT̃ , MT̆ and MT̄ be the information matrices associated with T̃ , T̆ and T̄ ,
respectively, where T is an SPBA(m1 + m2; {λi1,i2}). Further let K̃β1β2 , K̆β1β2 and K̄β1β2 ,
respectively, denote the irreducible representations of MT̃ , MT̆ and MT̄ with respect to the
ideals Aβ1β2 of the algebra A. Then from (2.7), we can get

(2.8) K̃β1β2 = ∆̃β1β2Kβ1β2∆̃β1β2 , K̆β1β2 = ∆̆β1β2Kβ1β2∆̆β1β2 ,

K̄β1β2 = ∆̄β1β2Kβ1β2∆̄β1β2 for β1β2 ∈ S∗

(see [7]), where ∆̃00 = diag[1;−1; 1; 1; 1;−1], ∆̆00 = diag[1; 1;−1; 1; 1;−1], ∆̄00 = diag[1;
−1;−1; 1; 1; 1], ∆̃10 = diag[1;−1; 1] (if m1 ≥ 3) (or diag[1; 1] (if m1 = 2)), ∆̆10 =
diag[1; 1;−1] (if m1 ≥ 3) (or diag[1;−1] (if m1 = 2)), ∆̄10 = diag[1;−1;−1] (if m1 ≥ 3) (or
diag[1;−1] (if m1 = 2)), ∆̃01 = diag[1; 1;−1] (if m2 ≥ 3) (or diag[1;−1] (if m2 =
2)), ∆̆01 = diag[1;−1; 1] (if m2 ≥ 3) (or diag[1; 1] (if m2 = 2)), ∆̄01 = diag[1;−1;−1]
(if m2 ≥ 3) (or diag[1;−1] (if m2 = 2)), ∆̃20 = ∆̆20 = ∆̄20 = 1 (if m1 ≥ 4) (or vanishes
(if m1 = 2, 3)), ∆̃02 = ∆̆02 = ∆̄02 = 1 (if m2 ≥ 4) (or vanishes (if m2 = 2, 3)) and ∆̃11 =
∆̆11 = ∆̄11 = 1.

3 Estimable parametric functions Linear parametric functions CΘ of Θ are es-
timable for some matrix C of order ν(m1, m2) if and only if there exists a matrix X of
order ν(m1, m2) such that XMT = C (e.g., [13]). In this section, we consider a 2m1+m2-
PBFF design of resolution R({00, 10, 01, 11}|Ω) derived from an SPBA(m1 + m2; {λi1,i2}).
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Since MT belongs to the ETMDPB association algebra A, we impose some restrictions on
C and X such that

(3.1) C = D
#(00,00)
00 + {D#(10,10)

00 + D
#(10,10)
10 } + {D#(01,01)

00 + D
#(01,01)
01 }

+{g20,20
00 D

#(20,20)
00 + g20,20

10 D
#(20,20)
10 (if m1 ≥ 3) + g20,20

20 D
#(20,20)
20 (if m1 ≥ 4)}

+{g20,02
00 D

#(20,02)
00 + g02,20

00 D
#(02,20)
00 }

+{g02,02
00 D

#(02,02)
00 + g02,02

01 D
#(02,02)
01 (if m2 ≥ 3) + g02,02

02 D
#(02,02)
02 (if m2 ≥ 4)}

+{D#(11,11)
00 + D

#(11,11)
10 + D

#(11,11)
01 + D

#(11,11)
11 },

X =
∑

a1a2

∑
b1b2

∑
β1β2

χa1a2,b1b2
β1β2

D
#(a1a2,b1b2)
β1β2

,

respectively, where ga1a2,b1b2
γ1γ2

are some constants, and χa1a2,b1b2
β1β2

are also some constants
which depend on κa1a2,b1b2

β1β2
and ga1a2,b1b2

β1β2
. It then follows from the properties of A that the

matrices X and C are isomorphic to Xβ1β2 and Γβ1β2 for β1β2 ∈ S∗, respectively. Here

