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ABSTRACT. Consider a partially balanced fractional 2™11™2 factorial design derived
from a simple partially balanced array such that the general mean, all the mq + mo
main effects, some linear combinations of the (7”21) two-factor interactions and of the

(";2) two-factor ones and all the mi1mg two-factor ones are estimable, where the three-

factor and higher-order interactions are assumed to be negligible, and 2 < my (k =
1,2). Furthermore we consider the situation in which the number of assemblies is less
than the number of non-negligible factorial effects. Under these situations, this paper
presents optimal designs with respect to the generalized A-optimality criterion, where
2 S mi S ma S 4.

1 Introduction The characteristic roots of the information matrix of a balanced frac-
tional 2™ factorial (2™-BFF) design of resolution V were obtained by Srivastava and Chopra
[12]. Using the algebraic structure of the triangular multidimensional partially balanced
(TMDPB) association scheme, Yamamoto et al. [15] extended their results to a 2"-BFF
design of resolution 2¢ 4+ 1, where 2¢ < m. A balanced array of two symbols and m con-
straints, which is a generalization of an orthogonal array, turns out to be a 2"-BFF design
under certain conditions (see [11, 14]).

As a special case of an asymmetrical balanced array introduced by Nishii [9], a partially
balanced array (PBA) of two symbols was presented by Kuwada [3]. A PBA of strength
m1—+mg is said to be simple, and such an array is briefly denoted by SPBA (m1+ma; { iy s ),
where \;, ;, are the indices of an SPBA (e.g., [7, 8]). A fractional factorial design derived
from an array of two symbols and m1+ms constraints is called a partially balanced fractional
2mitmz factorial (271 ™2-PBFF) design if the variance-covariance matrix of the estimators
of the factorial effects to be of interest is invariant under any permutation within my, factors
for £ = 1,2 each. Under certain conditions, a PBA of two symbols and mj +mso constraints
becomes a 2" +t™2_PBFF design (e.g., [3, 4]).

Kuwada et al. [7, 8] have obtained optimal 2™ *™2-PBFF designs with respect to
the generalized A-optimality (GA-optimality) criterion such that the general mean and all

the my + my main effects are estimable, and furthermore (A) (a) all the (') two-factor

ma2
2

factor ones are estimable, and they are called resolution R({00, 10,01, 20, 02}|2) designs,

interactions, all the ( ) two-factor ones and some linear combinations of the mimsy two-
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where © = {00,10,01,20,02,11} and 2 < my < my < 4, (b) all the (") two-factor

m"’) two-factor ones and all the mimsy two-factor

2
ones are estimable, and they are called resolution R({00, 10,01, 20, 11}|2) designs, where

ones, some linear combinations of the (

2 <mq,mg <4, and (B) all the (";1) two-factor ones, and some linear combinations of the

(";2) two-factor ones and of the myms two-factor ones are estimable, and they are called
resolution R({00, 10,01, 20}|Q?) designs, where 2 < mq, mg < 4.

In this paper, we consider a 2™ T™2.PBFF design such that the general mean, all the

my
2

the (";2) two-factor ones and all the myms two-factor ones are estimable, where the three-
factor and higher-order interactions are assumed to be negligible and 2 < m; < my < 4, and
it is called a resolution R({00,10,01,11}|Q2) design. Furthermore, we present GA-optimal
2mitm2 PBFF designs of resolution R({00,10,01,11}|Q2) when the number of assemblies

(or treatment combinations) is less than the number of factorial effects up to the two-factor

m1 + mo main effects, some linear combinations of the ( ) two-factor interactions and of

interactions.

2 Preliminaries We consider a fractional 2™ 7™2 factorial design T with N assemblies,
where the three-factor and higher-order interactions are assumed to be negligible and 2 <
my (k= 1,2). Then the 1 x v(my, ma) vector of the non-negligible factorial effects is given
by (850; 0103 8013 0203 0023 0'11) (= @', say), where v(mi,ma) = 1+ (my +mg) + (™757?),
and Opy = {0(¢:0)}, 019 = {0(w; )|l < u < ma}, O = {0(¢50)[1 < v < ma}, O3 =
{0(wruz; 9)1 < ug < uz < ma}, Opy = {0(g;v102)|1 < v1 < va < my} and 0, =
{0(uw;v)|1 <u<mq,1 <v<mg}. Here (¢;¢) is the general mean, 0(u; ¢) and 0(¢p;v) are
the main effects of the u-th factor in the m; factors and of the v-th factor in the mo factors,
respectively, and 0(ujug; @), 0(¢;v1v2) and O(u;v) are the two-factor interactions of the
u1-th and wuo-th factors in the my factors, of the v1-th and ve-th factors in the my factors,
and of the u-th factor in the m, factors and the v-th factor in the my factors, respectively.

Thus the ordinary linear model based on T is given by

y(T')=Er® +er,

where y(T'), Er and ep are an observation vector of size N x 1, the N x v(m, ms) design
matrix whose elements are either 1 or —1, and an N x 1 error vector with mean Oy and
variance-covariance matrix oIy, respectively. Here 0, and I, denote the p x 1 null vector
and the identity matrix of order p, respectively. The normal equations for estimating @ are

given by
(2.1) Mp® = Epy(T),

where My (= ELEr) is the information matrix of order v(my, m2).

