APPROXIMATION TO THE SQUARE ROOT OF A POSITIVE OPERATOR

Masahiro Nakamura* and Yuki Seo**
Received August 11, 2006

Abstract

A generalization of successive approximations to the square root of a positive operator on a Hilbert space due to Riesz-Nagy and Halmos is discussed from the viewpoint of operator means and operator inequalities: For the arithmetic mean ∇ and a positive operator A, a sequence $\left\{A_{n}\right\}$ satisfying

$$
A \geq A_{n}^{2} \geq 0 \quad \text { and } \quad A_{n+1} \geq 2 A_{n} \nabla\left(A-A_{n}^{2}\right) \quad \text { for } n=0,1,2, \cdots
$$

converges monotone increasingly to the square root \sqrt{A} of A in the strong operator topology, in which the operator sequence is selected seemingly at random. Moreover, we discuss a harmonic mean version for Newton's method.

1 Introduction. Throughout this note, a capital letter means a bounded linear operator on a Hilbert space H. An operator A is said to be positive, in symbol, $A \geq 0$ if $(A x, x) \geq 0$ for all $x \in H$. In particular, we denote by $A>0$ if $A \geq 0$ is invertible. The order $A \geq B$ for selfadjoint operators A and B is defined by $A-B \geq 0$.

The arithmetic mean ∇ and the harmonic mean! are defined as

$$
A \nabla B=\frac{A+B}{2} \quad \text { and } \quad A!B=\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1}
$$

for positive operators A and B, respectively.
For the existence of the square root of a positive operator on a Hilbert space, Riesz and Nagy [7] showed that for a positive operator A, the successive approximation defined recursively by $B_{0}=0$ and the equations

$$
\begin{equation*}
B_{n+1}=(1-A) \nabla B_{n}^{2} \quad \text { for } n=0,1,2, \cdots \tag{1}
\end{equation*}
$$

converges monotone increasingly in the strong operator topology. Its limit B necessarily satisfies $(1-B)^{2}=A$, also see Halmos [5, Problem 95].

If we replace B_{n} in (1) by $1-A_{n}$, then the equations (1) is rephrased by

$$
\begin{equation*}
A_{n+1}=2 A_{n} \nabla\left(A-A_{n}^{2}\right) \quad \text { for } n=0,1,2, \cdots \tag{2}
\end{equation*}
$$

and the sequence $\left\{A_{n}\right\}$ converges monotone increasingly to the square root \sqrt{A} of A in the strong operator topology, see Furuta's book [4, §2.1.5 Theorem 3].

On the other hand, in the preceding paper [2], we considered the following result by means of the inequality instead of the equality in the successive approximation: A sequence $\left\{A_{n}\right\}$ satisfying

$$
0 \leq A_{n} \leq 1 \quad \text { and } \quad\left(1-A_{n}\right) \sharp A_{n+1} \geq \frac{1}{2} \quad \text { for } n=0,1,2, \cdots
$$

[^0]converges uniformly to $\frac{1}{2}$, where the geometric mean \sharp is defined by
$$
A \sharp B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\frac{1}{2}} A^{\frac{1}{2}}
$$
for positive invertible operators A and B.
From the viewpoint of operator means and operator inequalities, a generalization of successive approximations to the square root of a positive operator on a Hilbert space is discussed in this note. For a positive operator A, a sequence $\left\{A_{n}\right\}$ satisfying
$$
A \geq A_{n}^{2} \geq 0 \quad \text { and } \quad A_{n+1} \geq 2 A_{n} \nabla\left(A-A_{n}^{2}\right) \quad \text { for } n=0,1,2, \cdots
$$
converges monotone increasingly to \sqrt{A} in the strong operator topology, in which an operator sequence is selected seemingly at random. Moreover, we discuss a harmonic mean version for Newton's method: A sequence $\left\{A_{n}\right\}$ satisfying
$$
A \leq A_{n}^{2} \quad \text { and } \quad A_{n+1}^{2} \leq A!A_{n}^{2} \quad \text { for } n=0,1,2, \cdots
$$
converges monotone decreasingly to \sqrt{A} in the strong operator topology. They may be observed as a method to generalize successive approximations.

2 Approximations. First of all, based on ideas in the preceding paper [2], by replacing the equality in (2) by the inequality, we show the following theorem in which an operator sequence is selected seemingly at random. Here we denote by $A_{n} \downarrow A$ a series of selfadjoint operators $\left\{A_{n}\right\}$ such that $A_{1} \geq A_{2} \geq \ldots$ and $A_{n} \rightarrow A$ in the strong operator topology for a selfadjoint operator A.

