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Abstract. A generalization of successive approximations to the square root of a
positive operator on a Hilbert space due to Riesz-Nagy and Halmos is discussed from
the viewpoint of operator means and operator inequalities: For the arithmetic mean
∇ and a positive operator A, a sequence {An} satisfying

A ≥ A2
n ≥ 0 and An+1 ≥ 2An ∇(A − A2

n) for n = 0, 1, 2, · · ·
converges monotone increasingly to the square root

√
A of A in the strong operator

topology, in which the operator sequence is selected seemingly at random. Moreover,
we discuss a harmonic mean version for Newton’s method.

1 Introduction. Throughout this note, a capital letter means a bounded linear operator
on a Hilbert space H . An operator A is said to be positive, in symbol, A ≥ 0 if (Ax,x) ≥ 0
for all x ∈ H . In particular, we denote by A > 0 if A ≥ 0 is invertible. The order A ≥ B
for selfadjoint operators A and B is defined by A − B ≥ 0.

The arithmetic mean ∇ and the harmonic mean ! are defined as

A ∇ B =
A + B

2
and A ! B =

(
A−1 + B−1

2

)−1

for positive operators A and B, respectively.

For the existence of the square root of a positive operator on a Hilbert space, Riesz
and Nagy [7] showed that for a positive operator A, the successive approximation defined
recursively by B0 = 0 and the equations

Bn+1 = (1 − A) ∇ B2
n for n = 0, 1, 2, · · ·(1)

converges monotone increasingly in the strong operator topology. Its limit B necessarily
satisfies (1 − B)2 = A, also see Halmos [5, Problem 95].

If we replace Bn in (1) by 1 − An, then the equations (1) is rephrased by

An+1 = 2An ∇ (A − A2
n) for n = 0, 1, 2, · · ·(2)

and the sequence {An} converges monotone increasingly to the square root
√

A of A in the
strong operator topology, see Furuta’s book [4, §2.1.5 Theorem 3].

On the other hand, in the preceding paper [2], we considered the following result by
means of the inequality instead of the equality in the successive approximation: A sequence
{An} satisfying

0 ≤ An ≤ 1 and (1 − An) � An+1 ≥ 1
2

for n = 0, 1, 2, · · ·(#)

2000 Mathematics Subject Classification. 47A58, 47A63 and 47A64.
Key words and phrases. Positive operator, operator mean, geometric mean, harmonic mean, successive

appproximation and square root.



1088 MASAHIRO NAKAMURA AND YUKI SEO

converges uniformly to 1
2 , where the geometric mean � is defined by

A � B = A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2

for positive invertible operators A and B.

From the viewpoint of operator means and operator inequalities, a generalization of
successive approximations to the square root of a positive operator on a Hilbert space is
discussed in this note. For a positive operator A, a sequence {An} satisfying

A ≥ A2
n ≥ 0 and An+1 ≥ 2An ∇(A − A2

n) for n = 0, 1, 2, · · ·

converges monotone increasingly to
√

A in the strong operator topology, in which an op-
erator sequence is selected seemingly at random. Moreover, we discuss a harmonic mean
version for Newton’s method: A sequence {An} satisfying

A ≤ A2
n and A2

n+1 ≤ A ! A2
n for n = 0, 1, 2, · · ·

converges monotone decreasingly to
√

A in the strong operator topology. They may be
observed as a method to generalize successive approximations.

2 Approximations. First of all, based on ideas in the preceding paper [2], by replacing
the equality in (2) by the inequality, we show the following theorem in which an operator
sequence is selected seemingly at random. Here we denote by An ↓ A a series of selfadjoint
operators {An} such that A1 ≥ A2 ≥ . . . and An → A in the strong operator topology for
a selfadjoint operator A.

Theorem 1. Let A be a positive operator. If a sequence {An} of positive operators satisfies

A ≥ A2
n ≥ 0 and An+1 ≥ 2An ∇(A − A2

n) for n = 0, 1, 2, · · · ,

then the sequence {An} converges monotone increasingly to
√

A in the strong operator topol-
ogy.

Proof. Since A ≥ A2
n ≥ 0, we have

An+1 ≥ An +
1
2
(A − A2

n) ≥ An for n = 0, 1, 2, · · · .

Since {An} is non-decreasing and bounded above by 0 ≤ An ≤ ‖A‖ 1
2 , there exists a positive

operator B such that An ↑ B. Since An → B (strongly), it follows that A2
n → B2 (strongly)

and hence that

A ≥ B2 and B ≥ 2B ∇ (A − B2).

The latter inequality implies B2 ≥ A and so we have B2 = A as desired.

We can easily generalize Theorem 1 under a general setting. If we put f(t) = n
√

t in
Corollary 2, then it follows that f(t) is operator monotone and f−1(t) = tn and thus we
obtain the approximation to the n-th root of a given positive operator.
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Corollary 2. Let A be a positive operator and f an operator monotone function on the
interval [0,∞). If a sequence {An} of positive operators satisfies

A ≥ f−1(An) ≥ 0 and An+1 ≥ 2An ∇(A − f−1(An)) for n = 0, 1, 2, · · · ,

then the sequence {An} converges monotone increasingly to f(A) in the strong operator
topology.