Xβ1β2 = ||χa1a2,b1b2
β1β2

||,

Γ00 = diag[I3;
(

g20,20
00 g20,02

00

g02,20
00 g02,02

00

)
; 1],

Γ10 =
{

I2 if m1 = 2,

diag[1; g20,20
10 ; 1] if m1 ≥ 3,

Γ01 =
{

I2 if m2 = 2,

diag[1; g02,02
01 ; 1] if m2 ≥ 3,

Γ20 =
{

vanishes if m1 = 2, 3,

g20,20
20 if m1 ≥ 4,

Γ02 =
{

vanishes if m2 = 2, 3,

g02,02
02 if m2 ≥ 4,

Γ11 = 1.

Let M∗
T = P ′MT P, X∗ = P ′XP, C∗ = P ′CP , and Θ∗ = P ′Θ, where P =

diag[I1+m1+m2 ;

⎛
⎜⎝

0 I(m1
2 ) 0

0 0 I(m2
2 )

Im1m2 0 0

⎞
⎟⎠]. If there exists X such that XMT = C, then

there also exists X∗ such that X∗M∗
T = C∗, and vice versa. Thus the estimability of

CΘ is equivalent to that of C∗Θ∗. The matrices M∗
T , X∗ and C∗ are isomorphic to

K∗
β1β2

, X∗
β1β2

and Γ ∗
β1β2

for β1β2 ∈ S∗, respectively. Here K∗
00 = P ′

00K00P00, K∗
γ1γ2

=
P ′

γ1γ2
Kγ1γ2Pγ1γ2 , K∗

ω1ω2
= Kω1ω2 , X∗

00 = P ′
00X00P00, X∗

γ1γ2
= P ′

γ1γ2
Xγ1γ2Pγ1γ2 , X∗

ω1ω2
=

Xω1ω2 , Γ ∗
00 = P ′

00Γ00P00, Γ ∗
γ1γ2

= P ′
γ1γ2

Γγ1γ2Pγ1γ2 and Γ ∗
ω1ω2

= Γω1ω2 for γ1γ2 = 10 (if
m1 ≥ 3), 01 (if m2 ≥ 3), and ω1ω2 = 10 (if m1 = 2), 01 (if m2 = 2), 20 (if m1 ≥ 4),

02 (if m2 ≥ 4), 11, where P00 = diag[I3;

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠] and Pγ1γ2 = diag[1;

(
0 1
1 0

)
].

Then X∗M∗
T = C∗ is isomorphic to X∗

β1β2
K∗

β1β2
= Γ ∗

β1β2
for β1β2 ∈ S∗. Note that if CΘ is

estimable (and hence C∗Θ∗ is also estimable), where C is given by (3.1), then a design is
of resolution R({00, 10, 01, 11}|Ω).

If N ≥ ν(m1, m2), then there exists a 2m1+m2 -PBFF design of resolution R(Ω|Ω), i.e., of
resolution V (e.g., [3]). Thus in this paper, we would like to focus the attention on obtaining
a 2m1+m2 -PBFF design of resolution R({00, 10, 01, 11}|Ω) derived from an SPBA(m1 +
m2; {λi1,i2}) with N < ν(m1, m2). Since N < ν(m1, m2), the information matrix MT is
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singular, and hence at least one of K∗
β1β2

(β1β2 ∈ S∗) is singular, which yields that at least
one of Fβ1β2 is not of full row rank. If Fγ1γ2 (γ1γ2 = 00, 10, 01, 20 (if m1 ≥ 4), 02 (if m2 ≥
4)) is of full row rank (and hence K∗

γ1γ2
is of full rank), then in the matrix equation

X∗
γ1γ2

K∗
γ1γ2

= Γ ∗
γ1γ2

, there always exists X∗
γ1γ2

such that X∗
γ1γ2

= (K∗
γ1γ2

)−1. Hence Γ ∗
γ1γ2

is the identity matrix. Thus if Fγ1γ2 is of full row rank, then without loss of generality, we can
put ga1a2,b1b2

γ1γ2
= 1 (γ1γ2 = 00, 10 (if m1 ≥ 3), 01 (if m2 ≥ 3), 20 (if m1 ≥ 4), 02 (if m2 ≥ 4))

if a1a2 = b1b2, and ga1a2,b1b2
00 = 0 if a1a2 �= b1b2.

