K-THEORY OF THE PULLBACK AND PUSHOUT C^{*}-ALGEBRAS

Takahiro Sudo

Received April 13, 2006

Abstract

We study K-theory of the pullback C^{*}-algebras and the pushout C^{*} algebras such as amalgams of C^{*}-algebras and balanced tensor products of C^{*}-algebras, and obtain that their K-groups are isomorphic under the reasonable assumptions on their $*$-homomorphisms.

Introduction In the C^{*}-algebra theory, K-theory has played an important and useful role in some topics of C^{*}-algebras such as classification theory for amenable (or nuclear) C^{*} algebras, extension theory and isomorphism problems such as the classification of irrational rotation C^{*}-algebras and the full or reduced C^{*}-algebras of free groups (see Rørdam [5], Davidson [2] and Wegge-Olsen [6]). On the other hand, some functorial methods of constructing examples of C^{*}-algebras such as the pullback construction of C^{*}-algebras and the pushout construction of C^{*}-algebras such as (universal) amalgamated free products (or amalgams) of C^{*}-algebras and (balanced) tensor products of C^{*}-algebras have been well studied (see Pedersen [3] (a survey) and [4]).

In this paper we study K-theory of the pullback C^{*}-algebras and the pushout C^{*} algebras such as amalgams of C^{*}-algebras and balanced tensor products of C^{*}-algebras, and obtain that their K-groups are isomorphic under some reasonable assumptions on their *-homomorphisms. For this purpose, in Section 1 we first review about the pullback $C^{*}-$ algebras and the pushout C^{*}-algebras and their successive construction from Pedersen [3] (and [4]). In Section 2 we include a formula for K-groups of (universal) amalgamated free products of C^{*}-algebras under an assumption for $*$-homomorphisms of common C^{*} subalgebras to have (inverse) retractions (i.e., surjective $*$-homomorphisms) ¿from Blackadar [1] with our modified proof, while the case for full free products of C^{*}-algebras is first considered by J. Cuntz. Using this formula extensively we obtain a number of formulas for K-groups of successive amalgams and balanced tensor products of C^{*}-algebras through K-groups of their associated pullback C^{*}-algebras. To define the associated pullback C^{*} algebras we need to assume that the $*$-homomorphisms from common C^{*}-subalgebras in the successive amalgams and balanced tensor products have (inverse) retractions.

See [1] and [6] for the details about K-theory of C^{*}-algebras, and see [3] for the details about the pullback and pushout constructions for C^{*}-algebras.
C^{*}-algebras of

1 The pullback and pushout C^{*}-algebras

Pullbacks For C^{*}-algebras $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$, suppose that there exist $*$-homomorphisms $\alpha_{1}: \mathfrak{A} \rightarrow \mathfrak{C}$, $\alpha_{2}: \mathfrak{B} \rightarrow \mathfrak{C}$. Then their pullback C^{*}-algebra denoted by $\mathfrak{A} \oplus \mathfrak{C} \mathfrak{B}$ is defined by

$$
\mathfrak{A} \oplus \mathfrak{C} \mathfrak{B}=\left\{(a, b) \in \mathfrak{A} \oplus \mathfrak{B} \mid \alpha_{1}(a)=\alpha_{2}(b)\right\}
$$

2000 Mathematics Subject Classification. Primary 46L05, 46L80.
Key words and phrases. C*-algebra, K-theory, Pullback, Amalgam, Tensor product.

We have the following diagram:

where p_{1}, p_{2} are the canonical projections.
Now consider the commutative case. Let X, Y, Z be compact Hausdorff spaces and $C(X), C(Y), C(Z)$ the C^{*}-algebras of continuous functions on them respectively. Suppose that there exist continuous maps $f: Z \rightarrow X, g: Z \rightarrow Y$. Then the pullback C^{*}-algebra $C(X) \oplus_{C(Z)} C(Y)$ corresponds to the space $X \cup_{Z} Y$ obtained from the disjoint union $X \cup Y$ by identifying $f(Z)$ and $g(Z)$.
Amalgams Let $\mathfrak{A}, \mathfrak{B}$ be C^{*}-algebras. Assume that there exists a common C^{*}-subalgebra \mathfrak{C} of \mathfrak{A} and \mathfrak{B} with embeddings $\mu_{1}: \mathfrak{C} \rightarrow \mathfrak{A}, \mu_{2}: \mathfrak{C} \rightarrow \mathfrak{B}$. Then as their pushout C^{*}-algebra we define the (universal) amalgamated free product (or amalgam) of $\mathfrak{A}, \mathfrak{B}$ over \mathfrak{C}, denoted by $\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}$, to be the quotient C^{*}-algebra of the (universal) free product C^{*}-algebra $\mathfrak{A} * \mathfrak{B}$ of $\mathfrak{A}, \mathfrak{B}$ by the closed ideal generated by the set $\left\{\mu_{1}(c)-\mu_{2}(c) \mid c \in \mathfrak{C}\right\}$. We have the following diagram:

where $\mathrm{id}_{\mathfrak{A}}, \mathrm{id}_{\mathfrak{B}}$ are the canonical inclusions.
Balanced tensor products Let $\mathfrak{A}, \mathfrak{B}$ be unital C^{*}-algebras. Assume that there exists a common C^{*}-subalgebra \mathfrak{C} of \mathfrak{A} and \mathfrak{B} with embeddings $\mu_{1}: \mathfrak{C} \rightarrow \mathfrak{A}, \mu_{2}: \mathfrak{C} \rightarrow \mathfrak{B}$. Then as another version of their pushout C^{*}-algebra we define the balanced tensor product
 (maximal) tensor product C^{*}-algebra $\mathfrak{A} \otimes \mathfrak{B}$ of $\mathfrak{A}, \mathfrak{B}$ by the closed ideal generated by the set $\left\{\mu_{1}(c)-\mu_{2}(c) \mid c \in \mathfrak{C}\right\}$. We have the following diagram:

where $\operatorname{id}_{\mathfrak{A}}, \mathrm{id}_{\mathfrak{B}}$ are the canonical inclusions. We may take nonunital $\mathfrak{A}, \mathfrak{B}$ if not use this diagram.

