K-THEORY OF THE PULLBACK AND PUSHOUT C*-ALGEBRAS

Takahiro Sudo

Received April 13, 2006

ABSTRACT. We study K-theory of the pullback C^* -algebras and the pushout C^* -algebras such as amalgams of C^* -algebras and balanced tensor products of C^* -algebras, and obtain that their K-groups are isomorphic under the reasonable assumptions on their *-homomorphisms.

Introduction In the C^* -algebra theory, K-theory has played an important and useful role in some topics of C^* -algebras such as classification theory for amenable (or nuclear) C^* algebras, extension theory and isomorphism problems such as the classification of irrational rotation C^* -algebras and the full or reduced C^* -algebras of free groups (see Rørdam [5], Davidson [2] and Wegge-Olsen [6]). On the other hand, some functorial methods of constructing examples of C^* -algebras such as the pullback construction of C^* -algebras and the pushout construction of C^* -algebras such as (universal) amalgamated free products (or amalgams) of C^* -algebras and (balanced) tensor products of C^* -algebras have been well studied (see Pedersen [3] (a survey) and [4]).

In this paper we study K-theory of the pullback C^* -algebras and the pushout C^* algebras such as amalgams of C^* -algebras and balanced tensor products of C^* -algebras, and obtain that their K-groups are isomorphic under some reasonable assumptions on their *-homomorphisms. For this purpose, in Section 1 we first review about the pullback C^* algebras and the pushout C^* -algebras and their successive construction from Pedersen [3] (and [4]). In Section 2 we include a formula for K-groups of (universal) amalgamated free products of C^* -algebras under an assumption for *-homomorphisms of common C^* subalgebras to have (inverse) retractions (i.e., surjective *-homomorphisms) ¿from Blackadar [1] with our modified proof, while the case for full free products of C^* -algebras is first considered by J. Cuntz. Using this formula extensively we obtain a number of formulas for K-groups of successive amalgams and balanced tensor products of C^* -algebras through K-groups of their associated pullback C^* -algebras. To define the associated pullback C^* algebras we need to assume that the *-homomorphisms from common C^* -subalgebras in the successive amalgams and balanced tensor products have (inverse) retractions.

See [1] and [6] for the details about K-theory of C^* -algebras, and see [3] for the details about the pullback and pushout constructions for C^* -algebras.

 C^* -algebras of

1 The pullback and pushout C^* -algebras

Pullbacks For C^* -algebras $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$, suppose that there exist *-homomorphisms $\alpha_1 : \mathfrak{A} \to \mathfrak{C}$, $\alpha_2 : \mathfrak{B} \to \mathfrak{C}$. Then their pullback C^* -algebra denoted by $\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}$ is defined by

$$\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B} = \{ (a, b) \in \mathfrak{A} \oplus \mathfrak{B} \, | \, \alpha_1(a) = \alpha_2(b) \}.$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 46L05, 46L80.

Key words and phrases. C*-algebra, K-theory, Pullback, Amalgam, Tensor product.

We have the following diagram:

$$\begin{array}{cccc} \mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B} & \stackrel{p_2}{\longrightarrow} \mathfrak{B} \\ & & & & \downarrow^{\alpha_2} \\ \mathfrak{A} & \stackrel{\alpha_1}{\longrightarrow} \mathfrak{C} \end{array}$$

where p_1, p_2 are the canonical projections.

Now consider the commutative case. Let X, Y, Z be compact Hausdorff spaces and C(X), C(Y), C(Z) the C^* -algebras of continuous functions on them respectively. Suppose that there exist continuous maps $f: Z \to X, g: Z \to Y$. Then the pullback C^* -algebra $C(X) \oplus_{C(Z)} C(Y)$ corresponds to the space $X \cup_Z Y$ obtained from the disjoint union $X \cup Y$ by identifying f(Z) and g(Z).

Amalgams Let $\mathfrak{A}, \mathfrak{B}$ be C^* -algebras. Assume that there exists a common C^* -subalgebra \mathfrak{C} of \mathfrak{A} and \mathfrak{B} with embeddings $\mu_1 : \mathfrak{C} \to \mathfrak{A}, \, \mu_2 : \mathfrak{C} \to \mathfrak{B}$. Then as their pushout C^* -algebra we define the (universal) amalgamated free product (or amalgam) of $\mathfrak{A}, \mathfrak{B}$ over \mathfrak{C} , denoted by $\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}$, to be the quotient C^* -algebra of the (universal) free product C^* -algebra $\mathfrak{A} * \mathfrak{B}$ of $\mathfrak{A}, \mathfrak{B}$ by the closed ideal generated by the set $\{\mu_1(c) - \mu_2(c) \mid c \in \mathfrak{C}\}$. We have the following diagram:

$$\begin{array}{ccc} \mathfrak{C} & \xrightarrow{\mu_2} & \mathfrak{B} \\ & & & \downarrow^{\mathrm{id}_{\mathfrak{B}}} \\ \mu_1 \downarrow & & \downarrow^{\mathrm{id}_{\mathfrak{B}}} \\ \mathfrak{A} & \xrightarrow{\mathrm{id}_{\mathfrak{A}}} & \mathfrak{A} \ast_{\mathfrak{C}} \mathfrak{B} \end{array}$$

where $id_{\mathfrak{A}}$, $id_{\mathfrak{B}}$ are the canonical inclusions.