Let A((fllff’blbﬂ and Dg?ff’blbﬁ for ajag,bibs € Soia, (c1aa € S*) be the local as-
sociation matrices of size ng,q4, X Npp, and the ordered association matrices of order
v(my, mo) of the extended TMDPB (ETMDPB) association scheme, respectively, where
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Soo = {00,10, 01, 20,02, 11}, Sio = {10,20 (if my > 3), 11}, So1 = {01,02 (if my > 3), 11},
Sao = {20} (if m1 > 4), So» = {02} (if ma > 4), S = {11}, §* = {00, 10,01, 20 (if m; >
4),02 (if mg > 4),11}, and ny, p, = (;’;11) (;’;22) (see [3]). Note that Alrazbiba) g pleazbib2)
are the (0,1) matrices. Further let A?l(gzlaz’blbz) and D?l(g;az’blbz) for ajag, bibs € Sg, 8, (5152
€ 5*) be the matrices of size 14,4, X N5, and of order v(my, ms), respectively. Then the
relationships between A&C‘;gj b1b2) and A§1(§;a2’blb2), and Dgﬁﬁf’blb” and D?l(g;@’blb” are
given by

A(011127b1b2) (_ A(b1b27a1112)l) _ Z Z(alaz,blbz)A#(alaz,blbz)
- T P2

1oz 1oz B1f2araz “7B1B2 ?

,b1b b1ba, ! b1b +# b1b
(2.2) Déa;ot;z 1b2) (: D((yfai aiaz) ) _ 26162 Z(amz 1 2)D51(521a2 1b2)

B1B2a1 2
for ap < ag, b <2 and 0 < a < 2,

#(araz,bib) _ 4#(b1b2,a1az)’\ _ B1B2a1az  4(araz,b1bz2)
A,31,32 (_ Aﬁlﬁz )_Zalaz (a1a2,b1b2)A0‘10‘2 ’

#(araz,b1b2) , #(biba,araz)’\ B1frara (a1az,b1b2)
(23) Dﬁl[ﬁl e (7 D51521 pm )7 Z(MOQ 2(11111122,211722)Da11(122 v

for B < ag, by <2 and 0 < G <2,

(a1a2,b1b2)_Z(al,bl)z(az,bz) B1Bacias  _ _Bron _Bac

Bif2araz T “Brar “Braz and Z(ala21b1b2) - Z(alabl)z(a2vb2)' Here

where z

Zz(sif;:k) (= Z(bk,ak)) _ Zak (—1)e—p (ak—ﬂk)( ay—p ) (m;c—ak—ﬁkHJ)

T “Bray p=0 P e Xk P
G () o e < b
b ) (@r 0k
awih) (= o) = 02500 A () G50 o=t

95 = (5) = (4"
(see [10, 15]). The properties of these matrices are cited in the following:

#(araz,a1a2) _ #(araz,c1c2) g#(cica,biba) #(a1az,b1b2)
(2.4) 2608, A = Tnayess Ay, A = 01798272 A, 5, ’

#( sbib2)y
rank{Aﬁlgzlaz o }_ Pp18s>

#( ,
Zalaz 26152 D51§21a2 o) = IV(ml,mz)’

, dida,bib oo
Dgi(g;(m ClCQ)Dj&l(“rzl 2bib2) 6cld16C2d2651“/1662”/2D§(§21a2 1 2)’

rank{DZ’i(g;az’blbz)} = ¢[3152

(see [3]), where ¢g,8, = ¢, 93, and d,q is the Kronecker delta.

Let A be the algebra generated by the linear closure of the ordered association matrices
D((fllff’blbﬂ, and it is denoted by [Dgllﬂ.ff’blb2)|a1a2,b1b2 € Suyay (1as € §%)]. Then from
(2.2) and (2.3), we obtain A = [Dﬁ%zlaz’blb2)|a1a2,b1b2 € Spg, (B1P2 € S*)]. Note that
A is called the ETMDPB association algebra (see [3]). Using the properties of A, the

information matrix My is given by
_ (araz,b1b2)
(2'5) Mr = Ealaz Zblbz Ealaz 7|a1*b1|+2a1,|a2*bz\+2a2D0¢1012

_ alag,b bo #(ala27blb2)
- Za1CL2 Z1711)2 2[31[32 kg, 82 ' Dﬁlﬁz ’
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where T is a 2™17"2.PBFF design derived from an SPBA(my + ma;{\i, i, }), and the

. . bib .
relationships between v;, 5, and A;, j,, and "Jgiagi 1”2 and 7, 4, are given by

7i17i222j1,j2[2p1,p2{nk 1( ) ( )(]kmlzkf;k)}])‘jhjm

(araz,b1bz)

(2.6)
a1a27b1b2 _
K36, _Zalaz ZB1Bsaran Va1—bil4+2a1,|laz—ba|+2az>

respectively. Thus from the properties of the algebra A, the information matrix Mr is
isomorphic to ||/£a1a2’b1b2|| (= Kg,p,, say) of order 6 for 3132 = 00, of order 3 (if m; > 3)
(or 2 (if my = 2)) for (152 = 10, of order 3 (if mg > 3) (or 2 (if me = 2)) for (152 = 01,
of order 1 (if my > 4) for (152 = 20, of order 1 (if mg > 4) for 8182 = 02 and of order
1 for 182 = 11 with multiplicities ¢oo, @10, o1, P20, Po2 and ¢11, respectively (see [3]).
Note that Kpg, g, are called the irreducible representations of My with respect to the ideals
[Dz(gg(”’blb2)|a1a2,b1b2 € Sp,8,] (= Ag,,, say) of A for 8102 € S*. From (2.6), we have