If we have continuous maps $f: X \rightarrow Z, g: Y \rightarrow Z$, then the space $X \times{ }_{Z} Y$ defined by

$$
X \times_{Z} Y=\{(x, y) \in X \times Y \mid f(x)=g(y)\}
$$

corresponds to $C(X) \otimes_{C(Z)} C(Y)$ (or $C(X) *_{C(Z)} C(Y)$).
Successive construction Let $\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}$ be a pullback C^{*}-algebra and \mathfrak{D}, E be C^{*}-algebras. Suppose that there exist $*$-homomorphisms $\beta_{1}: \mathfrak{C} \rightarrow E, \beta_{2}: \mathfrak{D} \rightarrow E$. Then we can define the extension of β_{1} by the same symbol $\beta_{1}: \mathfrak{A} \oplus \mathfrak{C} \mathfrak{B} \rightarrow E$. Thus, we can define the pullback C^{*}-algebra $\left(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}\right) \oplus_{E} \mathfrak{D}$ such that

where p_{1}, p_{2} are the canonical projections. Moreover,

$$
\left(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}\right) \oplus_{E} \mathfrak{D} \cong\left(\mathfrak{A} \oplus_{E} \mathfrak{D}\right) \oplus_{\mathfrak{C} \oplus_{E} \mathfrak{D}}\left(\mathfrak{B} \oplus_{E} \mathfrak{D}\right) .
$$

Let $\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}$ be an amalgam C^{*}-algebra and \mathfrak{D}, E be C^{*}-algebras. Suppose that there exist $*$-homomorphisms $\nu_{1}: E \rightarrow \mathfrak{C}, \nu_{2}: E \rightarrow \mathfrak{D}$. Then we can define the extension of ν_{1} by the same symbol $\nu_{1}: E \rightarrow \mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}$. Thus, we can define the amalgam C^{*}-algebra $\left(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}\right) *_{E} \mathfrak{D}$ such that

where $\mathrm{id}, \mathrm{id}_{\mathfrak{D}}$ are the canonical inclusions. Moreover,

$$
\left(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}\right) *_{E} \mathfrak{D} \cong\left(\mathfrak{A} *_{E} \mathfrak{D}\right) *_{\mathfrak{C} *_{E} \mathfrak{D}}\left(\mathfrak{B} *_{E} \mathfrak{D}\right) .
$$

Let $\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}$ be a balanced tensor product C^{*}-algebra and \mathfrak{D}, E be C^{*}-algebras. Suppose that there exist $*$-homomorphisms $\nu_{1}: E \rightarrow \mathfrak{C}, \nu_{2}: E \rightarrow \mathfrak{D}$. Then we can define the extension of ν_{1} by the same symbol $\nu_{1}: E \rightarrow \mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}$. Thus, we can define the balanced tensor product C^{*}-algebra $\left(\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}\right) \otimes_{E} \mathfrak{D}$. Moreover,

$$
\left(\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}\right) \otimes_{E} \mathfrak{D} \cong\left(\mathfrak{A} \otimes_{E} \mathfrak{D}\right) \otimes_{\mathfrak{C} \otimes_{E} \mathfrak{D}}\left(\mathfrak{B} \otimes_{E} \mathfrak{D}\right)
$$

Furthermore, under the successive assumptions on $*$-homomorphisms involved we can construct an n-successive pullback C^{*}-algebra as follows:

$$
\left(\cdots\left(\left(\mathfrak{A}_{1} \oplus_{\mathfrak{B}_{1}} \mathfrak{A}_{2}\right) \oplus_{\mathfrak{B}_{2}} \mathfrak{A}_{3}\right) \cdots\right) \oplus_{\mathfrak{B}_{n-1}} \mathfrak{A}_{n}
$$

where $\mathfrak{A}_{j}(1 \leq j \leq n), \mathfrak{B}_{j}(1 \leq j \leq n-1)$ are C^{*}-algebras, and we assume that there exist $*$-homomorphisms: $\alpha_{1}: \mathfrak{A}_{1} \rightarrow \mathfrak{B}_{1}, \alpha_{j}: \mathfrak{A}_{j} \rightarrow \mathfrak{B}_{j-1}(2 \leq j \leq n), \beta_{j}: \mathfrak{B}_{j} \rightarrow \mathfrak{B}_{j+1}$ ($1 \leq j \leq n-2$).

Also, we can construct an n-successive amalgam C^{*}-algebra:

$$
\left(\cdots\left(\left(\mathfrak{A}_{1} *_{\mathfrak{B}_{1}} \mathfrak{A}_{2}\right) *_{\mathfrak{B}_{2}} \mathfrak{A}_{3}\right) \cdots\right) *_{\mathfrak{B}_{n-1}} \mathfrak{A}_{n}
$$

where $\mathfrak{A}_{j}(1 \leq j \leq n), \mathfrak{B}_{j}(1 \leq j \leq n-1)$ are C^{*}-algebras, and we assume that there exist $*$-homomorphisms: $\mu_{1}: \mathfrak{B}_{1} \rightarrow \mathfrak{A}_{1}, \mu_{j}: \mathfrak{B}_{j} \rightarrow \mathfrak{A}_{j+1}(2 \leq j \leq n-1)$, $\nu_{j}: \mathfrak{B}_{j+1} \rightarrow \mathfrak{B}_{j}$ $(1 \leq j \leq n-2)$.