Balanced tensor products Let $\mathfrak{A}, \mathfrak{B}$ be unital C^* -algebras. Assume that there exists a common C^* -subalgebra \mathfrak{C} of \mathfrak{A} and \mathfrak{B} with embeddings $\mu_1 : \mathfrak{C} \to \mathfrak{A}, \ \mu_2 : \mathfrak{C} \to \mathfrak{B}$. Then as another version of their pushout C^* -algebra we define the balanced tensor product C^* -algebra of $\mathfrak{A}, \mathfrak{B}$ over \mathfrak{C} , denoted by $\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}$, to be the quotient C^* -algebra of the (maximal) tensor product C^* -algebra $\mathfrak{A} \otimes \mathfrak{B}$ of $\mathfrak{A}, \mathfrak{B}$ by the closed ideal generated by the set $\{\mu_1(c) - \mu_2(c) | c \in \mathfrak{C}\}$. We have the following diagram:

$$\begin{array}{ccc} \mathfrak{C} & \xrightarrow{\mu_2} & \mathfrak{B} \\ & & \downarrow^{\mathrm{id}_{\mathfrak{B}}} \\ \mathfrak{A} & \xrightarrow{\mathrm{id}_{\mathfrak{A}}} & \mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B} \end{array}$$

where $id_{\mathfrak{A}}, id_{\mathfrak{B}}$ are the canonical inclusions. We may take nonunital $\mathfrak{A}, \mathfrak{B}$ if not use this diagram.

If we have continuous maps $f: X \to Z, g: Y \to Z$, then the space $X \times_Z Y$ defined by

$$X \times_Z Y = \{(x, y) \in X \times Y \mid f(x) = g(y)\}$$

corresponds to $C(X) \otimes_{C(Z)} C(Y)$ (or $C(X) *_{C(Z)} C(Y)$). **Successive construction** Let $\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}$ be a pullback C^* -algebra and \mathfrak{D} , E be C^* -algebras. Suppose that there exist *-homomorphisms $\beta_1 : \mathfrak{C} \to E, \beta_2 : \mathfrak{D} \to E$. Then we can define the extension of β_1 by the same symbol $\beta_1 : \mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B} \to E$. Thus, we can define the pullback C^* -algebra ($\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}$) $\oplus_E \mathfrak{D}$ such that

where p_1, p_2 are the canonical projections. Moreover,

$$(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}) \oplus_E \mathfrak{D} \cong (\mathfrak{A} \oplus_E \mathfrak{D}) \oplus_{\mathfrak{C} \oplus_E \mathfrak{D}} (\mathfrak{B} \oplus_E \mathfrak{D}).$$

Let $\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}$ be an amalgam C^* -algebra and \mathfrak{D} , E be C^* -algebras. Suppose that there exist *-homomorphisms $\nu_1 : E \to \mathfrak{C}, \nu_2 : E \to \mathfrak{D}$. Then we can define the extension of ν_1 by the same symbol $\nu_1 : E \to \mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}$. Thus, we can define the amalgam C^* -algebra $(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}) *_E \mathfrak{D}$ such that

$$\begin{array}{cccc} E & \xrightarrow{\nu_2} & \mathfrak{D} \\ & & & \downarrow^{\mathrm{id}_{\mathfrak{D}}} \\ \mathfrak{A} \ast_{\mathfrak{C}} \mathfrak{B} & \xrightarrow{\mathrm{id}} & (\mathfrak{A} \ast_{\mathfrak{C}} \mathfrak{B}) \ast_E \mathfrak{D} \end{array}$$

where id, $id_{\mathfrak{D}}$ are the canonical inclusions. Moreover,

$$(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}) *_E \mathfrak{D} \cong (\mathfrak{A} *_E \mathfrak{D}) *_{\mathfrak{C} *_E \mathfrak{D}} (\mathfrak{B} *_E \mathfrak{D}).$$

Let $\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}$ be a balanced tensor product C^* -algebra and \mathfrak{D} , E be C^* -algebras. Suppose that there exist *-homomorphisms $\nu_1 : E \to \mathfrak{C}, \nu_2 : E \to \mathfrak{D}$. Then we can define the extension of ν_1 by the same symbol $\nu_1 : E \to \mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}$. Thus, we can define the balanced tensor product C^* -algebra ($\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}$) $\otimes_E \mathfrak{D}$. Moreover,

$$(\mathfrak{A}\otimes_{\mathfrak{C}}\mathfrak{B})\otimes_{E}\mathfrak{D}\cong (\mathfrak{A}\otimes_{E}\mathfrak{D})\otimes_{\mathfrak{C}\otimes_{E}\mathfrak{D}}(\mathfrak{B}\otimes_{E}\mathfrak{D}).$$