(27) Kﬁlﬁz = (Dﬁlﬁz Fﬁlﬁz Aﬁlﬁz)(Dﬁ152 F5152A5152)/

(see [7]), where

Doo = diag[1; —1/y/mu; —=1//ma; 1/y/2mi(my — 1);1/y/2ma(my — 1);1//mima |,

Do — diag[2; —2/,/m3 ] if my =2,
107 diag[2; —2/vmy — 2; -2/ /mz | if my > 3,
Do — diag[2; —2/,/m1 | if mo =2,
oL = diag[2; —2/v/ma — 2; —2/,/m1 | if mg > 3,

Dog = { vanishes if mp = 2,3, Doy = { vanishes if mg = 2,3, Dyy = 22,

22 if my > 4, 22 if mg > 4,
the column vectors of Fyg corresponding to Mg, (0 < a < my; 0 < x < mg), of Fyy cor-
responding to Apy (1 < b <my —1; 0 <y < ma), of Fy; corresponding to Ac; (0 < ¢ <
mi; 1 <z <mg—1), of Fpo (if my > 4) corresponding to Ag,, (2 < d <m1—2; 0 < u < my),
of Fyz (if me > 4) corresponding to Ac, (0 < e < mq; 2 < v < mg —2) and of Fiy
corresponding to Ay, (1 < f <mq —1; 1 < w < mg — 1) are given by \/m(l,ml —
2a, mg — 2z, (my —2a)* —my, (mg — 22)2 —ma, (my — 2a)(mg —22))’, \/Ae,y (1, m1—2b,ma —
2y)" (if m1 > 3) (or \/A1y(1,me —2y)" (if my = 2)), /Acz(1,m2 — 22,mq — 2¢)’ (if my >
3) (or \/E(l,ml —2¢) (if mg = 2)), \/m, \/E and \/m, respectively, and the
diagonal elements of Ag, g, (8152 € S*) corresponding to Ay s (01 < g < mq — fi; fa <
s < mgy — (2) are given by (m;__glﬁl) (mf__ﬁzf"’) ((i) if B4 = P2 =0, then g = a and s = xz,
(ii) if 81 =1 and B2 = 0, then g = b and s =y, (iii) if /1 = 0 and B2 = 1, then g = ¢ and
s=z (iv)ifmy >4, f1 =2and B =0, then g =dand s = u, (v) if ma >4, f1 =0
and O = 2, then g = e and s = v, and (vi) if §1 = B2 = 1, then g = f and s = w) and the
off-diagonal elements of them are all zero. Note that Fyg is of size 6 x {(m1 + 1)(mg + 1)},
Fip is of size 3 x {(m1 — 1)(m2 + 1)} (if my > 3) (or 2 x (mg + 1) (if m1 = 2)), Fonn
is of size 3 x {(m1 + 1)(ma — 1)} (if ma > 3) (or 2 x (my + 1) (if ma = 2)), Fyo (if
my > 4) is of size 1 x {(m1 —3)(ma + 1)}, Foz (if mg > 4) is of size 1 x {(m1 +1)(m2 —3)}
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and Fyq is of size 1 x {(mq—1)(me—1)}, and Ag, g, are of order (mq+1—201)(ma+1—20,).

Remark 2.1. From (2.5), the ajas-th row block and the biba-th column block of
Dﬁ%};az’bm) are concerned with 60,,,, and @yp,p,, respectively. Thus from (2.7), the first,
second, third, fourth, fifth and last rows of Fyg correspond to g9, @19, Go1, O20, Bo2 and
611, respectively, the first, second (if m; > 3) and last rows of Fj correspond to 019, 62
and 011, respectively, the first, second (if mg > 3) and last rows of Fy; correspond to
601, Bp2 and 011, respectively, and the rows of Fyy (if my > 4), Foa (if ma2 > 4) and Fiy

corresponds to 029, Bg2 and 041, respectively.

It follows from the definitions of Dg,s,, Fp,p, and Ag g, that rank{Kgsg,}

=r-rank{Fpg, 3, }, where r-rank{A} denotes the row rank of a matrix A.

Definition 2.1. Let (T'"); 7)) (= T, say) be an SPBA(m1 + ma; {\i, i, }), where T*)
are of size N x my, (k = 1,2), and further let T = (TM;7®@), T = (TM;T®@) and
T = (T(l); T(Q)), where T®) denotes the complement of T*). Then T, T and T are called
the former complementary array (FCA) of T, the latter complementary array (LCA) of T

and the completely complementary array (CCA) of T, respectively.