Similarly, we can construct an n-successive balanced tensor product C^{*}-algebra:

$$
\left(\cdots\left(\left(\mathfrak{A}_{1} \otimes_{\mathfrak{B}_{1}} \mathfrak{A}_{2}\right) \otimes_{\mathfrak{B}_{2}} \mathfrak{A}_{3}\right) \cdots\right) \otimes_{\mathfrak{B}_{n-1}} \mathfrak{A}_{n}
$$

where $\mathfrak{A}_{j}(1 \leq j \leq n), \mathfrak{B}_{j}(1 \leq j \leq n-1)$ are C^{*}-algebras, and we assume that there exist *-homomorphisms: $\mu_{1}: \mathfrak{B}_{1} \rightarrow \mathfrak{A}_{1}, \mu_{j}: \mathfrak{B}_{j} \rightarrow \mathfrak{A}_{j+1}(2 \leq j \leq n-1), \nu_{j}: \mathfrak{B}_{j+1} \rightarrow \mathfrak{B}_{j}$ ($1 \leq j \leq n-2$).

2 K-theory

Let $\mathfrak{A}, \mathfrak{B}$ be C^{*}-algebras. Let \mathfrak{C} be a common C^{*}-subalgebra of \mathfrak{A} and \mathfrak{B} with embeddings $\mu_{1}: \mathfrak{C} \rightarrow \mathfrak{A}, \mu_{2}: \mathfrak{C} \rightarrow \mathfrak{B}$. Let $\mathfrak{A} *_{\mathfrak{D}} \mathfrak{B}$ be the amalgam of $\mathfrak{A}, \mathfrak{B}$ over \mathfrak{C}. Let $\iota_{1}: \mathfrak{A} \rightarrow \mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}, \iota_{2}: \mathfrak{B} \rightarrow \mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}$ be the natural injective $*$-homomorphisms. Suppose that there exist retractions (i.e., surjective $*$-homomorphisms) $r_{1}: \mathfrak{A} \rightarrow \mathfrak{C}$ and $r_{2}: \mathfrak{B} \rightarrow \mathfrak{C}$ satisfying $r_{1} \circ \mu_{1}=\operatorname{id}_{\mathfrak{C}}$ and $r_{2} \circ \mu_{2}=\operatorname{id}_{\mathfrak{C}}$. Let $\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}$ be the pullback C^{*}-algebra associated with r_{1}, r_{2} defined by

$$
\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}=\left\{(a, b) \in \mathfrak{A} \oplus \mathfrak{B} \mid r_{1}(a)=r_{2}(b)\right\}
$$

Theorem 2.1 (Blackadar $[1,10.11 .11])$ Let $\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}$ be the amalgamated free product of C^{*} algebras \mathfrak{A}, \mathfrak{B} over a common C^{*}-subalgebra \mathfrak{C} with retractions r_{1}, r_{2} to \mathfrak{C}, and $\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}$ be the associated pull back C^{*}-algebra. Then

$$
K_{j}\left(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}\right) \cong K_{j}\left(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}\right) \quad(j=0,1)
$$

Proof. Define the map $r: \mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B} \rightarrow \mathfrak{C}$ by $r(a, b)=r_{1}(a)=r_{2}(b) \in \mathfrak{C}$ and let $i: \mathfrak{C} \rightarrow \mathfrak{A} * \mathfrak{c} \mathfrak{B}$ be the canonical inclusion. Define the map g by the following composition:

$$
g: \mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B} \xrightarrow{r} \mathfrak{C} \xrightarrow{i} \mathfrak{A} * \mathfrak{C} \mathfrak{B}
$$

Let $k: \mathfrak{A} *_{\mathfrak{C}} \mathfrak{B} \rightarrow \mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}$ be the map induced by setting

$$
k(a)=\left(a, r_{1}(a)\right) \text { for } a \in \mathfrak{A} \text { and } k(b)=\left(r_{2}(b), b\right) \text { for } b \in \mathfrak{B}
$$

and using the universal property of $\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}$. Define $f: \mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B} \rightarrow M_{2}\left(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}\right)$ (the 2×2 matrix algebra over $\left.\mathfrak{A} *_{\mathfrak{c}} \mathfrak{B}\right)$ by $f(a, b)=a \oplus b$ the diagonal sum. Then we have the following composition:

$$
\begin{gathered}
(1 \otimes k) \circ f: \mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B} \xrightarrow{f} M_{2}(\mathfrak{A} * \mathfrak{C} \mathfrak{B}) \xrightarrow{1 \otimes k} M_{2}\left(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}\right), \\
(1 \otimes k) \circ f(a, b)=\left(\begin{array}{cc}
\left(a, r_{1}(a)\right) & 0 \\
0 & \left(r_{2}(b), b\right)
\end{array}\right) \equiv\left(a, r_{1}(a)\right) \oplus\left(r_{2}(b), b\right),
\end{gathered}
$$

and this homomorphism is homotopic to $1_{\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}} \oplus(k \circ g)$ by conjugation by the unitaries $\left(1_{M_{2}(\mathfrak{L l})} \oplus u_{t}\right)$, where

$$
u_{t}=\left(\begin{array}{cc}
\cos (\pi t / 2) & -\sin (\pi t / 2) \\
\sin (\pi t / 2) & \cos (\pi t / 2)
\end{array}\right)
$$