Theorem 3.1. Let T be a 2m1+m2-PBFF design of resolution R({00, 10, 01, 11}|Ω) derived
from an SPBA(m1+m2; {λi1,i2}) with N < ν(m1, m2). Then we have that r-rank{F11} = 1,
and hence A

#(11,11)
11 θ11 is estimable, and furthermore that the following holds:

(I) If the matrix Fβ1β2 is of full row rank, then A
#(a1a2,a1a2)
β1β2

θa1a2 are estimable for a1a2 ∈
Sβ1β2 and β1β2 ∈ S∗,

(II) (i) (A) if r-rank{F00} = 4 and the fourth and fifth rows of F00 are zero, then A
#(a1a2,a1a2)
00

× θa1a2 (a1a2 = 00, 10, 01, 11) are estimable, and
(B) if r-rank{F00} = 5 and the first three and last rows of F00 are linearly independent,
then A

#(a1a2,a1a2)
00 θa1a2 (a1a2 = 00, 10, 01, 11) are estimable, and moreover

(a) if the fifth row of F00 is zero, then g20,20
00 A

#(20,20)
00 θ20 and g02,20

00 A
#(02,20)
00 θ20 =

g02,20
00 A

#(02,20)
00 (A#(20,20)

00 θ20) are estimable,
(b) if the fourth row of F00 is zero, then g02,02

00 A
#(02,02)
00 θ02 and g20,02

00 A
#(20,02)
00 θ02 =

g20,02
00 A

#(20,02)
00 (A#(02,02)

00 θ02) are estimable, and
(c) if the fifth row of F00 equals w00 (�= 0) times the fourth, then
g20,20
00 A

#(20,20)
00 θ20 + g20,02

00 A
#(20,02)
00 θ02 = g20,20

00 (A#(20,20)
00 θ20 + w∗

00A
#(20,02)
00 θ02),

g02,20
00 A

#(02,20)
00 θ20 + g02,02

00 A
#(02,02)
00 θ02

= g02,20
00 A

#(02,20)
00 (A#(20,20)

00 θ20 + w∗
00A

#(20,02)
00 θ02) are estimable, where

ga1a2,02
00 = w∗

00g
a1a2,20
00 (a1a2 = 20, 02) and w∗

00 =
√

m1(m1 − 1)/{m2(m2 − 1)}w00,

(ii) if m1 ≥ 3, r-rank{F10} = 2 and the second row of F10 is zero, then A
#(b1b2,b1b2)
10

× θb1b2 (b1b2 = 10, 11) are estimable,
(iii) if m2 ≥ 3, r-rank{F01} = 2 and the second row of F01 is zero, then A

#(c1c2,c1c2)
01

× θc1c2 (c1c2 = 01, 11) are estimable.

Proof. From (2.4), (3.1), Remark 2.1 and Lemma A.1, the results can be easily proved.

Remark 3.1. It follows from Lemma A.1 that in Theorem 3.1(II)(i)(B), since ga1a2,b1b2
00

(a1a2, b1b2 = 20, 02) are arbitrary, without loss of generality, we can put g20,20
00 = 1 and g02,20

00

�= 0 for (a), and g02,02
00 = 1 and g20,02

00 �= 0 for (b). Furthermore we define g20,20
00 (= g20,20

00 (α),
say) = 1 if α = 0, 1/(1 + |w∗

00|) if α = 1 and 1/
√

1 + (w∗
00)2 if α = 2, and g02,20

00 �= 0 for (c).