Theorem 1. Let A be a positive operator. If a sequence $\left\{A_{n}\right\}$ of positive operators satisfies

$$
A \geq A_{n}^{2} \geq 0 \quad \text { and } \quad A_{n+1} \geq 2 A_{n} \nabla\left(A-A_{n}^{2}\right) \quad \text { for } n=0,1,2, \cdots
$$

then the sequence $\left\{A_{n}\right\}$ converges monotone increasingly to \sqrt{A} in the strong operator topology.

Proof. Since $A \geq A_{n}^{2} \geq 0$, we have

$$
A_{n+1} \geq A_{n}+\frac{1}{2}\left(A-A_{n}^{2}\right) \geq A_{n} \quad \text { for } n=0,1,2, \cdots
$$

Since $\left\{A_{n}\right\}$ is non-decreasing and bounded above by $0 \leq A_{n} \leq\|A\|^{\frac{1}{2}}$, there exists a positive operator B such that $A_{n} \uparrow B$. Since $A_{n} \rightarrow B$ (strongly), it follows that $A_{n}^{2} \rightarrow B^{2}$ (strongly) and hence that

$$
A \geq B^{2} \quad \text { and } \quad B \geq 2 B \nabla\left(A-B^{2}\right)
$$

The latter inequality implies $B^{2} \geq A$ and so we have $B^{2}=A$ as desired.

We can easily generalize Theorem 1 under a general setting. If we put $f(t)=\sqrt[n]{t}$ in Corollary 2, then it follows that $f(t)$ is operator monotone and $f^{-1}(t)=t^{n}$ and thus we obtain the approximation to the n-th root of a given positive operator.

Corollary 2. Let A be a positive operator and f an operator monotone function on the interval $[0, \infty)$. If a sequence $\left\{A_{n}\right\}$ of positive operators satisfies

$$
A \geq f^{-1}\left(A_{n}\right) \geq 0 \quad \text { and } \quad A_{n+1} \geq 2 A_{n} \nabla\left(A-f^{-1}\left(A_{n}\right)\right) \quad \text { for } n=0,1,2, \cdots,
$$

then the sequence $\left\{A_{n}\right\}$ converges monotone increasingly to $f(A)$ in the strong operator topology.

Next, we consider a generalized Newton's method which is introduced by [3] for operators as follows: Let A be a positive operator. If a sequence $\left\{A_{n}\right\}$ of positive invertible operators satisfies

$$
A \geq A_{n}^{2} \geq 0, \quad A_{n} A=A A_{n} \quad \text { and } \quad A_{n+1} \geq A_{n} \nabla\left(A A_{n}^{-1}\right) \quad \text { for } n=0,1,2, \cdots
$$

then the sequence $\left\{A_{n}\right\}$ converges monotone increasingly to \sqrt{A} in the strong operator topology by a similar way to Theorem 1 .

We show a harmonic mean version for Newton's method which is seemingly simple by presentation.

Theorem 3. Let A be a positive operator. If a sequence $\left\{A_{n}\right\}$ of positive operators satisfies

$$
A \leq A_{n}^{2} \quad \text { and } \quad A_{n+1}^{2} \leq A!A_{n}^{2} \quad \text { for } n=0,1,2, \cdots
$$

then the sequence $\left\{A_{n}\right\}$ converges monotone decreasingly to the square root \sqrt{A} in the strong operator topology.

To prove Theorem 3, we need the following lemma on the harmonic mean.
Lemma 4. (1) If A and B are positive invertible operators, then $A!B=B$ implies $A=B$.
(2) If A and B are positive operators and $A \geq B$, then $A!B=A$ implies $A=B$.