Furthermore, under the successive assumptions on \ast -homomorphisms involved we can construct an *n*-successive pullback C^* -algebra as follows:

$$(\cdots ((\mathfrak{A}_1 \oplus_{\mathfrak{B}_1} \mathfrak{A}_2) \oplus_{\mathfrak{B}_2} \mathfrak{A}_3) \cdots) \oplus_{\mathfrak{B}_{n-1}} \mathfrak{A}_n$$

where \mathfrak{A}_j $(1 \leq j \leq n)$, \mathfrak{B}_j $(1 \leq j \leq n-1)$ are C^* -algebras, and we assume that there exist *-homomorphisms: $\alpha_1 : \mathfrak{A}_1 \to \mathfrak{B}_1$, $\alpha_j : \mathfrak{A}_j \to \mathfrak{B}_{j-1}$ $(2 \leq j \leq n)$, $\beta_j : \mathfrak{B}_j \to \mathfrak{B}_{j+1}$ $(1 \leq j \leq n-2)$.

Also, we can construct an *n*-successive amalgam C^* -algebra:

$$(\cdots ((\mathfrak{A}_1 *_{\mathfrak{B}_1} \mathfrak{A}_2) *_{\mathfrak{B}_2} \mathfrak{A}_3) \cdots) *_{\mathfrak{B}_{n-1}} \mathfrak{A}_n$$

where \mathfrak{A}_j $(1 \leq j \leq n)$, \mathfrak{B}_j $(1 \leq j \leq n-1)$ are C^* -algebras, and we assume that there exist *-homomorphisms: $\mu_1 : \mathfrak{B}_1 \to \mathfrak{A}_1, \, \mu_j : \mathfrak{B}_j \to \mathfrak{A}_{j+1} \ (2 \leq j \leq n-1), \, \nu_j : \mathfrak{B}_{j+1} \to \mathfrak{B}_j \ (1 \leq j \leq n-2).$

Similarly, we can construct an *n*-successive balanced tensor product C^* -algebra:

$$(\cdots ((\mathfrak{A}_1 \otimes_{\mathfrak{B}_1} \mathfrak{A}_2) \otimes_{\mathfrak{B}_2} \mathfrak{A}_3) \cdots) \otimes_{\mathfrak{B}_{n-1}} \mathfrak{A}_n$$

where \mathfrak{A}_j $(1 \leq j \leq n)$, \mathfrak{B}_j $(1 \leq j \leq n-1)$ are C^* -algebras, and we assume that there exist *-homomorphisms: $\mu_1 : \mathfrak{B}_1 \to \mathfrak{A}_1, \, \mu_j : \mathfrak{B}_j \to \mathfrak{A}_{j+1} \ (2 \leq j \leq n-1), \, \nu_j : \mathfrak{B}_{j+1} \to \mathfrak{B}_j \ (1 \leq j \leq n-2).$

2 K-theory

Let $\mathfrak{A}, \mathfrak{B}$ be C^* -algebras. Let \mathfrak{C} be a common C^* -subalgebra of \mathfrak{A} and \mathfrak{B} with embeddings $\mu_1 : \mathfrak{C} \to \mathfrak{A}, \mu_2 : \mathfrak{C} \to \mathfrak{B}$. Let $\mathfrak{A} *_{\mathfrak{D}} \mathfrak{B}$ be the amalgam of $\mathfrak{A}, \mathfrak{B}$ over \mathfrak{C} . Let $\iota_1 : \mathfrak{A} \to \mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}, \iota_2 : \mathfrak{B} \to \mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}$ be the natural injective *-homomorphisms. Suppose that there exist retractions (i.e., surjective *-homomorphisms) $r_1 : \mathfrak{A} \to \mathfrak{C}$ and $r_2 : \mathfrak{B} \to \mathfrak{C}$ satisfying $r_1 \circ \mu_1 = \mathrm{id}_{\mathfrak{C}}$ and $r_2 \circ \mu_2 = \mathrm{id}_{\mathfrak{C}}$. Let $\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}$ be the pullback C^* -algebra associated with r_1, r_2 defined by

$$\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B} = \{(a, b) \in \mathfrak{A} \oplus \mathfrak{B} \mid r_1(a) = r_2(b)\}.$$

TAKAHIRO SUDO

Theorem 2.1 (Blackadar [1, 10.11.11]) Let $\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}$ be the amalgamated free product of C^* algebras \mathfrak{A} , \mathfrak{B} over a common C^* -subalgebra \mathfrak{C} with retractions r_1, r_2 to \mathfrak{C} , and $\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}$ be the associated pull back C^* -algebra. Then

$$K_j(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}) \cong K_j(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}) \quad (j = 0, 1).$$

Proof. Define the map $r : \mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B} \to \mathfrak{C}$ by $r(a, b) = r_1(a) = r_2(b) \in \mathfrak{C}$ and let $i : \mathfrak{C} \to \mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}$ be the canonical inclusion. Define the map g by the following composition:

$$g: \mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B} \xrightarrow{r} \mathfrak{C} \xrightarrow{i} \mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}.$$