From the relations among the rows of Fβ1β2 , and applying Lemma A.1 to the matrix
equations X∗

β1β2
K∗

β1β2
= Γ ∗

β1β2
, we have the following:

Lemma 3.1. A necessary condition for T to be a 2m1+m2-PBFF design of resolution
R({00, 10, 01, 11}|Ω) derived from an SPBA(m1 + m2; {λi1,i2}) with N < ν(m1, m2) is that
r-rank{F11} = 1, and in addition
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(a) r-rank{F00} = 4 and the fourth and fifth rows of F00 are zero,

(b) r-rank{F00} = 5 and the fourth row of F00 is zero, and furthermore
(i) m2 ≥ 3, r-rank{F01} = 2 and the second row of F01 is zero, or

(ii) m2 ≥ 4 and r-rank{F02} = 0,

(c) r-rank{F00} = 5 and the fifth row of F00 equals w00 (�= 0) times the fourth,

(d) m1 ≥ 3, r-rank{F10} = 2 and the second row of F10 is zero, and furthermore
(i) r-rank{F00} = 5 and the fifth row of F00 is zero,

(ii) m2 ≥ 3, r-rank{F01} = 2 and the second row of F01 is zero, or

(iii) m2 ≥ 4 and r-rank{F02} = 0, or

(e) m1 ≥ 4 and r-rank{F20} = 0, and furthermore
(i) r-rank{F00} = 5 and the fifth row of F00 is zero,

(ii) m2 ≥ 3, r-rank{F01} = 2 and the second row of F01 is zero, or

(iii) m2 ≥ 4 and r-rank{F02} = 0.

In Lemma 3.1, it can be easily shown that there does not exist a 2m1+m2 -PBFF design
of resolution R({00, 10, 01, 11}|Ω) derived from an SPBA(m1 + m2; {λi1,i2}) with N <

ν(m1, m2) and 2 ≤ m1, m2 ≤ 4 satisfying the conditions (a)-(d) and (e)(i),(ii).
If (T (1); T (2)) is an SPBA(m1 + m2; {λi1,i2}), then (T (2); T (1)) is also the SPBA(m2 +

m1; {λ∗
i1,i2}), where λ∗

i1,i2 = λi2,i1 . Thus if (T (1); T (2)) derived from an SPBA(m1 +
m2; {λi1,i2}) is of resolution R({00, 10, 01, 11}|Ω), then (T (2); T (1)) is also of resolution
R({00, 10, 01, 11}|Ω), and hence we only consider the case 2 ≤ m1 ≤ m2.

Theorem 3.2. Let T be an SPBA(m1 + m2; {λi1,i2}) with N < ν(m1, m2), where 2 ≤
m1 ≤ m2 ≤ 4. Then T is a 2m1+m2-PBFF design of resolution R({00, 10, 01, 11}|Ω) if and
only if one of the following holds, or one of its FCA, LCA and CCA holds:
(I) When m1 = 2, 3 and m1 ≤ m2 ≤ 4, there does not exist a design of resolution
R({00, 10, 01, 11}|Ω),

(II) when m1 = m2 = 4 (ν(4, 4) = 37), λ1,1 = 1 and λa,2 = λ1,3 = λ2,x = λ3,1 = λ3,3 =
0 (0 ≤ a ≤ 4; x = 0, 1, 3, 4), and furthermore
(i) exactly three of {λ0,1, λ0,3, λ4,1, λ4,3} are 1, exactly two of {λ1,0, λ1,4, λ3,0, λ3,4} except

for {λ1,0, λ1,4} are 1 and λ0,0 = λ0,4 = λ4,0 = λ4,4 = 0, or

(ii) (a) exactly two of {λ0,1, λ0,3, λ4,1, λ4,3} except for {λ0,1, λ4,1}, {λ0,3, λ4,1} and {λ0,3,

λ4,3} are 1, and moreover
(1) exactly three of {λ1,0, λ1,4, λ3,0, λ3,4} are 1 and λ0,0 = λ0,4 = λ4,0 = λ4,4 = 0, or
(2) exactly two of {λ1,0, λ1,4, λ3,0, λ3,4} except for {λ1,0, λ1,4} are 1 and 1 ≤ λ0,0 +

λ0,4 + λ4,0 + λ4,4 ≤ 4,

(b) λ0,3 = λ4,1 = 1 and λ0,1 = λ4,3 = 0, and moreover

(1) exactly three of {λ1,0, λ1,4, λ3,0, λ3,4} are 1 and λ0,0 = λ0,4 = λ4,0 = λ4,4 = 0,