Next, we consider a generalized Newton’s method which is introduced by [3] for operators
as follows: Let A be a positive operator. If a sequence {An} of positive invertible operators
satisfies

A ≥ A2
n ≥ 0, AnA = AAn and An+1 ≥ An ∇ (AA−1

n ) for n = 0, 1, 2, · · ·

then the sequence {An} converges monotone increasingly to
√

A in the strong operator
topology by a similar way to Theorem 1.

We show a harmonic mean version for Newton’s method which is seemingly simple by
presentation.

Theorem 3. Let A be a positive operator. If a sequence {An} of positive operators satisfies

A ≤ A2
n and A2

n+1 ≤ A ! A2
n for n = 0, 1, 2, · · · ,

then the sequence {An} converges monotone decreasingly to the square root
√

A in the strong
operator topology.

To prove Theorem 3, we need the following lemma on the harmonic mean.

Lemma 4. (1) If A and B are positive invertible operators, then A ! B = B implies A = B.
(2) If A and B are positive operators and A ≥ B, then A ! B = A implies A = B.

Proof. (1). Since A and B are invertible, we have

B−1 = (A ! B)−1 = A−1 ∇ B−1

and hence A−1 = B−1. Therefore it follows that A = B.
(2). Since the harmonic mean is represented as

A ! B = max
{

X ≥ 0 :
(

2A 0
0 2B

)
≥
(

X X
X X

)}
,

the hypothesis A ! B = A implies(
2A 0
0 2B

)
≥
(

A A
A A

)
.

For every vector x ∈ H , it follows that

0 ≤
((

A −A
−A 2B − A

)(
x
x

)
,

(
x
x

))
= 2((B − A)x, x) ≤ 0

by the hypothesis A ≥ B. Therefore we have A = B.
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Proof of Theorem 3. By the hypothesis, we have

A2
n+1 ≤ A ! A2

n ≤ A2
n ! A2

n = A2
n.

Since {An} is non-increasing by the Löwner-Heinz theorem and bounded below by An ≥ 0,
there exists a positive operator B such that An ↓ B. Since A2

n → B2 (strongly), it follows
that

B2 ≥ A and B2 ≤ A ! B2.

Therefore, we have B2 ≤ A ! B2 ≤ B2 ! B2 = B2 and hence A ! B2 = B2. It follows from
(2) of Lemma 4 that B2 = A as desired. �

As a dual case of Theorem 3, We have the following corollary by (1) of Lemma 4.

Corollary 5. Let A be a positive operator. If a sequence {An} of positive invertible oper-
ators satisfies

A ≥ A2
n > 0 and A2

n+1 ≥ A ! A2
n for n = 0, 1, 2, · · · ,

then the sequence {An} converges monotone increasingly to
√

A in the strong operator topol-
ogy.

Remark. (1) In the results of this section, as we have observed in [2], it follows from
Dini’s theorem that monotone increasing strongly convergence implies uniformly conver-
gence.

(2) Lemma 4 (1) is indebted to J.I.Fujii and Lemma 4 (2) is due to M.Fujii. It is pointed
out by him that the assumption of the invertibility can not omited by the following simple
example: If P is a projection, then 1 ! P = P does not deduce to 1 = P .

(3) M.Fujii also pointed out that the formulation of Theorem 3 is deducible by New-
ton’s method. Let An+1 = An ∇ AA−1

n under the assumption of the invertibility and the
commutativity of operators. Then we have

A−1
n+1 = A−1

n ∇ A−1

A−1
n

= A−1
n ∇

(
A

An

)−1

and so

An+1 =

(
A−1

n ∇
(

A

An

)−1
)−1

= An !
A

An
.

Now assuming An+1 = An for sufficiently large n, we have consequently A2
n+1 = A2

n ! A as
desired.

3 operator means. In this section, we generalize the preceding results to operator
means. The theory of operator means for positive (bounded linear) operators on a Hilbert
space is established by Kubo and Ando [6] in connection with Löwner’s theory for the oper-
ator monotone functions. A binary operation (A,B) ∈ B+(H)×B+(H) → A m B ∈ B+(H)
in the cone of positive operators on a Hilbert space H is called an operator mean m if the
following conditions are satisfied:
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(monotonicity) A ≤ C and B ≤ D imply A m B ≤ C m D.

(upper continuity) An ↓ A and Bn ↓ B imply An m Bn ↓ A m B.

(transformer inequality) T ∗(A m B)T ≤ (T ∗AT ) m (T ∗BT ) for an operator T .

(normalized condition) A m A = A.

If T is invertible, then an operator mean m satisfies the transformer equality:

T ∗(A m B)T = (T ∗AT ) m (T ∗BT ).(3)

An operator mean m is called symmetric if A m B = B m A for positive operators A and
B.

Simple examples of symmetric operator means are the arithmetic mean ∇ and the har-
monic mean !. Another one is the geometric mean � defined as

A � B = A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 .