Note that if 7" is an SPBA(my 4+ mg; {\i, 5,}), then T, T and T are the SPBA(m; +
mM2; {Amy—irin ), SPBA(M1 + mao; { A} ma—in}) and SPBA(m1 + ma; {A\mi—iy,ma—is }), L€
spectively. Let My, My and My be the information matrices associated with T, Tand T,
respectively, where T is an SPBA (my +ma; {\;, i, }). Further let Kg,g,, Iu(gllb and Kg, 5,,
respectively, denote the irreducible representations of Mz, M and My with respect to the

ideals Ag, g, of the algebra A. Then from (2.7), we can get

(2.8) Kp,5, = 28,8, K8,8, 28,8, Kpipy = A5,5. 55,8, 48,8,
Kpp, = Ao Kpp, App,  for frfz € S*

(see [7]), where Agy = diag[l;—1;1;1;1; —1], Agy = diag[1;1; —=1;1;1; —1], Age = diag]l;
—1;-1;1;1;1], Ay = diag[l;—1;1] (if my > 3) (or diag[1;1] (if m; = 2)), Ay =
diag[1; 1; —1] (if my > 3) (or diag[1; —1] (if m; = 2)), Ay = diag[l; —1; —1] (if m1 > 3) (or
diag[l; —1] (if m; = 2)), App = diag[l;1;—1] (if mg > 3) (or diag[l;—1] (if me =
2)), Agr = diag[1; —1; 1] (if ma > 3) (or diag[1;1] (if me = 2)), A = diag[l; —1; —1]
(if my > 3) (or diag[l; —1] (if ma = 2)), Agy = Agg = Agy = 1 (if my > 4) (or vanishes
(if my = 2,3)),A~02 =App=App =1 (if mgo > 4) (or vanishes (if ms = 2,3)) and Ay =
A=A, =1

3 Estimable parametric functions Linear parametric functions C@® of @ are es-
timable for some matrix C' of order v(my, ms) if and only if there exists a matrix X of
order v(m1,ms) such that X My = C (e.g., [13]). In this section, we consider a 2™t +m2.
PBFF design of resolution R({00, 10,01, 11}|€2) derived from an SPBA(m; + ma; {Ai; i })-
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Since Mt belongs to the ETMDPB association algebra A, we impose some restrictions on
C and X such that

00,00 10,10 10,10 01,01 01,01
(3.1) € = D" + (D" + DEOOY 4 {DEOY + DEOMOVY

oo ™Dl + gl DI (i ma > 3) + g3 D (it iy > 4)}

20,02 ~#(20,02 02,20 1+ #(02,20
+{900 Doo( )+900 Doo( )}

+{g(())(2),02D8§;(02,02) + ggf,OQD(;)%l(OZ,OQ) (lf me > 3) + 98§,O2D6#2(02,O2) (lf Mo > 4)}
11,11 11,11 11,11 11,11
HDE + DI 4 DY 4 pEty,

_ aiaz,biby py#(a1az,bibz)
X = Zalaz Zble Z5152 X182 Dﬁlﬁz ?

: aias,bibs aiaz,bybz
respectively, where gJ192 are some constants, and Xz 5 are also some constants

a1az,bi1bz

which depend on k5> and ggigz’blbz. It then follows from the properties of A that the
matrices X and C are isomorphic to Xg,3, and I'g, g, for 51082 € S*, respectively. Here

ajaz,bi1bz ||
b

Xpip, = ||X5152
20,20 20,02

I'no = diag[I3; ( 383,20 g%%,oz ) 1],

00 900
I — IQ ifm1:2, Iy — IQ ifm2:2,
0= diag[l;gfg’%; 1] if my >3, o= diag[l;ggf’oz; 1] if mg >3,

ish if =23 ish if =23
o _{ vanishes  if my B, _{ vanishes  if mo B o

g50”>° if my >4, goa? if my > 4,

Let M3 = P'MpP, X* = P'XP, C* = P'CP, and ©®° = P'O, where P =
O Ay O
diag[l1+-my+ma; 0 0 I(";z) ]. If there exists X such that XMy = C, then

Lnyms 0 0
there also exists X* such that X*M; = C*, and vice versa. Thus the estimability of

CO is equivalent to that of C*@*. The matrices M, X* and C* are isomorphic to
Kj 5,0 Xj,p, and I 5 for B152 € S*, respectively. Here K3, = FPyoKooloo, K

Y172
P7/172K71V2P71V27 K:uwz = Kw1w27 XSO = PéOXOOPOO’ X;f/z = P!/172X7172P71727 Xj;lwz =
lewzv FJO = P(;OFOOPOO; F’;kl’h = P,;172F7172P7172 and Fw*le = lewz fOI' Y17Y2 = 10 (lf
m1 > 3),01 (if mg > 3), and wywe = 10 (if my = 2),01 (if me = 2),20 (if m; > 4),
0 1 0 0 1
02 (if mg > 4),11, where Py = diag[I3;| 0 0 1 |] and Py,4, = diag[l;( 1 0 >]
1 0 0

Then X*Mj} = C* is isomorphic to X5.8.K5.8, = 15,5, for 31582 € S*. Note that if CO is
estimable (and hence C*@* is also estimable), where C is given by (3.1), then a design is
of resolution R({00, 10,01, 11}|©).