(2) exactly two of {λ1,0, λ1,4, λ3,0, λ3,4} except for {λ1,0, λ1,4} and {λ3,0, λ3,4} are 1
and 1 ≤ λ0,0 + λ0,4 + λ4,0 + λ4,4 ≤ 4, or
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(3) λ3,0 = λ3,4 = 1, 1 ≤ λ0,0 + λ4,0 + λ4,4, λ0,0 + λ0,4 + λ4,0 + λ4,4 ≤ 4 and
λ1,0 = λ1,4 = 0, or

(c) λ0,3 = λ4,3 = 1 and λ0,1 = λ4,1 = 0, and moreover

(1) exactly three of {λ1,0, λ1,4, λ3,0, λ3,4} are 1 and λ0,0 = λ0,4 = λ4,0 = λ4,4 = 0,

(2) exactly two of {λ1,0, λ1,4, λ3,0, λ3,4} except for {λ1,0, λ1,4} and {λ1,4, λ3,0} are 1
and 1 ≤ λ0,0 + λ0,4 + λ4,0 + λ4,4 ≤ 4, or

(3) λ1,4 = λ3,0 = 1, 1 ≤ λ0,0 + λ0,4 + λ4,4, λ0,0 + λ0,4 + λ4,0 + λ4,4 ≤ 4 and
λ1,0 = λ3,4 = 0.

Proof. Checking the sufficiency of Lemma 3.1 for given indices λi1,i2 , the results can be
easily obtained.

Remark 3.2. In Theorem 3.2, the matrices Fγ1γ2 (γ1γ2 = 00, 10, 01, 11) are of full row
rank and r-rank{F20} =r-rank{F02} = 0. Furthermore we have N = 36 for (II)(i), (ii)(a)(1),
(b)(1), (c)(1), and 33 ≤ N ≤ 36 for (II)(ii)(a)(2), (b)(2), (3), (c)(2), (3).

Example 3.1. Let T be the SPBA(m1 + m2 = 4 + 4; {λ0,0 = λ0,3 = λ1,1 = λ3,0 = λ3,4 =
λ4,3 = 1, λj1,j2 = 0 (j1j2 �= 00, 03, 11, 30, 34, 43)}), which is GA-optimal as in Table 4.1 of
Section 4. Then T is given by

T ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1
0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
0 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1
0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1
0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which yields that

F00 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
4 0 0 4 0 0 2 0 0 −2 0 0 −2 0 0 −4 0
4 0 0 −2 0 0 2 0 · · · · · · 0 4 0 · · · 0 −4 0 · · · 0 −2 0

12 0 0 12 0 0 0 0 0 0 0 0 0 0 0 12 0
12 0 0 0 0 0 0 0 0 12 0 0 12 0 0 0 0
16 0 0 −8 0 0 4 0 0 −8 0 0 8 0 0 8 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(6 × 25),

F10 =

⎛
⎝0 1 0 0 1 0 0 1

0 2 0 · · · · · · 0 −2 0 · · · 0 −2
0 2 0 0 4 0 0 −4

⎞
⎠ (3 × 15),

F01 =

⎛
⎝0 0 1 1 0 0 1

0 0 −2 2 0 · · · · · · 0 −2
0 0 4 4 0 0 −4

⎞
⎠ (3 × 15),
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F20 = 0 (1 × 5), F02 = 0 (1 × 5), F11 =
(
1 0 · · · · · · 0

)
(1 × 9).