Let $k : \mathfrak{A} *_{\mathfrak{C}} \mathfrak{B} \to \mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}$ be the map induced by setting

$$k(a) = (a, r_1(a))$$
 for $a \in \mathfrak{A}$ and $k(b) = (r_2(b), b)$ for $b \in \mathfrak{B}$

and using the universal property of $\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}$. Define $f : \mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B} \to M_2(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B})$ (the 2 × 2 matrix algebra over $\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}$) by $f(a, b) = a \oplus b$ the diagonal sum. Then we have the following composition:

$$(1 \otimes k) \circ f : \mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B} \xrightarrow{f} M_2(\mathfrak{A} \ast_{\mathfrak{C}} \mathfrak{B}) \xrightarrow{1 \otimes k} M_2(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}),$$
$$(1 \otimes k) \circ f(a, b) = \begin{pmatrix} (a, r_1(a)) & 0\\ 0 & (r_2(b), b) \end{pmatrix} \equiv (a, r_1(a)) \oplus (r_2(b), b),$$

and this homomorphism is homotopic to $1_{\mathfrak{A}\oplus\mathfrak{C}\mathfrak{B}}\oplus(k\circ g)$ by conjugation by the unitaries $(1_{M_2(\mathfrak{A})}\oplus u_t)$, where

$$u_t = \begin{pmatrix} \cos(\pi t/2) & -\sin(\pi t/2) \\ \sin(\pi t/2) & \cos(\pi t/2) \end{pmatrix}.$$

Indeed, $(k \circ g)(a, b) = k(r_1(a)) = (r_1(a), r_1(r_1(a))) = (r_1(a), r_2(b))$ and

$$(a,b) \oplus (k \circ g)(a,b)$$

= $(a,b) \oplus (r_1(a), r_2(b)) = (a \oplus r_1(a)) \oplus (b \oplus r_2(b))$
= $\begin{pmatrix} a & 0 \\ 0 & r_1(a) \end{pmatrix} \oplus \begin{pmatrix} b & 0 \\ 0 & r_2(b) \end{pmatrix} \in M_2(\mathfrak{A}) \oplus M_2(\mathfrak{B}),$
 $(1_{M_2(\mathfrak{A})} \oplus u_1)((a \oplus r_1(a), b \oplus r_2(b))(1_{M_2(\mathfrak{A})} \oplus u_1^*))$
= $(a \oplus r_1(a)) \oplus u_1(b \oplus r_2(b))u_1^*$
= $(a \oplus r_1(a)) \oplus (r_2(b) \oplus b) \in M_2(\mathfrak{A}) \oplus M_2(\mathfrak{B}).$

Hence, it follows that $k_* \circ f_* - k_* \circ g_*$ is the identity map on the K-groups $K_j(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B})$ of $\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}$ (j = 0, 1). Also we have the following composition:

$$h_1 = f \circ k : \mathfrak{A} \ast_{\mathfrak{C}} \mathfrak{B} \xrightarrow{k} \mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B} \xrightarrow{f} M_2(\mathfrak{A} \ast_{\mathfrak{C}} \mathfrak{B}),$$

which is homotopic to $h_0 = 1_{\mathfrak{A}_{\mathfrak{C}}\mathfrak{B}} \oplus (g \circ k)$ via the path of homomorphisms h_t defined by $h_t(a) = a \oplus r_1(a) = (f \circ k)(a), h_t(b) = u_t((b \oplus r_2(b))u_t^*)$. Indeed, $(g \circ k)(a) = g(a, r_1(a)) = r_1(a) = r_2(r_1(a))$ and $(g \circ k)(b) = g(r_2(b), b) = r_2(b) = r_1(r_2(b))$ and

$$h_0(a) = a \oplus r_1(a), \quad h_0(b) = b \oplus r_2(b),$$

 $u_1(b \oplus r_2(b))u_1^* = r_2(b) \oplus b = (f \circ k)(b)$

Thus, it follows that $f_* \circ k_* - g_* \circ k_*$ is the identity map on the K-groups $K_j(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B})$ of $\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}$ (j = 0, 1).

Therefore, we conclude that $k_* : K_j(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}) \to K_j(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B})$ is an isomorphism with its inverse $f_* - g_*$ (j = 0, 1).

Remark. If $\mathfrak{C} = \{0\}$, then we can take the retractions r_1, r_2 as zero ones, and $\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B} \cong \mathfrak{A} * \mathfrak{B}$ the free product C^* -algebra of $\mathfrak{A}, \mathfrak{B}$. Moreover, for j = 0, 1,

$$K_j(\mathfrak{A} * \mathfrak{B}) \cong K_j(\mathfrak{A} \oplus \mathfrak{B}).$$

Furthermore,

Theorem 2.2 We have the following splitting exact sequence:

 $0 \longrightarrow K_j(\mathfrak{C}) \xrightarrow{(\mu_{1*},\mu_{2*})} K_j(\mathfrak{A}) \oplus K_j(\mathfrak{B}) \xrightarrow{\iota_{1*}-\iota_{2*}} K_j(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}) \longrightarrow 0.$

Proof. By Mayer-Vietoris sequence for K-theory, the following sequence:

$$0 \longrightarrow K_j(\mathfrak{C}) \xrightarrow{(\mu_{1*},\mu_{2*})} K_j(\mathfrak{A}) \oplus K_j(\mathfrak{B}) \xrightarrow{\iota_{1*}-\iota_{2*}} K_j(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}) \longrightarrow 0$$

is exact and splitting ([1, 10.11.11]).