Indeed, $(k \circ g)(a, b)=k\left(r_{1}(a)\right)=\left(r_{1}(a), r_{1}\left(r_{1}(a)\right)\right)=\left(r_{1}(a), r_{2}(b)\right)$ and

$$
\begin{aligned}
& (a, b) \oplus(k \circ g)(a, b) \\
& =(a, b) \oplus\left(r_{1}(a), r_{2}(b)\right)=\left(a \oplus r_{1}(a)\right) \oplus\left(b \oplus r_{2}(b)\right) \\
& =\left(\begin{array}{cc}
a & 0 \\
0 & r_{1}(a)
\end{array}\right) \oplus\left(\begin{array}{cc}
b & 0 \\
0 & r_{2}(b)
\end{array}\right) \in M_{2}(\mathfrak{A}) \oplus M_{2}(\mathfrak{B}), \\
& \left(1_{M_{2}(\mathfrak{A})} \oplus u_{1}\right)\left(\left(a \oplus r_{1}(a), b \oplus r_{2}(b)\right)\left(1_{M_{2}(\mathfrak{A})} \oplus u_{1}^{*}\right)\right. \\
& =\left(a \oplus r_{1}(a)\right) \oplus u_{1}\left(b \oplus r_{2}(b)\right) u_{1}^{*} \\
& =\left(a \oplus r_{1}(a)\right) \oplus\left(r_{2}(b) \oplus b\right) \in M_{2}(\mathfrak{A}) \oplus M_{2}(\mathfrak{B}) .
\end{aligned}
$$

Hence, it follows that $k_{*} \circ f_{*}-k_{*} \circ g_{*}$ is the identity map on the K-groups $K_{j}\left(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}\right)$ of $\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}(j=0,1)$. Also we have the following composition:

$$
h_{1}=f \circ k: \mathfrak{A} *_{\mathfrak{C}} \mathfrak{B} \xrightarrow{k} \mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B} \xrightarrow{f} M_{2}\left(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}\right) \text {, }
$$

which is homotopic to $h_{0}=1_{\mathfrak{A} * \mathfrak{C} \mathfrak{B}} \oplus(g \circ k)$ via the path of homomorphisms h_{t} defined by $h_{t}(a)=a \oplus r_{1}(a)=(f \circ k)(a), h_{t}(b)=u_{t}\left(\left(b \oplus r_{2}(b)\right) u_{t}^{*}\right.$. Indeed, $(g \circ k)(a)=g\left(a, r_{1}(a)\right)=$ $r_{1}(a)=r_{2}\left(r_{1}(a)\right)$ and $(g \circ k)(b)=g\left(r_{2}(b), b\right)=r_{2}(b)=r_{1}\left(r_{2}(b)\right)$ and

$$
\begin{aligned}
& h_{0}(a)=a \oplus r_{1}(a), \quad h_{0}(b)=b \oplus r_{2}((b), \\
& u_{1}\left(b \oplus r_{2}(b)\right) u_{1}^{*}=r_{2}(b) \oplus b=(f \circ k)(b)
\end{aligned}
$$

Thus, it follows that $f_{*} \circ k_{*}-g_{*} \circ k_{*}$ is the identity map on the K-groups $K_{j}\left(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}\right)$ of $\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}(j=0,1)$.

Therefore, we conclude that $k_{*}: K_{j}\left(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}\right) \rightarrow K_{j}\left(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}\right)$ is an isomorphism with its inverse $f_{*}-g_{*}(j=0,1)$.
Remark. If $\mathfrak{C}=\{0\}$, then we can take the retractions r_{1}, r_{2} as zero ones, and $\mathfrak{A} * \mathfrak{c} \mathfrak{B} \cong \mathfrak{A} * \mathfrak{B}$ the free product C^{*}-algebra of $\mathfrak{A}, \mathfrak{B}$. Moreover, for $j=0,1$,

$$
K_{j}(\mathfrak{A} * \mathfrak{B}) \cong K_{j}(\mathfrak{A} \oplus \mathfrak{B}) .
$$

Furthermore,
Theorem 2.2 We have the following splitting exact sequence:

$$
0 \longrightarrow K_{j}(\mathfrak{C}) \xrightarrow{\left(\mu_{1 *}, \mu_{2 *}\right)} K_{j}(\mathfrak{A}) \oplus K_{j}(\mathfrak{B}) \xrightarrow{\iota_{1 *}-\iota_{2 *}} K_{j}(\mathfrak{A} * \mathfrak{C} \mathfrak{B}) \longrightarrow 0 .
$$

Proof. By Mayer-Vietoris sequence for K-theory, the following sequence:

$$
0 \longrightarrow K_{j}(\mathfrak{C}) \xrightarrow{\left(\mu_{1 *}, \mu_{2 *}\right)} K_{j}(\mathfrak{A}) \oplus K_{j}(\mathfrak{B}) \xrightarrow{\iota_{1 *}-\iota_{2 *}} K_{j}(\mathfrak{A} \oplus \mathfrak{C} \mathfrak{B}) \longrightarrow 0
$$

is exact and splitting ([1, 10.11.11]).
Corollary 2.3 We have

$$
K_{j}\left(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}\right) \cong\left(K_{j}(\mathfrak{A}) \oplus K_{j}(\mathfrak{B})\right) / K_{j}(\mathfrak{C}) \quad(j=0,1) .
$$

Exactly by the same way as Theorem 2.1, under an additional assumption on commutativity we obtain

Theorem 2.4 Let $\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}$ be the balanced tensor product C^{*}-algebra of unital C^{*}-algebras $\mathfrak{A}, \mathfrak{B}$ over a common nonzero unital C^{*}-subalgebra \mathfrak{C} with retractions r_{1}, r_{2} to \mathfrak{C}, and $\mathfrak{A} \oplus \mathfrak{C} \mathfrak{B}$ be the associated pull back C^{*}-algebra defined as above. Assume that \mathfrak{C} commutes with \mathfrak{A} and \mathfrak{B} and has the same unit with them. Then

$$
K_{j}\left(\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}\right) \cong K_{j}\left(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}\right) \quad(j=0,1) .
$$