Thus the matrices Fβ1β2 (β1β2 = 00, 10, 01, 11) are of full row rank, and r-rank{F20}
=r-rank{F02} = 0. Hence from (2.4), A

#(00,00)
00 θ00, i.e., θ00, A

#(10,10)
00 θ00 and A

#(10,10)
10 θ10,

i.e., θ10, A
#(01,01)
00 θ01 and A

#(01,01)
01 θ01, i.e., θ01, A

#(20,20)
00 θ20 and A

#(20,20)
10 θ20, A

#(02,02)
00 θ02

and A
#(02,02)
01 θ02, A

#(11,11)
00 θ11, A

#(11,11)
10 θ11, A

#(11,11)
01 θ11 and A

#(11,11)
11 θ11, i.e., θ11 are es-

timable, but A
#(20,20)
20 θ20 and A

#(02,02)
02 θ02 are not estimable. Therefore T is of resolution

R({00, 10, 01, 11}|Ω).

4 GA-optimal designs In this section, we present GA-optimal 2m1+m2 -PBFF designs of
resolution R({00, 10, 01, 11}|Ω) derived from SPBAs(m1+m2; {λi1,i2}) with N < ν(m1, m2),
where 2 ≤ m1 ≤ m2 ≤ 4. Since Θ∗ = P ′Θ and C∗ = P ′CP , where P is the permutation
matrix given in the previous section, C∗Θ∗ is estimable if and only if CΘ is estimable.
Thus if CΘ is estimable (and hence there exists a matrix X such that XMT = C), then
its unbiased estimator is given by CΘ̂, where Θ̂ is a solution of the equations (2.1), and
furthermore Var[CΘ̂] = σ2XMT X ′. Here Var[y] denotes the variance-covariance matrix of
a random vector y. By use of the algebraic structure of the ETMDPB association scheme,
XMT X ′ is isomorphic to Xβ1β2Kβ1β2X

′
β1β2

for β1β2 ∈ S∗.

Let σ2VT be the variance-covariance matrix of the linearly independent estimators in
CΘ̂. Then from Lemma A.2, we have the following:

Lemma 4.1. Let T be a 2m1+m2-PBFF design of resolution R({00, 10, 01, 11}|Ω) derived
from an SPBA(m1+m2; {λi1,i2}) with N < ν(m1, m2). Then the matrix VT (= VT (α), say)
is isomorphic to Vβ1β2(α) (β1β2 ∈ S∗) for 0 ≤ α ≤ 2, where

Vβ1β2(α) = (Kβ1β2)−1 if Fβ1β2 is of full row rank ,

V00(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Ka
00)−1 if r-rank{F00} = 4 and the fourth and fifth rows of F00 are

zero,

(Kb
00)

−1 if r-rank{F00} = 5 and the fifth row of F00 is zero,

(Kc
00)

−1 if r-rank{F00} = 5 and the fourth row of F00 is zero,⎛
⎝ I3 0 0

0 g20,20
00 (α) 0

0 0 1

⎞
⎠ (Kb

00)
−1

⎛
⎝ I3 0 0

0 g20,20
00 (α) 0

0 0 1

⎞
⎠

if r-rank{F00} = 5 and the fifth row of F00 equals w00 (�= 0)
times the fourth,

V10(α) = (Ka
10)

−1 if m1 ≥ 3, r-rank{F10} = 2 and the second row of F10 is
zero,

V01(α) = (Ka
01)

−1 if m2 ≥ 3, r-rank{F01} = 2 and the second row of F01 is
zero,
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V20(α) =
{

0 if m1 ≥ 4 and r-rank{F20} = 0,
vanishes if m1 = 2, 3,

V02(α) =
{

0 if m2 ≥ 4 and r-rank{F02} = 0,
vanishes if m2 = 2, 3.

Here Ka
00, Kb

00 and Kc
00 are the 4 × 4, 5 × 5 and 5 × 5 submatrices of K00 corresponding

to the first three, and furthermore the last, the fourth and last, and the fifth and last rows
and columns, respectively, and both Ka

10 and Ka
01 are, respectively, the 2 × 2 submatrices

of K10 and of K01 corresponding to the first and last rows and columns, and g20,20
00 (α) for

0 ≤ α ≤ 2 are given in Remark 3.1.