Corollary 2.3 We have

$$K_j(\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}) \cong (K_j(\mathfrak{A}) \oplus K_j(\mathfrak{B}))/K_j(\mathfrak{C}) \quad (j = 0, 1).$$

Exactly by the same way as Theorem 2.1, under an additional assumption on commutativity we obtain

Theorem 2.4 Let $\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}$ be the balanced tensor product C^* -algebra of unital C^* -algebras $\mathfrak{A}, \mathfrak{B}$ over a common nonzero unital C^* -subalgebra \mathfrak{C} with retractions r_1, r_2 to \mathfrak{C} , and $\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}$ be the associated pull back C^* -algebra defined as above. Assume that \mathfrak{C} commutes with \mathfrak{A} and \mathfrak{B} and has the same unit with them. Then

$$K_{i}(\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}) \cong K_{i}(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}) \quad (j = 0, 1).$$

Proof. Since $\mathfrak{A}, \mathfrak{B}$ are unital, they are assumed to be C^* -subalgebras of $\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}$ via $a = a \otimes 1$ and $b = 1 \otimes b$ for $a \in \mathfrak{A}$ and $b \in \mathfrak{B}$. Since $a \otimes b = (a \otimes 1)(1 \otimes b) = (1 \otimes b)(a \otimes 1)$ and we need to have that the following elements:

$$(a, r_1(a))(r_2(b), b) = (ar_2(b), r_1(a)b), \quad (r_2(b), b) = (a, r_1(a)) = (r_2(b)a, br_1(a))$$

are equal to define the map k' corresponding to the map k in the proof of Theorem 2.1, from which we need to assume that \mathfrak{C} commutes with \mathfrak{A} and \mathfrak{B} . Also, \mathfrak{C} can not be zero since if \mathfrak{C} is zero, $k'(1 \otimes 1) = (1,0)$ and $k'(1 \otimes 1) = (0,1)$. Thus, k' is not well-defined. If \mathfrak{C} is unital and nonzero, $k'(1 \otimes 1) = (1, r_1(1))$ and $k'(1 \otimes 1) = (r_2(1), 1)$, Thus, to have $(1, r_1(1)) = (r_2(1), 1)$ we need to assume that \mathfrak{C} has the same unit with $\mathfrak{A}, \mathfrak{B}$. \Box

Corollary 2.5 Under the same assumption as above we have

$$K_j(\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}) \cong (K_j(\mathfrak{A}) \oplus K_j(\mathfrak{B}))/K_j(\mathfrak{C}) \quad (j = 0, 1).$$

TAKAHIRO SUDO

Theorem 2.6 Let $\mathfrak{A} \ast_{\mathfrak{C}} \mathfrak{B}$ be the amalgam of C^* -algebras \mathfrak{A} , \mathfrak{B} over a common C^* -subalgebra \mathfrak{C} with retractions r_1, r_2 to \mathfrak{C} , and $\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}$ be the associated pullback C^* -algebra defined as above. Let $(\mathfrak{A} \ast_{\mathfrak{C}} \mathfrak{B}) \ast_E \mathfrak{D}$ be the successive amalgam defined above for C^* -algebras $\mathfrak{D}, \mathfrak{C}$ with retractions $s_1 : \mathfrak{A} \ast_{\mathfrak{C}} \mathfrak{B} \to E$, $s_2 : \mathfrak{D} \to E$, and $(\mathfrak{A} \ast_{\mathfrak{C}} \mathfrak{B}) \oplus_E \mathfrak{D}$ be the associated pullback C^* -algebras. Then for j = 0, 1,

$$K_j((\mathfrak{A} *_{\mathfrak{C}} \mathfrak{B}) *_E \mathfrak{D}) \cong [((K_j(\mathfrak{A}) \oplus K_j(\mathfrak{B}))/K_j(\mathfrak{C})) \oplus K_j(\mathfrak{D})]/K_j(E)$$
$$\cong K_j((\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}) \oplus_E \mathfrak{D})$$

where $(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}) \oplus_{E} \mathfrak{D}$ is the successive pullback C^* -algebra associated with r_1, r_2 and s_1, s_2 .

Proof. Using Theorem 2.1 and Corollary 2.3 we compute

- >

-->

$$K_{j}((\mathfrak{A} \ast_{\mathfrak{C}} \mathfrak{B}) \ast_{E} \mathfrak{D}) \cong K_{j}((\mathfrak{A} \ast_{\mathfrak{C}} \mathfrak{B}) \oplus_{E} \mathfrak{D})$$

$$\cong [K_{j}(\mathfrak{A} \ast_{\mathfrak{C}} \mathfrak{B}) \oplus K_{j}(\mathfrak{D})]/K_{j}(E)$$

$$\cong [K_{j}(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}) \oplus K_{j}(\mathfrak{D})]/K_{j}(E)$$

$$\cong [((K_{j}(\mathfrak{A}) \oplus K_{j}(\mathfrak{B}))/K_{j}(\mathfrak{C})) \oplus K_{j}(\mathfrak{D})]/K_{j}(E).$$