Proof. Since $\mathfrak{A}, \mathfrak{B}$ are unital, they are assumed to be C^{*}-subalgebras of $\mathfrak{A} \otimes \mathfrak{c} \mathfrak{B}$ via $a=a \otimes 1$ and $b=1 \otimes b$ for $a \in \mathfrak{A}$ and $b \in \mathfrak{B}$. Since $a \otimes b=(a \otimes 1)(1 \otimes b)=(1 \otimes b)(a \otimes 1)$ and we need to have that the following elements:

$$
\left(a, r_{1}(a)\right)\left(r_{2}(b), b\right)=\left(a r_{2}(b), r_{1}(a) b\right), \quad\left(r_{2}(b), b\right)=\left(a, r_{1}(a)\right)=\left(r_{2}(b) a, b r_{1}(a)\right)
$$

are equal to define the map k^{\prime} corresponding to the map k in the proof of Theorem 2.1, from which we need to assume that \mathfrak{C} commutes with \mathfrak{A} and \mathfrak{B}. Also, \mathfrak{C} can not be zero since if \mathfrak{C} is zero, $k^{\prime}(1 \otimes 1)=(1,0)$ and $k^{\prime}(1 \otimes 1)=(0,1)$. Thus, k^{\prime} is not well-defined. If \mathfrak{C} is unital and nonzero, $k^{\prime}(1 \otimes 1)=\left(1, r_{1}(1)\right)$ and $k^{\prime}(1 \otimes 1)=\left(r_{2}(1), 1\right)$, Thus, to have $\left(1, r_{1}(1)\right)=\left(r_{2}(1), 1\right)$ we need to assume that \mathfrak{C} has the same unit with $\mathfrak{A}, \mathfrak{B}$.

Corollary 2.5 Under the same assumption as above we have

$$
K_{j}\left(\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}\right) \cong\left(K_{j}(\mathfrak{A}) \oplus K_{j}(\mathfrak{B})\right) / K_{j}(\mathfrak{C}) \quad(j=0,1) .
$$

Theorem 2.6 Let $\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}$ be the amalgam of C^{*}-algebras $\mathfrak{A}, \mathfrak{B}$ over a common C^{*} subalgebra \mathfrak{C} with retractions r_{1}, r_{2} to \mathfrak{C}, and $\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}$ be the associated pullback C^{*}-algebra defined as above. Let $\left(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}\right) *_{E} \mathfrak{D}$ be the successive amalgam defined above for C^{*}-algebras \mathfrak{D}, \mathfrak{E} with retractions $s_{1}: \mathfrak{A} *_{\mathfrak{C}} \mathfrak{B} \rightarrow E$, $s_{2}: \mathfrak{D} \rightarrow E$, and $\left(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}\right) \oplus_{E} \mathfrak{D}$ be the associated pullback C^{*}-algebra. Then for $j=0,1$,

$$
\begin{aligned}
K_{j}\left(\left(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}\right) *_{E} \mathfrak{D}\right) & \cong\left[\left(\left(K_{j}(\mathfrak{A}) \oplus K_{j}(\mathfrak{B})\right) / K_{j}(\mathfrak{C})\right) \oplus K_{j}(\mathfrak{D})\right] / K_{j}(E) \\
& \cong K_{j}\left(\left(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}\right) \oplus_{E} \mathfrak{D}\right)
\end{aligned}
$$

where $\left(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}\right) \oplus_{E} \mathfrak{D}$ is the successive pullback C^{*}-algebra associated with r_{1}, r_{2} and s_{1}, s_{2}.
Proof. Using Theorem 2.1 and Corollary 2.3 we compute

$$
\begin{aligned}
K_{j}\left(\left(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}\right) *_{E} \mathfrak{D}\right) & \cong K_{j}\left(\left(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}\right) \oplus_{E} \mathfrak{D}\right) \\
& \cong\left[K_{j}\left(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}\right) \oplus K_{j}(\mathfrak{D})\right] / K_{j}(E) \\
& \cong\left[K_{j}(\mathfrak{A} \oplus \mathfrak{C} \mathfrak{B}) \oplus K_{j}(\mathfrak{D})\right] / K_{j}(E) \\
& \cong\left[\left(\left(K_{j}(\mathfrak{A}) \oplus K_{j}(\mathfrak{B})\right) / K_{j}(\mathfrak{C})\right) \oplus K_{j}(\mathfrak{D})\right] / K_{j}(E) .
\end{aligned}
$$

On the other hand, using Mayer-Vietoris sequence repeatedly we obtain

$$
\begin{aligned}
K_{j}\left(\left(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}\right) \oplus_{E} \mathfrak{D}\right) & \cong\left[K_{j}\left(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}\right) \oplus K_{j}(\mathfrak{D})\right] / K_{j}(E) \\
& \cong\left[\left(\left(K_{j}(\mathfrak{A}) \oplus K_{j}(\mathfrak{B})\right) / K_{j}(\mathfrak{C})\right) \oplus K_{j}(\mathfrak{D})\right] / K_{j}(E)
\end{aligned}
$$