If N > v(mq,m2), then there exists a 21 7"2-PBFF design of resolution R(Q2|Q2), i.e., of
resolution V (e.g., [3]). Thus in this paper, we would like to focus the attention on obtaining
a 2m1tm2 PBEFF design of resolution R({00,10,01,11}|Q) derived from an SPBA(m; +

ma; { iy in }) With N < v(my,mg). Since N < v(mq,mz), the information matrix My is
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singular, and hence at least one of Kj 5 (8182 € S*) is singular, which yields that at least
one of Fg, g, is not of full row rank. If F, ,, (7172 = 00, 10,01, 20 (if m; > 4),02 (if mo >
4)) is of full row rank (and hence K73 . is of full rank), then in the matrix equation
Xz KX, =TIz, there always exists X such that X> = (KX . )~'. Hence I'Y_,
is the identity matrix. Thus if F,, ,, is of full row rank, then without loss of generality, we can
put g2192:01%2 = 1 (7195 = 00,10 (if my > 3),01 (if mg > 3),20 (if my > 4),02 (if ma > 4))
if ajag = bybg, and g5*>""" = 0 if ayag # byby.

Theorem 3.1. Let T be a 2™ t™2-PBFF design of resolution R({00, 10,01,11}|Q) derived
from an SPBA(mi+ma;{ i i, }) with N < v(my,ma). Then we have that r-rank{Fy;} =1,
and hence Afﬁ(“’“)en is estimable, and furthermore that the following holds:

(I) If the matriz Fg,p, is of full row rank, then A§1(§;a2’ala2)0ala2 are estimable for ajaz €

136(62 ﬂ&l)diﬁl—ﬂr%r%(f;"oo} = 4 and the fourth and fifth rows of Foo are zero, then Agg(al@’al@)
X 0gy4, (a1a2 =00,10,01,11) are estimable, and
(B) if r-rank{Foo} = 5 and the first three and last rows of Foo are linearly independent,
then Agg(alaz’alazmal@ (a1a2 =00, 10,01, 11) are estimable, and moreover
(a) if the fifth row of Foo is zero, then 938’2014&(20’20)020 and 98(2)’20/1&(02’20)020 =
goZ20 g (02200 (2 #2020 9,0y are estimable,
(b) if the fourth row of Fyo is zero, then 98(2)’0214&(02’02)002 and 938’0214&(20’02)002 =
ggg,ozA&(Qo,oz) (AZ)%(OQ’OQ)BOQ) are estimable, and
(c) if the fifth row of Fyo equals wog (# 0) times the fourth, then
9(2)8,201438(20,20)020 " 9(2)8,021438(20,02)002 _ g§8’20(A§(20’20)020 " w80A§(20702)002),
ggg,zoA&(omo)ezo +98§,02A§)(02,02)002
= ggg,zoA&(oz,zo) (AZ)%(QOQO)OQO + wSOA&(QO’Oz)Oog) are estimable, where
956" = wiogs ™ (araz = 20,02) and wiy = \/ma(my — 1)/{ma(mz — 1) bwoo,
(ii) if my > 3, rrank{Fio} = 2 and the second row of Fiqy is zero, then Aﬁ)(blbz’blb”
X Op,b, (b1be = 10,11) are estimable,
(iii) 4f ma > 3, r-rank{Fo1} = 2 and the second row of Fy1 is zero, then A#l(clcz’clcz)

X Oc,c, (c1c2 =01,11) are estimable.

(

Proof. From (2.4), (3.1), Remark 2.1 and Lemma A.1, the results can be easily proved.

Remark 3.1. It follows from Lemma A.1l that in Theorem 3.1(II)(i)(B), since gSéaQ’ble

(a1az, b1by = 20, 02) are arbitrary, without loss of generality, we can put g§8’20 = 1land 98(2)’20
02,02 _ 20,02 20,20 (20,20

# 0 for (a), and gop ~ = 1 and ggy° # 0 for (b). Furthermore we define g5 (= 950" (),

say) = 1ifa=0, 1/(1+|wip|) if a =1 and 1/3/1 + (wi,)? if a = 2, and gga>® # 0 for (c).

From the relations among the rows of Fjp,,, and applying Lemma A.1 to the matrix

equations X3 5 K 5 =17 5 , we have the following:

Lemma 3.1. A necessary condition for T to be a 2™T™2.PBFF design of resolution
R({00,10,01, 11}|Q?) derived from an SPBA(mq + ma;{ A, i, }) with N < v(ms,ms) is that
r-rank{F11} = 1, and in addition
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(a) rrank{Fpo} =4 and the fourth and fifth rows of Fyy are zero,
(b) r-rank{Fyo} =5 and the fourth row of Fyo is zero, and furthermore
(i) ma > 3, r-rank{Fp1} = 2 and the second row of Fy1 is zero, or
(ii) ma >4 and r-rank{Fp2} = 0,
(¢) rrank{Foo} =5 and the fifth row of Foo equals woo (# 0) times the fourth,
(d) mq > 3, r-rank{Fio} = 2 and the second row of Fyg is zero, and furthermore
(i) rrank{Foo} =5 and the fifth row of Fyo is zero,
(ii) mgo > 3, r-rank{Fo1 } = 2 and the second row of Fy; is zero, or
(iii) mg >4 and r-rank{Fp2} =0, or
(e) m1 >4 and r-rank{Fs} =0, and furthermore
(1) r-rank{Foo} =5 and the fifth row of Fyo is zero,
(ii) mo > 3, r-rank{Fo1} = 2 and the second row of Fo is zero, or

(iil) ma >4 and r-rank{Fp2} = 0.

In Lemma 3.1, it can be easily shown that there does not exist a 2m1+™2_PBFF design
of resolution R({00,10,01,11}|2) derived from an SPBA(mi + ma; {4, }) with N <
v(my,mg) and 2 < my, mg < 4 satisfying the conditions (a)-(d) and (e)(i),(ii).