-->

On the other hand, using Mayer-Vietoris sequence repeatedly we obtain

-- //-/

$$K_j((\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}) \oplus_E \mathfrak{D}) \cong [K_j(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}) \oplus K_j(\mathfrak{D})]/K_j(E)$$
$$\cong [((K_j(\mathfrak{A}) \oplus K_j(\mathfrak{B}))/K_j(\mathfrak{C})) \oplus K_j(\mathfrak{D})]/K_j(E).$$

Similarly, using Theorem 2.4 and Corollary 2.5 we obtain

Theorem 2.7 Let $\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}$ be the balanced tensor product C^* -algebra of unital C^* -algebras $\mathfrak{A}, \mathfrak{B}$ over a common nonzero unital C^* -subalgebra \mathfrak{C} with retractions r_1, r_2 to \mathfrak{C} , and $\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}$ be the associated pullback C^* -algebra defined as above. Let $(\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}) \otimes_E \mathfrak{D}$ be the successive balanced tensor product C^* -algebra defined in Section 1 for unital C^* -algebras \mathfrak{D}, E with retractions $s_1 : \mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B} \to E, s_2 : \mathfrak{D} \to E, and <math>(\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}) \oplus_E \mathfrak{D}$ be the associated pullback C^* -algebra. Assume that \mathfrak{C} commutes with \mathfrak{A} and \mathfrak{B} , and E commutes with $\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}$ and \mathfrak{D} . Then for j = 0, 1,

$$K_j((\mathfrak{A} \otimes_{\mathfrak{C}} \mathfrak{B}) \otimes_E \mathfrak{D}) \cong [((K_j(\mathfrak{A}) \oplus K_j(\mathfrak{B}))/K_j(\mathfrak{C})) \oplus K_j(\mathfrak{D})]/K_j(E)$$
$$\cong K_j((\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}) \oplus_E \mathfrak{D})$$

where $(\mathfrak{A} \oplus_{\mathfrak{C}} \mathfrak{B}) \oplus_{E} \mathfrak{D}$ is the successive pullback C^* -algebra associated with r_1, r_2 and s_1, s_2 .

Theorem 2.8 Let \mathfrak{A} be the *n*-successive pullback C^* -algebra as follows:

$$\mathfrak{A} = (\cdots ((\mathfrak{A}_1 \oplus_{\mathfrak{B}_1} \mathfrak{A}_2) \oplus_{\mathfrak{B}_2} \mathfrak{A}_3) \cdots) \oplus_{\mathfrak{B}_{n-1}} \mathfrak{A}_n$$

where \mathfrak{A}_j $(1 \leq j \leq n)$, \mathfrak{B}_j $(1 \leq j \leq n-1)$ are C^* -algebras, and we assume that there exist *-homomorphisms: $\alpha_1 : \mathfrak{A}_1 \to \mathfrak{B}_1$, $\alpha_j : \mathfrak{A}_j \to \mathfrak{B}_{j-1}$ $(2 \leq j \leq n)$, $\beta_j : \mathfrak{B}_j \to \mathfrak{B}_{j+1}$ $(1 \leq j \leq n-2)$. Then for j = 0, 1,

$$K_j(\mathfrak{A}) \cong ((\cdots ((((K_j(\mathfrak{A}_1) \oplus K_j(\mathfrak{A}_2))/K_j(\mathfrak{B}_1)) \oplus K_j(\mathfrak{A}_3))/K_j(\mathfrak{B}_2)) \cdots) \oplus K_j(\mathfrak{A}_n))/K_j(\mathfrak{B}_{n-1})$$

Proof. We use the Mayer-Vietoris sequence for K-theory repeatedly.

Theorem 2.9 Let \mathfrak{A} be the n-successive amalgam C^* -algebra as follows:

$$\mathfrak{A} = (\cdots ((\mathfrak{A}_1 \ast_{\mathfrak{B}_1} \mathfrak{A}_2) \ast_{\mathfrak{B}_2} \mathfrak{A}_3) \cdots) \ast_{\mathfrak{B}_{n-1}} \mathfrak{A}_n$$

where \mathfrak{A}_j $(1 \leq j \leq n)$, \mathfrak{B}_j $(1 \leq j \leq n-1)$ are C^* -algebras, and we assume that there exist *-homomorphisms: $\mu_1 : \mathfrak{B}_1 \to \mathfrak{A}_1$, $\mu_j : \mathfrak{B}_j \to \mathfrak{A}_{j+1}$ $(2 \leq j \leq n-1)$, $\nu_j : \mathfrak{B}_{j+1} \to \mathfrak{B}_j$ $(1 \leq j \leq n-2)$. Suppose that there exist retractions $r_1 : \mathfrak{A}_1 \to \mathfrak{B}_1$, $r_j : \mathfrak{A}_j \to \mathfrak{B}_{j-1}$ $(2 \leq j \leq n)$ and $s_j : \mathfrak{B}_j \to \mathfrak{B}_{j+1}$ $(1 \leq j \leq n-2)$. Let P be the associated n-bullback C^* -algebra as follows: $P = (\cdots ((\mathfrak{A}_1 \oplus_{\mathfrak{B}_1} \mathfrak{A}_2) \oplus_{\mathfrak{B}_2} \mathfrak{A}_3) \cdots) \oplus_{\mathfrak{B}_{n-1}} \mathfrak{A}_n$. Then for j = 0, 1,

$$K_{j}(\mathfrak{A}) \cong K_{j}(P)$$

$$\cong ((\cdots ((((K_{j}(\mathfrak{A}_{1}) \oplus K_{j}(\mathfrak{A}_{2}))/K_{j}(\mathfrak{B}_{1})) \oplus K_{j}(\mathfrak{A}_{3}))/K_{j}(\mathfrak{B}_{2})) \cdots) \oplus K_{j}(\mathfrak{A}_{n}))/K_{j}(\mathfrak{B}_{n-1}).$$

