SOME DECOMPOSITIONS OF IDEALS IN BF-ALGEBRAS

HEE SIK KIM AND NA RI KYE

Received June 22, 2006

ABSTRACT. In this paper we study some properties of (normal, closed) ideals in BF-algebras, especially we show that any ideal of BF-algebra can be decomposed into the union of some sets, and obtain the greatest closed ideal I^0 of an ideal I of a BF-algebra X contained in I.

1. Introduction

The concept of B-algebras was introduced by J. Neggers and H. S. Kim ([1, 4, 5, 6]). They defined a *B*-algebra as an algebra (X; *, 0) of type (2, 0) (i.e., a non-empty set X with a binary operation * and a constant 0) satisfying (B1), (B2) and (B) (x*y)*z = x*[z*(0*y)], for any $x, y, z \in X$. In [2], Y. B. Jun, R. H. Roh and H. S. Kim introduced BH-algebras, which are generalization of BCK/BCH/B-algebras. An algebra (X; *, 0) of type (2, 0) is a BH-algebra if it satisfies (B1), (B2) and (BH) x * y = 0 = y * x implies x = y. Recently, C. B. Kim and H. S. Kim ([3]) defined a *BG*-algebra as an algebra (X; *, 0) of type (2, 0)satisfying (B1), (B2) and (BG) x = (x * y) * (0 * y), for any $x, y \in Z$. A. Walendziak ([9]) introduced the notion of *BF*-algebras, which is a generalization of *B*-algebras, and investigated some properties of (normal) ideals in BF-algebras. For another generalization of B-algebras we refer to [7, 8]. S. W. Wei and Y. B. Jun ([10]) studied ideals in BCIalgebras and decomposed some ideals into the union of some sets. We apply this concept to BF-algebras. In this paper we study some properties of (normal, closed) ideals in BFalgebras, especially we show that any ideal of BF-algebra can be decomposed into the union of some sets, and obtain the greatest closed ideal I^0 of an ideal I of a BF-algebra X contained in I.

2. Decompositions of ideals in *BF*-algebras

Let us review some definitions and results. By a BF-algebra ([9]) we mean a non-empty set X with a binary operation "*" and a constant 0 satisfying the following conditions:

- (B1) x * x = 0,
- (B2) x * 0 = x,

 $(BF) \quad 0 * (x * y) = y * x$

2000 Mathematics Subject Classification. 06F35. Key words and phrases. BF-algebras, subalgebra, (normal, closed) ideal, B-algebra. for any $x, y, z \in X$.

A non-empty subset I of a BF-algebra X is said to be a *subalgebra* if $x \in I$ and $y \in I$ imply $x * y \in I$.

An *ideal* of a *BF*-algebra X is a subset I containing 0 such that if $x * y \in I$ and $y \in I$ then $x \in I$. An ideal L of a *BE* algebra X is said to be normalified on a $x \in Y$, $y \in I$ implies

An ideal I of a BF-algebra X is said to be normal if for any $x, y, z \in X$, $x * y \in I$ implies $(z * x) * (z * y) \in I$.

Lemma 2.1. ([9]) If I is a normal ideal of a BF-algebra X, then

(a)
$$x \in I \Rightarrow 0 * x \in I$$
,

(b) $x * y \in I \Rightarrow y * x \in I$,

for any $x, y \in X$.

An ideal I of X is said to be *closed* if $x \in I$ then $0 * x \in I$. By Lemma 2.1-(a), it is known that every normal ideal of a BF-algebra X is a closed ideal of X. Note that a closed ideal need not be a subalgebra. See the following example.

Example 2.2. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	3	2	1
1	1	0	2	2
$\frac{1}{2}$	2	$ \begin{array}{c} 3 \\ 0 \\ 2 \\ 2 \end{array} $	0	2
3	$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array} $	2	2	0

Then (X; *, 0) is a *BF*-algebra, and $I := \{0, 1, 3\}$ is a closed ideal of X, but not a subalgebra of X, since $1 * 3 = 2 \notin I$. Moreover, $J := \{0, 1\}$ is an ideal of X, but not closed, since $0 * 1 = 3 \notin J$. The set $K := \{0, 2\}$ is a subalgebra of X, but not an ideal of X, since $3 * 2 = 2 \in K, 2 \in K, 3 \notin K$.