If (TM;T@)) is an SPBA(my + ma; {\i, i, }), then (T);TM) is also the SPBA(mz +
m1;{A}, 5, }), where A7 . = A, Thus if (TM;T(2)) derived from an SPBA(m; +

ma; {\i,.ir}) is of resolution R({00,10,01,11}|Q), then (T®;TM) is also of resolution
R({00, 10,01, 11}|€2), and hence we only consider the case 2 < my < ma.

Theorem 3.2. Let T be an SPBA(my + mao;{ i, i,}) with N < v(my,mz), where 2 <
my <may < 4. Then T is a 2™ T2 -PBFF design of resolution R({00,10,01,11}|Q) if and
only if one of the following holds, or one of its FCA, LCA and CCA holds:
(I) When my1 = 2,3 and m1; < mg < 4, there does not exist a design of resolution
R({00, 10,01, 11}€),
(IT) when m1 = mg =4 (v(4,4) =37), M1 =1 and Ag2 = M3 = Aoy = A31 = A33 =
0(0<a<4; x=0,1,3,4), and furthermore
(1) exactly three of {Xo,1, 0,3, A1, Aa,3} are 1, exactly two of {A1,0, M1,4, 3.0, A3,4} except
for{A,0,A\1,4} are 1 and Xo,o = Xoa = Aa0 = Aga =0, or
(i) (a) ezactly two of {No,1, 0,3, Aa,1, Aa,3} except for {Xo,1, a1}, {No,3, Aa1} and {3,
Aa,3} are 1, and moreover
(1) exactly three of {\,0, M,4,A3,0, N34} are 1 and Ao,o = Moa = Aa0 = A4 =0, or
(2) ezxactly two of {\1,0,A1,4, 3,0, A3} except for {A,0, \14} are 1 and 1 < Ao +
Ao,a + g0 + Mg < 4,
(b) Aoz =M1 =1 and o1 = A\1,3 =0, and moreover
1) ezactly three of {\1,0,A1,4,A3,0,A3.4} are 1 and Xo,o = Noa = A1 = Aaa =0,
2) exactly two of {A1,0,A1,4,A3.0,A3,4} except for {M,0, A\ 4} and {A30, 34} are 1
and 1 < Xoo+ Ao+ A0+ Mg <4, or

o~ o~
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(3) A30 = A3a =1, 1 < Xoo+ A0+ Aaa, Ao + Ao + Ao+ Mg < 4 and
Ao =XAa=0, or

(€) Aoz =A1,3=1and Ao,1 = A\s,1 =0, and moreover

1) ezactly three of {\1,0,A1,4,3,0,A3.4} are 1 and Xo,o = Noa = A1 = Aaa =0,

2) exactly two of {A1,0,A1,4,A3.0,A3,.4} except for {M,0, A\ 4} and {A14, 3,0} are 1
and 1 < Xoo+ Aoa+ a0+ Aa <4, or

(B) Ma = A30 =1, 1 < Xgo+ Aoa + Aaa, Ao+ Aoa + Aao+ Aag < 4 and
Ao =MA34=0.

o~ o~

Proof. Checking the sufficiency of Lemma 3.1 for given indices \;, ;,, the results can be

easily obtained.

Remark 3.2. In Theorem 3.2, the matrices F,,, (7172 = 00,10,01,11) are of full row
rank and r-rank{Fo} =r-rank{Fp2} = 0. Furthermore we have N = 36 for (II)(i), (ii)(a)(1),
(b)(1), (¢)(1), and 33 < N < 36 for (I)(ii)(a)(2), (b)(2), (3), (c)(2), (3).

Example 3.1. Let T be the SPBA(m1 +mo =4+ 4; {/\0,0 = /\073 = /\171 = /\370 = /\374 =
Az =1, Aj, . =0 (jije # 00,03,11, 30, 34,43)}), which is GA-optimal as in Table 4.1 of
Section 4. Then T is given by

000001111000000000000111011101111
000000000111100000000110111011111
000000000000011110000101110111111
0oo0o0000000000O0GOO0O1I111011101111111
011101000100010001000000011111110
011010100010001000100000011111101
010110010001000100010000011111011
001110001000100010001000011110111

T/

which yields that

100 10010 0 10 0 10 0 10
400 40020 0-20 0-20 0-40
400 20020 0 40--0-40---0-20

Foo=11900 12000 0 0 00 0 00 0120(6”5)’
1200 00000 0120 0120 0 00
16 00 —80040 0-80 0 80 0 80
010 0 10 0 1

Fo=(020--. 0 —20---0 =2 (3x15),
020 0 40 0 —4
00 110 0 1

Fai=(00-220-- 0 —2| (3x15),
00 440 0 —4
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Foo=0(1x5), Fopo=0(1x5), Fry=(1 0------ 0) (1x9).