Corollary 2.10 Let \mathfrak{A} be the n-successive amalgam C^* -algebra as follows:

$$\begin{aligned} \mathfrak{A} &= (\cdots ((\mathfrak{A}_1 \ast_{\mathbb{C}} \mathfrak{A}_2) \ast_{\mathbb{C}} \mathfrak{A}_3) \cdots) \ast_{\mathbb{C}} \mathfrak{A}_n \\ &\cong \mathfrak{A}_1 \ast_{\mathbb{C}} \mathfrak{A}_2 \ast_{\mathbb{C}} \cdots \ast_{\mathbb{C}} \mathfrak{A}_n \quad (n\text{-fold unital free product}) \end{aligned}$$

where \mathfrak{A}_j $(1 \leq j \leq n)$ are unital C^* -algebras. Suppose that there exist retractions $r_j : \mathfrak{A}_j \to \mathbb{C}$ $(1 \leq j \leq n)$. Let P be the associated n-bullback C^* -algebra as follows:

$$P = (\cdots ((\mathfrak{A}_1 \oplus_{\mathbb{C}} \mathfrak{A}_2) \oplus_{\mathbb{C}} \mathfrak{A}_3) \cdots) \oplus_{\mathbb{C}} \mathfrak{A}_n.$$

Then

$$\begin{aligned} K_0(\mathfrak{A}) &\cong K_0(P) \\ &\cong ((\cdots ((((K_0(\mathfrak{A}_1) \oplus K_0(\mathfrak{A}_2))/\mathbb{Z}) \oplus K_0(\mathfrak{A}_3))/\mathbb{Z}) \cdots) \oplus K_0(\mathfrak{A}_n))/\mathbb{Z}, \quad and \\ &K_1(\mathfrak{A}) &\cong K_1(P) \cong K_1(\mathfrak{A}_1) \oplus K_1(\mathfrak{A}_2) \oplus K_1(\mathfrak{A}_3) \oplus \cdots \oplus K_1(\mathfrak{A}_n). \end{aligned}$$

Proof. Note that $K_0(\mathbb{C}) \cong \mathbb{Z}$ and $K_1(\mathbb{C}) \cong 0$.

Remark. In the theorem above, if $\mathfrak{B}_j = 0$ $(1 \le j \le n-1)$, then

$$\mathfrak{A} \cong \mathfrak{A}_1 * \mathfrak{A}_2 * \cdots * \mathfrak{A}_n \quad (n\text{-fold free product}),$$
$$P \cong \mathfrak{A}_1 \oplus \mathfrak{A}_2 \oplus \cdots \oplus \mathfrak{A}_n \quad (n\text{-direct sum}),$$

and $K_j(\mathfrak{A}) \cong K_j(P) \cong K_j(\mathfrak{A}_1) \oplus K_j(\mathfrak{A}_2) \oplus \cdots \oplus K_j(\mathfrak{A}_n)$ for j = 0, 1.

Theorem 2.11 Let \mathfrak{A} be the n-successive balanced tensor product C^* -algebra as follows:

$$\mathfrak{A} = (\cdots ((\mathfrak{A}_1 \otimes_{\mathfrak{B}_1} \mathfrak{A}_2) \otimes_{\mathfrak{B}_2} \mathfrak{A}_3) \cdots) \otimes_{\mathfrak{B}_{n-1}} \mathfrak{A}_n$$

where \mathfrak{A}_j $(1 \leq j \leq n)$, \mathfrak{B}_j $(1 \leq j \leq n-1)$ are nonzero unital C^* -algebras, and we assume that there exist *-homomorphisms: $\mu_1 : \mathfrak{B}_1 \to \mathfrak{A}_1$, $\mu_j : \mathfrak{B}_j \to \mathfrak{A}_{j+1}$ $(2 \leq j \leq n-1)$, $\nu_j : \mathfrak{B}_{j+1} \to \mathfrak{B}_j$ $(1 \leq j \leq n-2)$. Suppose that there exist retractions $r_1 : \mathfrak{A}_1 \to \mathfrak{B}_1$, $r_j : \mathfrak{A}_j \to \mathfrak{B}_{j-1}$ $(2 \leq j \leq n)$ and $s_j : \mathfrak{B}_j \to \mathfrak{B}_{j+1}$ $(1 \leq j \leq n-2)$. Let P be the associated n-bullback C^* -algebra as follows: $P = (\cdots ((\mathfrak{A}_1 \oplus_{\mathfrak{B}_1} \mathfrak{A}_2) \oplus_{\mathfrak{B}_2} \mathfrak{A}_3) \cdots) \oplus_{\mathfrak{B}_{n-1}} \mathfrak{A}_n$. Assume that \mathfrak{B}_j $(1 \leq j \leq n-1)$ commute with \mathfrak{A}_{j+1} and