For any *BF*-algebra X and $x, y \in X$, we denote

$$A(x, y) = \{ z \in X | (z * x) * y = 0 \}.$$

Theorem 2.3. If I is an ideal of a BF-algebra X, then

$$I = \bigcup_{x,y \in I} A(x,y).$$

Proof. Let I be an ideal of a BF-algebra X. If $z \in I$, then (z * 0) * z = z * z = 0. Hence $z \in A(0, z)$. It follows that

$$I \subseteq \bigcup_{z \in I} A(0, z) \subseteq \bigcup_{x, y \in I} A(x, y).$$

Let $z \in \bigcup_{x,y \in I} A(x,y)$. Then there exist $a, b \in I$ such that $z \in A(a,b)$, so that (z*a)*b = 0. Since I is an ideal, it follows that $z \in I$. Thus $\bigcup_{x,y \in I} A(x,y) \subseteq I$, and consequently, $I = \bigcup_{x,y \in I} A(x,y)$.

Corollary 2.4. If I is an ideal of a BF-algebra X, then

$$I = \bigcup_{x \in I} A(0, x).$$

Proof. By Theorem 2.3. we have that $\bigcup_{x \in I} A(0, x) \subseteq \bigcup_{x, y \in I} A(x, y) = I$. If $x \in I$, then $x \in \bigcup_{x \in I} A(0, x)$, since (x * 0) * x = 0. Hence $I \subseteq \bigcup_{x \in I} A(0, x)$. This completes the proof.

We give an example satisfying Theorem 2.3 and Corollary 2.4. See the following example.

Example 2.5. Let $X := \{0, 1, 2, 3, \}$ be a set with the following table:

*	0	1	2	3
0	0	1	2	3
1	1	0	1	1
$ 1 \\ 2 \\ 3 $	2	1	0	0
3	3	1	0	0

Then (X; *, 0) is a *BF*-algebra and $I := \{0, 2, 3\}$ is an ideal of X. Moreover, it is easy to check that $I = A(2, 0) \cup A(3, 2)$ and $I = A(0, 0) \cup A(0, 2)$.

Theorem 2.6. Let I be a subset of a BF-algebra X such that $0 \in I$ and

$$I = \bigcup_{x,y \in I} A(x,y).$$

Then I is an ideal of X.

Proof. Let $x * y, y \in I = \bigcup_{x,y \in I} A(x,y)$. Since (x * y) * (x * y) = 0, it follows that $x \in A(y, x * y) \subseteq I$. Hence I is an ideal of X. \Box

Combining Theorems 2.3 and 2.6, we have the following corollary.

Corollary 2.7. Let X be a *BF*-algebra and I be a subset of X containing 0. Then I is an ideal of X if and only if

$$I = \bigcup_{x,y \in I} A(x,y).$$

Now, we give a characterization of normal and closed ideal in BF-algebras.

Proposition 2.8. Let I be a normal ideal of a BF-algebra X. If $x * z \in I$, $y * z \in I$ and $z \in I$, then $x * y \in I$.

Proof. Let I be a normal ideal of X. Assume that $x * z \in I$, $y * z \in I$ and $z \in I$. Since I is an ideal of X, we obtain $x, y \in I$. By Lemma 2.1-(a), $0 * y \in I$ and by definition of normal, $(x * 0) * (x * y) \in I$, i.e., $x * (x * y) \in I$. Also, by Lemma 2.1-(b), we have $(x * y) * x \in I$. Since I is an ideal of X and $x \in I$, we obtain $x * y \in I$.

The converse of Proposition 2.8 need not be true in general. See the following example.

Example 2.9. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	1	2	3
1	1	0	3	0
$ 1 \\ 2 \\ 3 $	$\frac{2}{3}$	3	0	2
3	3	0	2	0

Then (X; *, 0) is a *BF*-algebra and $I := \{0\}$ is an ideal of *X*. Although *I* satisfies the condition: $x * z \in I$, $y * z \in I$ and $z \in I$ imply $x * y \in I$, *I* is not a normal ideal of *X*, since $1 * 3 = 0 \in I$, $(2 * 1) * (2 * 3) = 2 \notin I$.

Corollary 2.10. If I is a subset of a BF-algebra X with satisfying the conditions:

- (1) $0 \in I$,
- (2) $x * z \in I$, $y * z \in I$ and $z \in I$ imply $x * y \in I$

for any $x, y, z \in X$, then I is a subalgebra of X.