Thus the matrices Fg,3, (#1682 = 00,10,01,11) are of full row rank, and r-rank{Fs}
=r-rank{Fp2} = 0. Hence from (2.4), A(;ﬁ)(oo,oo)eom i.e., Bqp, Aét)(m’lo)eoo and Aﬁ(m’m)am,
ie., 010, ATV 0 and AT, e, 001, AEPO?V 0,0 and 4720209, A% (0202,
and Aﬁ(02’02)002, Aﬁ)(n’n)Ou, Afg(n’n)Bu, A#I(H’H)Ou and Aﬁ(n’n)Bu, i.e., 011 are es-
timable, but A;E(zo’zo)ego and AZ)#Q(02702)002 are not estimable. Therefore T is of resolution
R({00, 10,01, 11}|9).

4 GA-optimal designs In this section, we present GA-optimal 2" T™2_.PBFF designs of
resolution R({00, 10, 01, 11}|€2) derived from SPBAs(m1+ma; {\i; i, }) with N < v(mq,ms),
where 2 < my < mg < 4. Since @ = P'@ and C* = P'CP, where P is the permutation
matrix given in the previous section, C*@* is estimable if and only if C® is estimable.
Thus if CO is estimable (and hence there exists a matrix X such that X Mp = C), then
its unbiased estimator is given by C@, where @ is a solution of the equations (2.1), and
furthermore Var[CO] = 62X MpX'. Here Var[y] denotes the variance-covariance matrix of
a random vector y. By use of the algebraic structure of the ETMDPB association scheme,
X MrX' is isomorphic to Xg,5,Kp,5,Xj, 5, for S102 € S*.

Let 02Vr be the variance-covariance matrix of the linearly independent estimators in

CO. Then from Lemma A.2, we have the following:

Lemma 4.1. Let T be a 2™+t ™2.PBFF design of resolution R({00,10,01,11}|Q) derived
from an SPBA(mi+ma; { N4, }) with N < v(my,mg). Then the matriz Vi (= Vr(a), say)
is isomorphic to Vg, g,(a) (8102 € S*) for 0 < a < 2, where

Vg, (@) = (Kp, )Y if Fpp, is of full row rank,
(K§)™t if r-rank{Foo} =4 and the fourth and fifth rows of Fyo are

zero,
(K5t if r-rank{Foo} =5 and the fifth row of Fyo is zero,
(K§y) ™t if r-rank{Foo} =5 and the fourth row of Fyg is zero,

Voo(a) = I 0 0 I 0 0
0 g5 ) 0 | (K™ 0 g0 (@) 0
0 0 1 0 0 1

if r-rank{Foo} =5 and the fifth row of Fyo equals woo (# 0)
times the fourth,

Vio(a) = (K§y)~t if m1 > 3, rrank{Fip} =2 and the second row of Fig is
zero,
Voi(a) = (K&) ™t if mg >3, rrank{Fyp1} =2 and the second row of Fpy is

zero,
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Vao(a) = 0 if my >4 and r-rank{Fy} =0,
208 =\ vanishes if mi=2,3,
_J]0 if mo >4 and rrank{Fp} =0,
Voz(er) = { vanishes if mo = 2,3.

Here K¢, Kb, and K§, are the 4 x 4, 5 x 5 and 5 x 5 submatrices of Koo corresponding
to the first three, and furthermore the last, the fourth and last, and the fifth and last rows
and columns, respectively, and both K{, and K§, are, respectively, the 2 x 2 submatrices
of K19 and of Ko1 corresponding to the first and last rows and columns, and ggg’m(a) for

0 < a <2 are given in Remark 3.1.

From Lemma 4.1, the following holds:

Theorem 4.1. Let T be a 2™ T2-PBFF design of resolution R({00, 10,01, 11}|Q) derived
from an SPBA(my + ma; {\i, i, }) with N assemblies, where N < v(mi,mg). Then we get

tr{Vr(a)} = gootr{Voo ()} + drotr{Vio(a)} + dortr{Vo1 ()}
+paotr{Vao(a)} (if m1>4)+@oatr{Voa(a)} (if mo>4)+d11tr{V11(a)}

for 0 < a<2.

Remark 4.1. As shown in Section 3, if (T(");T(®)) (= T, say) is a 271+"2_PBFF de-
sign of resolution R({00,10,01,11}|Q), then (T);TM) (= T*, say) is also the 2mz+m1.
PBFF design of resolution R({00, 10,01, 11}|€2). Thus we have tr{Vr(a)} = tr{Vp- ()} for
0<a<2.

As a generalization of the A-optimality criterion, Kuwada et al. [6] introduced the GA-
optimality criterion for selecting a design. For resolution R({00, 10,01, 11}|Q2) designs, we
recall the definition of GA-optimality criteria:

Definition 4.1. Let T be a 2™ T™2.PBFF design of resolution R({00,10,01,11}|2) de-
rived from an SPBA(my + mae;{\i;,i,}) with N assemblies, where N < v(mq,mg). If
tr{Vr(a)} < tr{Vp«(a)} for any T*, which is a resolution R({00, 10,01, 11}|©2) design de-
rived from an SPBA(m; +ma2; {\}, ;,}) with the same number of assemblies, then T is said

to be GAy-optimal for 0 < o < 2.