From Lemma 4.1, the following holds:

Theorem 4.1. Let T be a 2m1+m2-PBFF design of resolution R({00, 10, 01, 11}|Ω) derived
from an SPBA(m1 + m2; {λi1,i2}) with N assemblies, where N < ν(m1, m2). Then we get

tr{VT (α)} = φ00tr{V00(α)} + φ10tr{V10(α)} + φ01tr{V01(α)}
+φ20tr{V20(α)} (if m1≥4)+φ02tr{V02(α)} (if m2≥4)+φ11tr{V11(α)}

for 0 ≤ α ≤ 2.

Remark 4.1. As shown in Section 3, if (T (1); T (2)) (= T, say) is a 2m1+m2-PBFF de-
sign of resolution R({00, 10, 01, 11}|Ω), then (T (2); T (1)) (= T ∗, say) is also the 2m2+m1-
PBFF design of resolution R({00, 10, 01, 11}|Ω). Thus we have tr{VT (α)} = tr{VT∗(α)} for
0 ≤ α ≤ 2.

As a generalization of the A-optimality criterion, Kuwada et al. [6] introduced the GA-
optimality criterion for selecting a design. For resolution R({00, 10, 01, 11}|Ω) designs, we
recall the definition of GAα-optimality criteria:

Definition 4.1. Let T be a 2m1+m2 -PBFF design of resolution R({00, 10, 01, 11}|Ω) de-
rived from an SPBA(m1 + m2; {λi1,i2}) with N assemblies, where N < ν(m1, m2). If
tr{VT (α)} ≤ tr{VT �(α)} for any T �, which is a resolution R({00, 10, 01, 11}|Ω) design de-
rived from an SPBA(m1 + m2; {λ�

i1,i2}) with the same number of assemblies, then T is said
to be GAα-optimal for 0 ≤ α ≤ 2.

The GA1- and GA2-optimality criteria are suitable for comparison of designs in the
sense that they reflect the confounding (or aliasing) structure of the parametric vectors
(see [8]). Using Theorems 3.2 and 4.1, we can obtain GAα-optimal 24+4-PBFF designs of
resolution R({00, 10, 01, 11}|Ω) derived from SPBAs(4+4; {λi1,i2}) with N < ν(4, 4) (= 37),
which are given by Table 4.1. In this table, from Remark 3.2 and Lemma 4.1, we have
33 ≤ N ≤ 36, and VT (0) = VT (1) = VT (2). Furthermore GAα-optimal designs for each N

except for N = 36 are derived from the same SPBAs for 0 ≤ α ≤ 2. Note that in Table 4.1,
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λ′ = (λ0,0, λ0,1, . . . , λ0,4, λ1,0, . . . , λ1,4, . . . , λ4,0, . . . , λ4,4), and the number (II)(ii)(c)(2)
of the last column corresponds to Theorem 3.2 (II)(ii)(c)(2). Moreover from (2.8), if a
resolution R({00, 10, 01, 11}|Ω) design derived from an SPBA(m1 + m2; {λi1,i2}) is GAα-
optimal for 0 ≤ α ≤ 2, then the designs derived from its FCA, LCA and/or CCA are also
GAα-optimal.

Note that GA-optimal 2m1+m2 -PBFF designs with (A) det(Kγ1γ2) �= 0 (γ1γ2 = 00, 10, 01,

20 (if m1 ≥ 4), 02 (if m2 ≥ 4)) and K11 = 0 for 4 ≤ m1 + m2 ≤ 6, and (B) det(Kγ1γ2) �=
0 (γ1γ2 = 00, 10, 01), and furthermore (a) K20 �= 0 (if m1 ≥ 4) or vanishes (m1 = 2, 3)
and K02 = K11 = 0 for 2 ≤ m1 ≤ 4 and m2 = 4, and (b) K20 = K02 = K11 = 0 for
m1 = m2 = 4 were obtained by Kuwada [2] and Kuwada and Matsuura [5], respectively,
where det(A) denotes the determinant of a matrix A. Moreover GAα-optimal 2m1+m2 -PBFF
designs of resolutions R({00, 10, 01, 20, 02}|Ω) and R({00, 10, 01, 20, 11}|Ω), and of resolu-
tion R({00, 10, 01, 20}|Ω) with N < ν(m1, m2) and 2 ≤ m1, m2 ≤ 4 have been obtained by
Kuwada et al. [7, 8], respectively.