Proof. (1). Since A and B are invertible, we have

$$
B^{-1}=(A!B)^{-1}=A^{-1} \nabla B^{-1}
$$

and hence $A^{-1}=B^{-1}$. Therefore it follows that $A=B$.
(2). Since the harmonic mean is represented as

$$
A!B=\max \left\{X \geq 0:\left(\begin{array}{cc}
2 A & 0 \\
0 & 2 B
\end{array}\right) \geq\left(\begin{array}{cc}
X & X \\
X & X
\end{array}\right)\right\}
$$

the hypothesis $A!B=A$ implies

$$
\left(\begin{array}{cc}
2 A & 0 \\
0 & 2 B
\end{array}\right) \geq\left(\begin{array}{cc}
A & A \\
A & A
\end{array}\right)
$$

For every vector $x \in H$, it follows that

$$
0 \leq\left(\left(\begin{array}{cc}
A & -A \\
-A & 2 B-A
\end{array}\right)\binom{x}{x},\binom{x}{x}\right)=2((B-A) x, x) \leq 0
$$

by the hypothesis $A \geq B$. Therefore we have $A=B$.

Proof of Theorem 3. By the hypothesis, we have

$$
A_{n+1}^{2} \leq A!A_{n}^{2} \leq A_{n}^{2}!A_{n}^{2}=A_{n}^{2}
$$

Since $\left\{A_{n}\right\}$ is non-increasing by the Löwner-Heinz theorem and bounded below by $A_{n} \geq 0$, there exists a positive operator B such that $A_{n} \downarrow B$. Since $A_{n}^{2} \rightarrow B^{2}$ (strongly), it follows that

$$
B^{2} \geq A \quad \text { and } \quad B^{2} \leq A!B^{2}
$$

Therefore, we have $B^{2} \leq A!B^{2} \leq B^{2}!B^{2}=B^{2}$ and hence $A!B^{2}=B^{2}$. It follows from (2) of Lemma 4 that $B^{2}=A$ as desired.

As a dual case of Theorem 3, We have the following corollary by (1) of Lemma 4.
Corollary 5. Let A be a positive operator. If a sequence $\left\{A_{n}\right\}$ of positive invertible operators satisfies

$$
A \geq A_{n}^{2}>0 \quad \text { and } \quad A_{n+1}^{2} \geq A!A_{n}^{2} \quad \text { for } n=0,1,2, \cdots
$$

then the sequence $\left\{A_{n}\right\}$ converges monotone increasingly to \sqrt{A} in the strong operator topology.

Remark. (1) In the results of this section, as we have observed in [2], it follows from Dini's theorem that monotone increasing strongly convergence implies uniformly convergence.
(2) Lemma 4 (1) is indebted to J.I.Fujii and Lemma 4 (2) is due to M.Fujii. It is pointed out by him that the assumption of the invertibility can not omited by the following simple example: If P is a projection, then $1!P=P$ does not deduce to $1=P$.
(3) M.Fujii also pointed out that the formulation of Theorem 3 is deducible by Newton's method. Let $A_{n+1}=A_{n} \nabla A A_{n}^{-1}$ under the assumption of the invertibility and the commutativity of operators. Then we have

$$
A_{n+1}^{-1}=A_{n}^{-1} \nabla \frac{A^{-1}}{A_{n}^{-1}}=A_{n}^{-1} \nabla\left(\frac{A}{A_{n}}\right)^{-1}
$$

and so

$$
A_{n+1}=\left(A_{n}^{-1} \nabla\left(\frac{A}{A_{n}}\right)^{-1}\right)^{-1}=A_{n}!\frac{A}{A_{n}}
$$

Now assuming $A_{n+1}=A_{n}$ for sufficiently large n, we have consequently $A_{n+1}^{2}=A_{n}^{2}!A$ as desired.

3 operator means. In this section, we generalize the preceding results to operator means. The theory of operator means for positive (bounded linear) operators on a Hilbert space is established by Kubo and Ando [6] in connection with Löwner's theory for the operator monotone functions. A binary operation $(A, B) \in \mathcal{B}^{+}(H) \times \mathcal{B}^{+}(H) \rightarrow A m B \in \mathcal{B}^{+}(H)$ in the cone of positive operators on a Hilbert space H is called an operator mean m if the following conditions are satisfied:
(monotonicity) $A \leq C$ and $B \leq D$ imply $A m B \leq C m D$.
(upper continuity) $A_{n} \downarrow A$ and $B_{n} \downarrow B$ imply $A_{n} m B_{n} \downarrow A m B$.
(transformer inequality) $T^{*}(A m B) T \leq\left(T^{*} A T\right) m\left(T^{*} B T\right)$ for an operator T.
(normalized condition) $A m A=A$.
If T is invertible, then an operator mean m satisfies the transformer equality:

$$
\begin{equation*}
T^{*}(A m B) T=\left(T^{*} A T\right) m\left(T^{*} B T\right) \tag{3}
\end{equation*}
$$

An operator mean m is called symmetric if $A m B=B m A$ for positive operators A and B.