Similarly, using Theorem 2.4 and Corollary 2.5 we obtain
Theorem 2.7 Let $\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}$ be the balanced tensor product C^{*}-algebra of unital C^{*}-algebras $\mathfrak{A}, \mathfrak{B}$ over a common nonzero unital C^{*}-subalgebra \mathfrak{C} with retractions r_{1}, r_{2} to \mathfrak{C}, and $\mathfrak{A} \oplus \mathfrak{c} \mathfrak{B}$ be the associated pullback C^{*}-algebra defined as above. Let $\left(\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}\right) \otimes_{E} \mathfrak{D}$ be the successive balanced tensor product C^{*}-algebra defined in Section 1 for unital C^{*}-algebras \mathfrak{D}, E with retractions $s_{1}: \mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B} \rightarrow E, s_{2}: \mathfrak{D} \rightarrow E$, and $\left(\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}\right) \oplus_{E} \mathfrak{D}$ be the associated pullback C^{*}-algebra. Assume that \mathfrak{C} commutes with \mathfrak{A} and \mathfrak{B}, and E commutes with $\mathfrak{A} \otimes_{\mathcal{C}} \mathfrak{B}$ and \mathfrak{D}. Then for $j=0,1$,

$$
\begin{aligned}
K_{j}\left(\left(\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}\right) \otimes_{E} \mathfrak{D}\right) & \cong\left[\left(\left(K_{j}(\mathfrak{A}) \oplus K_{j}(\mathfrak{B})\right) / K_{j}(\mathfrak{C})\right) \oplus K_{j}(\mathfrak{D})\right] / K_{j}(E) \\
& \cong K_{j}\left(\left(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}\right) \oplus_{E} \mathfrak{D}\right)
\end{aligned}
$$

where $\left(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}\right) \oplus_{E} \mathfrak{D}$ is the successive pullback C^{*}-algebra associated with r_{1}, r_{2} and s_{1}, s_{2}.
Theorem 2.8 Let \mathfrak{A} be the n-successive pullback C^{*}-algebra as follows:

$$
\mathfrak{A}=\left(\cdots\left(\left(\mathfrak{A}_{1} \oplus_{\mathfrak{B}_{1}} \mathfrak{A}_{2}\right) \oplus_{\mathfrak{B}_{2}} \mathfrak{A}_{3}\right) \cdots\right) \oplus_{\mathfrak{B}_{n-1}} \mathfrak{A}_{n}
$$

where $\mathfrak{A}_{j}(1 \leq j \leq n)$, $\mathfrak{B}_{j}(1 \leq j \leq n-1)$ are C^{*}-algebras, and we assume that there exist $*$-homomorphisms: $\alpha_{1}: \mathfrak{A}_{1} \rightarrow \mathfrak{B}_{1}, \alpha_{j}: \mathfrak{A}_{j} \rightarrow \mathfrak{B}_{j-1}(2 \leq j \leq n), \beta_{j}: \mathfrak{B}_{j} \rightarrow \mathfrak{B}_{j+1}$ ($1 \leq j \leq n-2$). Then for $j=0,1$,
$\left.K_{j}(\mathfrak{A}) \cong\left(\left(\cdots\left(\left(\left(K_{j}\left(\mathfrak{A}_{1}\right) \oplus K_{j}\left(\mathfrak{A}_{2}\right)\right) / K_{j}\left(\mathfrak{B}_{1}\right)\right) \oplus K_{j}\left(\mathfrak{A}_{3}\right)\right) / K_{j}\left(\mathfrak{B}_{2}\right)\right) \cdots\right) \oplus K_{j}\left(\mathfrak{A}_{n}\right)\right) / K_{j}\left(\mathfrak{B}_{n-1}\right)$.
Proof. We use the Mayer-Vietoris sequence for K-theory repeatedly.

Theorem 2.9 Let \mathfrak{A} be the n-successive amalgam C^{*}-algebra as follows:

$$
\mathfrak{A}=\left(\cdots\left(\left(\mathfrak{A}_{1} *_{\mathfrak{B}_{1}} \mathfrak{A}_{2}\right) *_{\mathfrak{B}_{2}} \mathfrak{A}_{3}\right) \cdots\right) *_{\mathfrak{B}_{n-1}} \mathfrak{A}_{n}
$$

where $\mathfrak{A}_{j}(1 \leq j \leq n), \mathfrak{B}_{j}(1 \leq j \leq n-1)$ are C^{*}-algebras, and we assume that there exist *-homomorphisms: $\mu_{1}: \mathfrak{B}_{1} \rightarrow \mathfrak{A}_{1}, \mu_{j}: \mathfrak{B}_{j} \rightarrow \mathfrak{A}_{j+1}(2 \leq j \leq n-1), \nu_{j}: \mathfrak{B}_{j+1} \rightarrow \mathfrak{B}_{j}$ $(1 \leq j \leq n-2)$. Suppose that there exist retractions $r_{1}: \mathfrak{A}_{1} \rightarrow \mathfrak{B}_{1}, r_{j}: \mathfrak{A}_{j} \rightarrow \mathfrak{B}_{j-1}$ $(2 \leq j \leq n)$ and $s_{j}: \mathfrak{B}_{j} \rightarrow \mathfrak{B}_{j+1}(1 \leq j \leq n-2)$. Let P be the associated n-bullback C^{*}-algebra as follows: $P=\left(\cdots\left(\left(\mathfrak{A}_{1} \oplus_{\mathfrak{B}_{1}} \mathfrak{A}_{2}\right) \oplus_{\mathfrak{B}_{2}} \mathfrak{A}_{3}\right) \cdots\right) \oplus_{\mathfrak{B}_{n-1}} \mathfrak{A}_{n}$. Then for $j=0,1$,

$$
\begin{aligned}
& K_{j}(\mathfrak{A}) \cong K_{j}(P) \\
& \cong\left(\left(\cdots\left(\left(\left(\left(K_{j}\left(\mathfrak{A}_{1}\right) \oplus K_{j}\left(\mathfrak{A}_{2}\right)\right) / K_{j}\left(\mathfrak{B}_{1}\right)\right) \oplus K_{j}\left(\mathfrak{A}_{3}\right)\right) / K_{j}\left(\mathfrak{B}_{2}\right)\right) \cdots\right) \oplus K_{j}\left(\mathfrak{A}_{n}\right)\right) / K_{j}\left(\mathfrak{B}_{n-1}\right) .
\end{aligned}
$$