Proof. Given $x, y \in I$, by (B2), we have x = x * 0, y = y * 0. It follows from (2) that $x * y \in I$.

Proposition 2.11. Let I be a subset of a BF-algebra X with the following conditions:

- (1) $0 \in I$,
- (2) $x * z \in I$, $y * z \in I$ and $z \in I$ imply $x * y \in I$

Then I is a closed ideal of X.

Proof. Assume that I satisfies (1) and (2). We claim that I is a closed ideal of X. Let $x * y, y \in I$. Since $0 * 0, y * 0, 0 \in I$, by (2), we have $0 * y \in I$, which proves that I is closed. Since $x * y, 0 * y, y \in I$, by applying (2) again, we obtain that $x = x * 0 \in I$, so that I is an ideal of X.

Lemma 2.12. ([9]) If (X; *, 0) is a *BF*-algebra, then 0 * (0 * x) = x for any $x \in X$. **Theorem 2.13.** Let *I* be an ideal of a *BF*-algebra *X*. Then the set

$$I^0 := \{ x \in I | 0 * x \in I \}$$

is the greatest closed ideal of X which is contained in I.

Proof. First, we show that I^0 is an ideal of X. Clearly, $0 \in I^0$. If $x * y, y \in I^0$, then $x * y, y \in I$, since $I^0 \subseteq I$. Since I is an ideal of X, $x \in I$. By applying Lemma 2.12, we have $0 * (0 * x) = x \in I$. This means that $0 * x \in I^0$. Since $I^0 \subseteq I$, $0 * x \in I$ and hence $x \in I^0$. Hence I^0 is an ideal of X.

If $x \in I^0$, by definition of I^0 , we have $0 * x \in I$ and $x \in I$. By Lemma 2.12 we have $0 * (0 * x) = x \in I$, it follows $0 * x \in I^0$. Hence $0 * x \in I^0 \subseteq I$, which proves that I^0 is closed.

Now, assume that A is a closed ideal of X which is contained in I. If $x \in A$, then $0 * x \in A$. Since A is contained in I, we have $x, 0 * x \in I$, and so $x \in I^0$. Thus $A \subseteq I^0$. Therefore, I^0 is the greatest closed ideal of X which is contained in I.

Example 2.14. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	2	1	3
1	1	0	1	2
$ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} $	2	0	2
3	3	1	1	0

Then (X; *, 0) is a *BF*-algebra and $I := \{0, 1, 3\}$ is an ideal of X. Let $I_1 := \{0, 1\}$, $I_2 := \{0, 3\}$ and $I_3 := \{0, 1, 3\}$ be subsets of I. We can see that I_1 is not an ideal, since $3*1 = 1 \in I_1, 1 \in I_1$, but $3 \notin I_1, I_2$ is a closed ideal, but I_3 is not closed, since $0*1 = 2 \notin I_3$. Hence I_2 is the greatest closed ideal of X which is contained in I, i.e., $I^0 = I_2$.

References

- J. R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups and related systems 7 (2001), 1–6.
- [2] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japo. Online 1 (1998), 347–354.
- [3] C. B. Kim and H. S. Kim, On BG-algebras Mate. Vesnik (submitted).
- [4] J. Neggers and H. S. Kim, On B-algebras Mate. Vesnik 54 (2002), 21-29.
- [5] , A fundemental theorem of B-homomorphism for B-algebras, Intern. Math. J. 2 (2002), 517–530.
- [6] , On β -algebras, Math. Slovaca **52** (2002), 517–530.
- [7] A. Walendziak, A note on normal subalgebras in B-algebras, Sci. Math. Japo. 62 (2005), 1-6.
- [8] _____, Some axiomatizations of *B*-algebras, Math. Slovaca (to appear).
- [9] _____, On BF-algebras, Math. Slovaca (to appear).
- [10] S. M. Wei and Y. B. Jun, Decomposition of ideals in BCI-algebras, Comm. Korean Math. Soc. 9 (1994), 275-278.

Hee Sik Kim, Department of Mathematics, Hanyang University, Seoul 133-791, Korea heekim@hanyang.ac.kr

Na Ri Kye, Department of Mathematics, Hanyang University, Seoul 133-791, Korea ky2421@hanmail.net