Table 4.1. GAα-optimal 24+4-PBFF designs.

N �
′ tr{VT (0)} tr{VT (1)} tr{VT (2)} Theorem

33 10010 01000 00000 10001 00010 1.48337 1.48337 1.48337 (II)(ii)(c)(2)

34 20010 01000 00000 10001 00010 1.43209 1.43209 1.43209 (II)(ii)(c)(2)

35 30010 01000 00000 10001 00010 1.41500 1.41500 1.41500 (II)(ii)(c)(2)

36 30011 01000 00000 10001 00010 1.40511 1.40511 1.40511 (II)(ii)(c)(2)

30010 01000 00000 10001 10010 1.40511 1.40511 1.40511 (II)(ii)(c)(2)

Appendix Matrix equation Consider a matrix equation ZL = H with a variable matrix
Z of order n, where L = ||Lij || and H = ||Hij || (1 ≤ i, j ≤ 3) are the positive semidefinite

matrix of order n with rank{L} = rank{
(

L11 L12

L21 L22

)
} = n1 + n2 (≥ 1) and a matrix of

order n with H11 = In1 , H12 = H ′
21 = On1×n2 and H13 = H ′

31 = On1×n3 , respectively.
Here Lij and Hij are of size ni × nj , n1 + n2 + n3 = n, and Op×q is the null matrix of size
p×q. The matrix equation ZL = H has a solution if and only if rank{L′} = rank{(L′; H ′)}.
Thus we have the following (see [1]):

Lemma A.1. A matrix equation ZL = H has a solution, where Z is a variable matrix of
order n, if and only if
(I) n3 = 0, where H22 (if n2 ≥ 1) is arbitrary, or

(II) n3 ≥ 1 and in addition
(i) when n2 = 0, L33 = On3×n3 , and furthermore H33 = On3×n3 , or

(ii) when n2 ≥ 1, there exists a matrix W of size n3 × n2 such that (L31; L32; L33) =
W (L21; L22; L23), and furthermore H ′

23 = WH ′
22 and H ′

33 = WH ′
32, where H22 and H32

are arbitrary.
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In Lemma A.1, the matrix equation ZL = H has a solution Z such that Z = HL−1

for the case (I), Z =
(

L−1
11 Z13

0 Z33

)
for the case (II)(i), where Zi3 (i = 1, 3) are arbitrary,

and Z =

⎛
⎝

⎛
⎝ In1 0

0 H22

0 H32

⎞
⎠ (

L11 L12

L21 L22

)−1

−
⎛
⎝ 0 Z13W

′

0 Z23W
′

0 Z33W
′

⎞
⎠ ;

⎛
⎝ Z13

Z23

Z33

⎞
⎠

⎞
⎠ for the case

(II)(ii), where Zi3 (i = 1, 2, 3) are arbitrary. Thus we obtain the following (see [7]):

ZLZ ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−1
11 if n2 = n3 = 0,(
In1

0

)
L−1

11

(
In1 ; 0

)
if n2 = 0 and n3 ≥ 1,

(
In1 0
0 H22

) (
L11 L12

L21 L22

)−1 (
In1 0
0 H ′

22

)
if n2 ≥ 1 and n3 = 0,

⎛
⎝ In1 0

0 H22

0 H32

⎞
⎠(

L11 L12

L21 L22

)−1 (
In1 0 0
0 H ′

22 H ′
32

)
if n2 ≥ 1 and n3 ≥ 1,

where H22 and H32 are arbitrary. Let Z∗ be an (n1 + n2) × n submatrix of a solution Z

whose rows are linearly independent. Then from ZLZ ′ given above, we have the following
lemma:

Lemma A.2.

Z∗LZ∗′ =

⎧⎪⎨
⎪⎩

L−1
11 if n2 = 0,(
In1 0
0 H22

) (
L11 L12

L21 L22

)−1 (
In1 0
0 H ′

22

)
if n2 ≥ 1.
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