The GA;- and GAs-optimality criteria are suitable for comparison of designs in the
sense that they reflect the confounding (or aliasing) structure of the parametric vectors
(see [8]). Using Theorems 3.2 and 4.1, we can obtain GA,-optimal 24T-PBFF designs of
resolution R({00, 10,01, 11}|€2) derived from SPBAs(4+4; {\;, 4, }) with N < v(4,4) (= 37),
which are given by Table 4.1. In this table, from Remark 3.2 and Lemma 4.1, we have
33 < N < 36, and Vr(0) = Vp(1) = Vp(2). Furthermore GA,-optimal designs for each N
except for N = 36 are derived from the same SPBAs for 0 < o < 2. Note that in Table 4.1,
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A = (0,0, A0,1,- - 520,45 A0, -+ s A1 dyeee s Ad0s--- ,Asa), and the number (II)(ii)(c)(2)
of the last column corresponds to Theorem 3.2 (II)(ii)(c)(2). Moreover from (2.8), if a
resolution R({00, 10,01, 11}|2) design derived from an SPBA(mq + ma;{ iy, }) is GAq-
optimal for 0 < o < 2, then the designs derived from its FCA, LCA and/or CCA are also
GA-optimal.

Note that GA-optimal 21 7™2_PBFF designs with (A) det(K,,,) # 0 (7172 = 00, 10, 01,
20 (if mq > 4),02 (if mg > 4)) and K11 = 0 for 4 < my +mgo < 6, and (B) det(K,,,) #
0 (v1y2 = 00,10,01), and furthermore (a) K29 # 0 (if m; > 4) or vanishes (m; = 2,3)
and Koo = K11 = 0 for 2 < m; < 4 and mg = 4, and (b) K99 = Kp2 = K11 = 0 for
my = mg = 4 were obtained by Kuwada [2] and Kuwada and Matsuura [5], respectively,
where det(A) denotes the determinant of a matrix A. Moreover GA ,-optimal 2™ +™2_.PBFF
designs of resolutions R({00, 10,01, 20, 02}|2?) and R({00, 10,01, 20, 11}|€?), and of resolu-
tion R({00, 10,01, 20}|Q) with N < v(mq,m2) and 2 < my,my < 4 have been obtained by
Kuwada et al. [7, 8], respectively.

Table 4.1.  GAg-optimal 2*7*-PBFF designs.

N Y tr{Vr(0)} | tr{Vr(1)}|tr{Vr(2)}| Theorem
33[10010 01000 00000 10001 00010| 1.48337 | 1.48337 | 1.48337 |(I1)(i1)(c)(2)
34|20010 01000 00000 10001 00010| 1.43209 | 1.43209 | 1.43209 |(I1)(ii)(c)(2)
35/30010 01000 00000 10001 00010| 1.41500 | 1.41500 | 1.41500 |(I1)(ii)(c)(2)
36/30011 01000 00000 10001 00010| 1.40511 | 1.40511 | 1.40511 |(I1)(ii)(c)(2)
30010 01000 00000 10001 10010| 1.40511 | 1.40511 | 1.40511 |(I1)(ii)(c)(2)

Appendix Matrix equation Consider a matrix equation ZL = H with a variable matrix
Z of order n, where L = ||L;;|| and H = ||H;j|| (1 <14,j < 3) are the positive semidefinite
L1 Lio
Ly Lo
order n with Hyy = I,,, Hi2 = H) = Op,xn, and Hiz = Hi = Op,xns, respectively.

matrix of order n with rank{L} = rank{( >} =mn1 +ng (> 1) and a matrix of

Here L;; and H;; are of size n; x nj, nq +n2 +nz = n, and Opx, is the null matrix of size
px q. The matrix equation ZL = H has a solution if and only if rank{L'} = rank{(L’; H')}.
Thus we have the following (see [1]):

Lemma A.1. A matriz equation ZL = H has a solution, where Z is a variable matriz of
order n, if and only if
(I) ng =0, where Haz (if n2 > 1) is arbitrary, or
(II) n3 > 1 and in addition
(i) when ngy =0, L3z = Opgxng, and furthermore Hszs = Opgxnsg, OT
(ii) when ngy > 1, there exists a matric W of size ng X ng such that (Ls1; Ls2; Lag) =
W (La1; Lag; Las), and furthermore Hyq = W Hb, and Hiy = W HY,, where Hao and Hsa

are arbitrary.
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In Lemma A.1, the matrix equation ZL = H has a solution Z such that Z = HL™!

—1
for the case (I), Z = ( L(l)l §13 > for the case (II)(i), where Z;3 (i = 1,3) are arbitrary,
33
In1 0 I I -1 0 Zl3W, Z13
and Z = 0 Hoy ( LH L12 ) — 0 ZysW' |;| Zas for the case
0 Ha o e 0 ZssW’ Z33

(IT)(ii), where Z;3 (i = 1,2, 3) are arbitrary. Thus we obtain the following (see [7]):

L;ll if Ny = N3 = 0,
( 181 ) Ll_ll ( In1 7 O ) 1f n2 = 0 and n3 Z 1,
—1
ZLZ' = Iy, 0 Lii Lao I, 0 if ng >1and ng =0
( 0 H22 L21 L22 0 Hé2 I ng 2 1 and ns R
I, 0 .
L1 L2 I,, 0 0 .
a f > 1 and >1
) - ( La1 L2 ) ( 0 Hjy Hg Hhe = Landns = 5
0 Hso

where Hsoo and Hss are arbitrary. Let Z* be an (n; + n2) X n submatrix of a solution Z

whose rows are linearly independent. Then from ZLZ’ given above, we have the following

lemma:
Lemma A.2.
Ll_ll if ng =0,
. B
TN ) () () e
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