Simple examples of symmetric operator means are the arithmetic mean ∇ and the harmonic mean !. Another one is the geometric mean \sharp defined as

$$
A \sharp B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\frac{1}{2}} A^{\frac{1}{2}} .
$$

If A commutes with B, then $A \sharp B=\sqrt{A B}$.
A partial order \geq among two operartor means is introduced in a natural way: $m \leq n$ means by definition that $A m B \leq A n B$ for positive operators A and B. Like the numerical case, the arithmetic-geometric-harmonic mean inequality holds:

$$
\begin{equation*}
A!B \leq A \sharp B \leq A \nabla B \tag{4}
\end{equation*}
$$

for positive operators A and B. Moreover, a symmetric operator mean have the following property due to Kubo-Ando [6].

Lemma 6 (Kubo-Ando). Arithmetic mean is the maximum of all symmetric means while harmonic mean is the minimum: For a symmetric mean m

$$
A!B \leq A m B \leq A \nabla B
$$

for positive operators A and B.
A state ϕ is a unital positive linear functional on a C^{*}-algebra of operators acting on H such that $\|\phi\|=\phi(1)=1$. Then we cite the following lemma due to Ando[1]:
Lemma 7 (Ando). If ϕ is a state, then

$$
\phi(A \sharp B) \leq \phi(A) \sharp \phi(B)
$$

for positive operators A and B.

We show the following theorem related to (\#) in $\S 1$ from the viewpoint of operator inequalities.

Theorem 8. Let A be a positive operator. If a sequence $\left\{A_{n}\right\}$ of positive operators satisfies

$$
A \geq A_{n}^{2} \geq 0 \quad \text { and } \quad A \leq\left(2 A-A_{n}^{2}\right) \sharp A_{n+1}^{2} \quad \text { for } n=0,1,2, \cdots,
$$

then the sequence $\left\{A_{n}\right\}$ converges monotone increasingly to \sqrt{A} in the strong operator topology.

Proof. By the arithmetic-geometric mean inequality (4), we have

$$
\begin{aligned}
0 \leq A & \leq\left(2 A-A_{n}^{2}\right) \sharp A_{n+1}^{2} \\
& \leq\left(2 A-A_{n}^{2}\right) \nabla A_{n+1}^{2}=\frac{\left(2 A-A_{n}^{2}\right)+A_{n+1}^{2}}{2}
\end{aligned}
$$

and hence $A_{n}^{2} \leq A_{n+1}^{2}$. It follows from the Löwner-Heinz theorem that $A_{n} \leq A_{n+1}$. Since $\left\{A_{n}\right\}$ is non-decreasing and bounded above by $A_{n} \leq\|A\|^{\frac{1}{2}}$, there exists a positive operator B such that $A_{n} \uparrow B$. Since $A_{n}^{2} \rightarrow B^{2}$ (strongly), it follows that

$$
B^{2} \leq A \quad \text { and } \quad A \leq\left(2 A-B^{2}\right) \sharp B^{2}
$$

Let ϕ be an arbitrary state on the C^{*}-algebra generated by $\left\{A_{n}\right\}$ and A. Then it follows from Lemma 7 that

$$
\begin{aligned}
\phi(A) & \leq \phi\left(\left(2 A-B^{2}\right) \sharp B^{2}\right) \\
& \leq \phi\left(2 A-B^{2}\right) \sharp \phi\left(B^{2}\right) \\
& =\left(2 \phi(A)-\phi\left(B^{2}\right)\right) \sharp \phi\left(B^{2}\right) \\
& =\sqrt{\left(2 \phi(A)-\phi\left(B^{2}\right)\right) \phi\left(B^{2}\right)}
\end{aligned}
$$

and hence

$$
0 \leq \phi(A)^{2}-\left(2 \phi(A)-\phi\left(B^{2}\right)\right) \phi\left(B^{2}\right)=-\left(\phi(A)-\phi\left(B^{2}\right)\right)^{2}
$$

Therefore we have $\phi\left(A-B^{2}\right)=0$ for every state ϕ.