Corollary 2.10 Let \mathfrak{A} be the n-successive amalgam C^{*}-algebra as follows:

$$
\begin{aligned}
\mathfrak{A} & =\left(\cdots\left(\left(\mathfrak{A}_{1} *_{\mathbb{C}} \mathfrak{A}_{2}\right) *_{\mathbb{C}} \mathfrak{A}_{3}\right) \cdots\right) *_{\mathbb{C}} \mathfrak{A}_{n} \\
& \left.\cong \mathfrak{A}_{1} *_{\mathbb{C}} \mathfrak{A}_{2} *_{\mathbb{C}} \cdots *_{\mathbb{C}} \mathfrak{A}_{n} \quad \text { (n-fold unital free product }\right)
\end{aligned}
$$

where $\mathfrak{A}_{j}(1 \leq j \leq n)$ are unital C^{*}-algebras. Suppose that there exist retractions $r_{j}: \mathfrak{A}_{j} \rightarrow$ $\mathbb{C}(1 \leq j \leq n)$. Let P be the associated n-bullback C^{*}-algebra as follows:

$$
P=\left(\cdots\left(\left(\mathfrak{A}_{1} \oplus_{\mathbb{C}} \mathfrak{A}_{2}\right) \oplus_{\mathbb{C}} \mathfrak{A}_{3}\right) \cdots\right) \oplus_{\mathbb{C}} \mathfrak{A}_{n}
$$

Then

$$
\begin{aligned}
& K_{0}(\mathfrak{A}) \cong K_{0}(P) \\
& \left.\cong\left(\left(\cdots\left(\left(\left(K_{0}\left(\mathfrak{A}_{1}\right) \oplus K_{0}\left(\mathfrak{A}_{2}\right)\right) / \mathbb{Z}\right) \oplus K_{0}\left(\mathfrak{A}_{3}\right)\right) / \mathbb{Z}\right) \cdots\right) \oplus K_{0}\left(\mathfrak{A}_{n}\right)\right) / \mathbb{Z}, \quad \text { and } \\
& K_{1}(\mathfrak{A}) \cong K_{1}(P) \cong K_{1}\left(\mathfrak{A}_{1}\right) \oplus K_{1}\left(\mathfrak{A}_{2}\right) \oplus K_{1}\left(\mathfrak{A}_{3}\right) \oplus \cdots \oplus K_{1}\left(\mathfrak{A}_{n}\right) .
\end{aligned}
$$

Proof. Note that $K_{0}(\mathbb{C}) \cong \mathbb{Z}$ and $K_{1}(\mathbb{C}) \cong 0$.
Remark. In the theorem above, if $\mathfrak{B}_{j}=0(1 \leq j \leq n-1)$, then

$$
\begin{aligned}
& \mathfrak{A} \cong \mathfrak{A}_{1} * \mathfrak{A}_{2} * \cdots * \mathfrak{A}_{n} \quad(n \text {-fold free product }) \\
& P \cong \mathfrak{A}_{1} \oplus \mathfrak{A}_{2} \oplus \cdots \oplus \mathfrak{A}_{n} \quad(n \text {-direct sum })
\end{aligned}
$$

and $K_{j}(\mathfrak{A}) \cong K_{j}(P) \cong K_{j}\left(\mathfrak{A}_{1}\right) \oplus K_{j}\left(\mathfrak{A}_{2}\right) \oplus \cdots \oplus K_{j}\left(\mathfrak{A}_{n}\right)$ for $j=0,1$.
Theorem 2.11 Let \mathfrak{A} be the n-successive balanced tensor product C^{*}-algebra as follows:

$$
\mathfrak{A}=\left(\cdots\left(\left(\mathfrak{A}_{1} \otimes_{\mathfrak{B}_{1}} \mathfrak{A}_{2}\right) \otimes_{\mathfrak{B}_{2}} \mathfrak{A}_{3}\right) \cdots\right) \otimes_{\mathfrak{B}_{n-1}} \mathfrak{A}_{n}
$$

where $\mathfrak{A}_{j}(1 \leq j \leq n), \mathfrak{B}_{j}(1 \leq j \leq n-1)$ are nonzero unital C^{*}-algebras, and we assume that there exist $*$-homomorphisms: $\mu_{1}: \mathfrak{B}_{1} \rightarrow \mathfrak{A}_{1}, \mu_{j}: \mathfrak{B}_{j} \rightarrow \mathfrak{A}_{j+1}(2 \leq j \leq n-1)$, $\nu_{j}: \mathfrak{B}_{j+1} \rightarrow \mathfrak{B}_{j}(1 \leq j \leq n-2)$. Suppose that there exist retractions $r_{1}: \mathfrak{A}_{1} \rightarrow \mathfrak{B}_{1}$, $r_{j}: \mathfrak{A}_{j} \rightarrow \mathfrak{B}_{j-1}(2 \leq j \leq n)$ and $s_{j}: \mathfrak{B}_{j} \rightarrow \mathfrak{B}_{j+1}(1 \leq j \leq n-2)$. Let P be the associated n-bullback C^{*}-algebra as follows: $P=\left(\cdots\left(\left(\mathfrak{A}_{1} \oplus_{\mathfrak{B}_{1}} \mathfrak{A}_{2}\right) \oplus_{\mathfrak{B}_{2}} \mathfrak{A}_{3}\right) \cdots\right) \oplus_{\mathfrak{B}_{n-1}} \mathfrak{A}_{n}$. Assume that $\mathfrak{B}_{j}(1 \leq j \leq n-1)$ commute with \mathfrak{A}_{j+1} and