If A commutes with B, then A � B =
√

AB.

A partial order ≥ among two operartor means is introduced in a natural way: m ≤ n
means by definition that A m B ≤ A n B for positive operators A and B. Like the numerical
case, the arithmetic-geometric-harmonic mean inequality holds:

A ! B ≤ A � B ≤ A ∇ B(4)

for positive operators A and B. Moreover, a symmetric operator mean have the following
property due to Kubo-Ando [6].

Lemma 6 (Kubo-Ando). Arithmetic mean is the maximum of all symmetric means while
harmonic mean is the minimum: For a symmetric mean m

A ! B ≤ A m B ≤ A ∇ B

for positive operators A and B.

A state φ is a unital positive linear functional on a C∗-algebra of operators acting on H
such that ‖φ‖ = φ(1) = 1. Then we cite the following lemma due to Ando[1]:

Lemma 7 (Ando). If φ is a state, then

φ(A � B) ≤ φ(A) � φ(B)

for positive operators A and B.

We show the following theorem related to (#) in §1 from the viewpoint of operator
inequalities.

Theorem 8. Let A be a positive operator. If a sequence {An} of positive operators satisfies

A ≥ A2
n ≥ 0 and A ≤ (2A − A2

n

)
� A2

n+1 for n = 0, 1, 2, · · · ,

then the sequence {An} converges monotone increasingly to
√

A in the strong operator topol-
ogy.
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Proof. By the arithmetic-geometric mean inequality (4), we have

0 ≤ A ≤ (2A − A2
n

)
� A2

n+1

≤ (2A − A2
n

) ∇ A2
n+1 =

(2A − A2
n) + A2

n+1

2

and hence A2
n ≤ A2

n+1. It follows from the Löwner-Heinz theorem that An ≤ An+1. Since
{An} is non-decreasing and bounded above by An ≤ ‖A‖ 1

2 , there exists a positive operator
B such that An ↑ B. Since A2

n → B2 (strongly), it follows that

B2 ≤ A and A ≤ (2A − B2
)

� B2.

Let φ be an arbitrary state on the C∗-algebra generated by {An} and A. Then it follows
from Lemma 7 that

φ(A) ≤ φ
(
(2A − B2) � B2

)
≤ φ(2A − B2) � φ(B2)

=
(
2φ(A) − φ(B2)

)
� φ(B2)

=
√

(2φ(A) − φ(B2)) φ(B2)

and hence

0 ≤ φ(A)2 − (2φ(A) − φ(B2))φ(B2) = −(φ(A) − φ(B2))2

Therefore we have φ(A − B2) = 0 for every state φ.

Corollary 9. Let m be an operator mean dominated by the geometric mean � and A a
positive operator. If a sequence {An} of positive operators satisfies

A ≥ A2
n ≥ 0 and A ≤ (2A − A2

n

)
m A2

n+1 for n = 0, 1, 2, · · · ,

then the sequence {An} converges monotone increasingly to
√

A in the strong operator topol-
ogy.

Proof. Since A ≤ (2A − A2
n

)
m A2

n+1 ≤ (2A − A2
n

)
� A2

n+1, the result follows from Theo-
rem 8.

We can easily generalize Theorem 3 to operator means.

Corollary 10. Let m be a symmetric operator mean and A a positive operator. If a se-
quence {An} of positive invertible operators satisfies

A ≥ A2
n > 0 and A2

n+1 ≥ A m A2
n for n = 0, 1, 2, · · · ,

then the sequence {An} converges monotone increasingly to
√

A in the strong operator topol-
ogy.
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Proof. By a similar way to Theorem 3, there exist a positive operator B such that An ↑ B
and hence

A ≥ B2 and B2 ≥ A m B2.

Therefore we have B2 ≥ A m B2 ≥ B2 m B2 = B2 by the normalization of m and so
B2 = A m B2. Then it follows from the transformer equality (3) and the symmetry of m
that

1 = B−1B2B−1 = B−1(A m B2)B−1 = (B−1AB−1) m 1 ≥ (B−1AB−1) ! 1.

The last inequality is due to Lemma 6. Hence we have 1 ≥ B−1AB−1. This says that
B2 = A as desired.

Finally, we state the operator mean version of Newton’s method, which is a generalized
successive approximation to the n-th root of a given positive operator.

Corollary 11. Let m be a symmetric operator mean and A a positive operator, and p a
positive real number. If a sequence {An} of positive invertible operators satisfies

Ap+1
n ≥ A, AnA = AAn and An+1 ≤ An m (AA−p

n ) for n = 0, 1, 2, · · · ,
then the sequence {An} converges monotone decreasingly to the (p + 1)-th root p+1

√
A in the

strong operator topology.

Proof. By Lemma 6, we have 0 ≤ An+1 ≤ An m (AA−p
n ) ≤ An ∇ (AA−p

n ) ≤ An and so
it follows that {An} is non-increasing and bounded below. Hence there exists a positive
operator B such that An ↓ B and Bp+1 ≥ A. Therefore we have

B ≤ B ∇ AB−p

and so Bp+1 = A.
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