Corollary 9. Let m be an operator mean dominated by the geometric mean \sharp and A a positive operator. If a sequence $\left\{A_{n}\right\}$ of positive operators satisfies

$$
A \geq A_{n}^{2} \geq 0 \quad \text { and } \quad A \leq\left(2 A-A_{n}^{2}\right) m A_{n+1}^{2} \quad \text { for } n=0,1,2, \cdots
$$

then the sequence $\left\{A_{n}\right\}$ converges monotone increasingly to \sqrt{A} in the strong operator topology.

Proof. Since $A \leq\left(2 A-A_{n}^{2}\right) m A_{n+1}^{2} \leq\left(2 A-A_{n}^{2}\right) \sharp A_{n+1}^{2}$, the result follows from Theorem 8.

We can easily generalize Theorem 3 to operator means.
Corollary 10. Let m be a symmetric operator mean and A a positive operator. If a sequence $\left\{A_{n}\right\}$ of positive invertible operators satisfies

$$
A \geq A_{n}^{2}>0 \quad \text { and } \quad A_{n+1}^{2} \geq A m A_{n}^{2} \quad \text { for } n=0,1,2, \cdots
$$

then the sequence $\left\{A_{n}\right\}$ converges monotone increasingly to \sqrt{A} in the strong operator topology.

Proof. By a similar way to Theorem 3 , there exist a positive operator B such that $A_{n} \uparrow B$ and hence

$$
A \geq B^{2} \quad \text { and } \quad B^{2} \geq A m B^{2}
$$

Therefore we have $B^{2} \geq A m B^{2} \geq B^{2} m B^{2}=B^{2}$ by the normalization of m and so $B^{2}=A m B^{2}$. Then it follows from the transformer equality (3) and the symmetry of m that

$$
1=B^{-1} B^{2} B^{-1}=B^{-1}\left(A m B^{2}\right) B^{-1}=\left(B^{-1} A B^{-1}\right) m 1 \geq\left(B^{-1} A B^{-1}\right)!1
$$

The last inequality is due to Lemma 6 . Hence we have $1 \geq B^{-1} A B^{-1}$. This says that $B^{2}=A$ as desired.

Finally, we state the operator mean version of Newton's method, which is a generalized successive approximation to the n-th root of a given positive operator.

Corollary 11. Let m be a symmetric operator mean and A a positive operator, and $p a$ positive real number. If a sequence $\left\{A_{n}\right\}$ of positive invertible operators satisfies

$$
A_{n}^{p+1} \geq A, A_{n} A=A A_{n} \quad \text { and } \quad A_{n+1} \leq A_{n} m\left(A A_{n}^{-p}\right) \quad \text { for } n=0,1,2, \cdots
$$

then the sequence $\left\{A_{n}\right\}$ converges monotone decreasingly to the $(p+1)$-th root $\sqrt[p+1]{A}$ in the strong operator topology.

Proof. By Lemma 6, we have $0 \leq A_{n+1} \leq A_{n} m\left(A A_{n}^{-p}\right) \leq A_{n} \nabla\left(A A_{n}^{-p}\right) \leq A_{n}$ and so it follows that $\left\{A_{n}\right\}$ is non-increasing and bounded below. Hence there exists a positive operator B such that $A_{n} \downarrow B$ and $B^{p+1} \geq A$. Therefore we have

$$
B \leq B \nabla A B^{-p}
$$

and so $B^{p+1}=A$.

References

[1] T.Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl., 26 (1979), 203-241.
[2] J.I.Fujii, M.Nakamura and Y.Seo, Convergence of sequences defined by operator means, Math. Japon., 34 (1989), 9-14.
[3] M.Fujii and M.Nakamura, An application of operator means arising from a study on Wazan, Math. Japon., 46 (1997), 385-386.
[4] T.Furuta, Invitation to Linear Operators, Taylor and Francis, London and New York, 2001.
[5] P.R.Halmos, A Hilbert Space Problem Book, Van Nostrand-Reinhold, Princeton, N.J., 1967.
[6] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205-224.
[7] F.Riesz and B.Sz.-Nagy, Functional Analysis, Ungar, New York, 1955.

* Department of Mathematics, Osaka Kyoiku University,Asahigaoka, Kashiwara, OsaKa 582-8582, Japan.
** Faculty of Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama-City, Saitama 337-8570, Japan.
E-mail address: yukis@sic.shibaura-it.ac.jp

[^0]: 2000 Mathematics Subject Classification. 47A58, 47A63 and 47A64.
 Key words and phrases. Positive operator, operator mean, geometric mean, harmonic mean, successive appproximation and square root.