$$
\left(\cdots\left(\left(\mathfrak{A}_{1} \otimes_{\mathfrak{B}_{1}} \mathfrak{A}_{2}\right) \otimes_{\mathfrak{B}_{2}} \mathfrak{A}_{3}\right) \cdots\right) \otimes_{\mathfrak{B}_{j-1}} \mathfrak{A}_{j}
$$

and have the same units with them. Then for $j=0,1$,

$$
\begin{aligned}
& K_{j}(\mathfrak{A}) \cong K_{j}(P) \\
& \cong\left(\left(\cdots\left(\left(\left(\left(K_{j}\left(\mathfrak{A}_{1}\right) \oplus K_{j}\left(\mathfrak{A}_{2}\right)\right) / K_{j}\left(\mathfrak{B}_{1}\right)\right) \oplus K_{j}\left(\mathfrak{A}_{3}\right)\right) / K_{j}\left(\mathfrak{B}_{2}\right)\right) \cdots\right) \oplus K_{j}\left(\mathfrak{A}_{n}\right)\right) / K_{j}\left(\mathfrak{B}_{n-1}\right) .
\end{aligned}
$$

Corollary 2.12 Let \mathfrak{A} be the n-successive balanced tensor product C^{*}-algebra as follows:

$$
\begin{aligned}
\mathfrak{A} & =\left(\cdots\left(\left(\mathfrak{A}_{1} \otimes_{\mathbb{C}} \mathfrak{A}_{2}\right) \otimes_{\mathbb{C}} \mathfrak{A}_{3}\right) \cdots\right) \otimes_{\mathbb{C}} \mathfrak{A}_{n} \\
& \cong \mathfrak{A}_{1} \otimes_{\mathbb{C}} \mathfrak{A}_{2} \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} \mathfrak{A}_{n} \quad(n-\text { fold unital tensor product })
\end{aligned}
$$

where $\mathfrak{A}_{j}(1 \leq j \leq n)$ are unital C^{*}-algebras. Suppose that there exist retractions $r_{j}: \mathfrak{A}_{j} \rightarrow$ $\mathbb{C}(1 \leq j \leq n)$. Let P be the associated n-bullback C^{*}-algebra as follows:

$$
P=\left(\cdots\left(\left(\mathfrak{A}_{1} \oplus_{\mathbb{C}} \mathfrak{A}_{2}\right) \oplus_{\mathbb{C}} \mathfrak{A}_{3}\right) \cdots\right) \oplus_{\mathbb{C}} \mathfrak{A}_{n}
$$

Then

$$
\begin{aligned}
& K_{0}(\mathfrak{A}) \cong K_{0}(P) \\
& \cong\left(\left(\cdots\left(\left(\left(\left(K_{0}\left(\mathfrak{A}_{1}\right) \oplus K_{0}\left(\mathfrak{A}_{2}\right)\right) / \mathbb{Z}\right) \oplus K_{0}\left(\mathfrak{A}_{3}\right)\right) / \mathbb{Z}\right) \cdots\right) \oplus K_{0}\left(\mathfrak{A}_{n}\right)\right) / \mathbb{Z}, \quad \text { and } \\
& K_{1}(\mathfrak{A}) \cong K_{1}(P) \cong K_{1}\left(\mathfrak{A}_{1}\right) \oplus K_{1}\left(\mathfrak{A}_{2}\right) \oplus K_{1}\left(\mathfrak{A}_{3}\right) \oplus \cdots \oplus K_{1}\left(\mathfrak{A}_{n}\right) .
\end{aligned}
$$

Remark. In the theorem above, if $\mathfrak{B}_{j}=0(1 \leq j \leq n-1)$, then

$$
\begin{array}{ll}
\mathfrak{A} \cong \mathfrak{A}_{1} \otimes \mathfrak{A}_{2} \otimes \cdots \otimes \mathfrak{A}_{n} & (n \text {-fold tensor product }) \\
P \cong \mathfrak{A}_{1} \oplus \mathfrak{A}_{2} \oplus \cdots \oplus \mathfrak{A}_{n} & (n \text {-direct sum })
\end{array}
$$

but $K_{j}(\mathfrak{A}) \nsubseteq K_{j}(P) \cong K_{j}\left(\mathfrak{A}_{1}\right) \oplus K_{j}\left(\mathfrak{A}_{2}\right) \oplus \cdots \oplus K_{j}\left(\mathfrak{A}_{n}\right)$ for $j=0,1$ in general. For instance, if $\mathfrak{A}_{j}=\mathbb{C}(1 \leq j \leq n)$, then $\mathfrak{A} \cong \mathbb{C}$ and $K_{0}(\mathfrak{A}) \cong \mathbb{Z}$ but $K_{0}(P) \cong \oplus_{j=1}^{n}$. See [1] for Künneth Theorem for K-groups of tensor products of C^{*}-algebras.

References

[1] B. Blackadar, K-theory for Operator Algebras, Second Edition, Cambridge, (1998).
[2] K.R. Davidson, C^{*}-algebras by Example, Fields Institute Monographs, AMS, (1996).
[3] G.K. Pedersen, Extensions of C^{*}-Algebras, Operator Algebras and Quantum Field Theory, Internat. Press, (1997), 2-35.
[4] G.K. Pedersen, Pullback and pushout constructions in C^{*}-algebra theory, J. Funct. Anal., (1999), 243-344.
[5] M. Rørdam and E. Størmer, Classification of Nuclear C^{*}-Algebras. Entropy in Operator Algebras EMS 126 Operator Algebras and Non-Commutative Geometry VII, Springer, (2002).
[6] N.E. Wegge-Olsen, K-theory and C^{*}-algebras, Oxford Univ. Press (1993).
Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.

Email: sudo@math.u-ryukyu.ac.jp