$$(\cdots ((\mathfrak{A}_1 \otimes_{\mathfrak{B}_1} \mathfrak{A}_2) \otimes_{\mathfrak{B}_2} \mathfrak{A}_3) \cdots) \otimes_{\mathfrak{B}_{i-1}} \mathfrak{A}_i$$

and have the same units with them. Then for j = 0, 1,

$$K_{j}(\mathfrak{A}) \cong K_{j}(P)$$

$$\cong ((\cdots ((((K_{j}(\mathfrak{A}_{1}) \oplus K_{j}(\mathfrak{A}_{2}))/K_{j}(\mathfrak{B}_{1})) \oplus K_{j}(\mathfrak{A}_{3}))/K_{j}(\mathfrak{B}_{2})) \cdots) \oplus K_{j}(\mathfrak{A}_{n}))/K_{j}(\mathfrak{B}_{n-1}).$$

TAKAHIRO SUDO

Corollary 2.12 Let \mathfrak{A} be the n-successive balanced tensor product C^* -algebra as follows:

$$\begin{aligned} \mathfrak{A} &= (\cdots ((\mathfrak{A}_1 \otimes_{\mathbb{C}} \mathfrak{A}_2) \otimes_{\mathbb{C}} \mathfrak{A}_3) \cdots) \otimes_{\mathbb{C}} \mathfrak{A}_n \\ &\cong \mathfrak{A}_1 \otimes_{\mathbb{C}} \mathfrak{A}_2 \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} \mathfrak{A}_n \quad (n\text{-fold unital tensor product}) \end{aligned}$$

where \mathfrak{A}_j $(1 \leq j \leq n)$ are unital C^* -algebras. Suppose that there exist retractions $r_j : \mathfrak{A}_j \to \mathbb{C}$ $(1 \leq j \leq n)$. Let P be the associated n-bullback C^* -algebra as follows:

$$P = (\cdots ((\mathfrak{A}_1 \oplus_{\mathbb{C}} \mathfrak{A}_2) \oplus_{\mathbb{C}} \mathfrak{A}_3) \cdots) \oplus_{\mathbb{C}} \mathfrak{A}_n.$$

Then

$$\begin{split} &K_0(\mathfrak{A}) \cong K_0(P) \\ &\cong ((\cdots ((((K_0(\mathfrak{A}_1) \oplus K_0(\mathfrak{A}_2))/\mathbb{Z}) \oplus K_0(\mathfrak{A}_3))/\mathbb{Z}) \cdots) \oplus K_0(\mathfrak{A}_n))/\mathbb{Z}, \quad and \\ &K_1(\mathfrak{A}) \cong K_1(P) \cong K_1(\mathfrak{A}_1) \oplus K_1(\mathfrak{A}_2) \oplus K_1(\mathfrak{A}_3) \oplus \cdots \oplus K_1(\mathfrak{A}_n). \end{split}$$

Remark. In the theorem above, if $\mathfrak{B}_j = 0$ $(1 \le j \le n-1)$, then

$$\begin{aligned} \mathfrak{A} &\cong \mathfrak{A}_1 \otimes \mathfrak{A}_2 \otimes \cdots \otimes \mathfrak{A}_n \quad (n\text{-fold tensor product}), \\ P &\cong \mathfrak{A}_1 \oplus \mathfrak{A}_2 \oplus \cdots \oplus \mathfrak{A}_n \quad (n\text{-direct sum}), \end{aligned}$$

but $K_j(\mathfrak{A}) \ncong K_j(P) \cong K_j(\mathfrak{A}_1) \oplus K_j(\mathfrak{A}_2) \oplus \cdots \oplus K_j(\mathfrak{A}_n)$ for j = 0, 1 in general. For instance, if $\mathfrak{A}_j = \mathbb{C}$ $(1 \le j \le n)$, then $\mathfrak{A} \cong \mathbb{C}$ and $K_0(\mathfrak{A}) \cong \mathbb{Z}$ but $K_0(P) \cong \bigoplus_{j=1}^n \mathbb{Z}$. See [1] for Künneth Theorem for K-groups of tensor products of C^* -algebras.

References

- [1] B. BLACKADAR, K-theory for Operator Algebras, Second Edition, Cambridge, (1998).
- [2] K.R. DAVIDSON, C^* -algebras by Example, Fields Institute Monographs, AMS, (1996).
- [3] G.K. PEDERSEN, Extensions of C^{*}-Algebras, Operator Algebras and Quantum Field Theory, Internat. Press, (1997), 2-35.
- [4] G.K. PEDERSEN, Pullback and pushout constructions in C^{*}-algebra theory, J. Funct. Anal., (1999), 243-344.
- [5] M. Rørdam and E. Størmer, Classification of Nuclear C*-Algebras. Entropy in Operator Algebras EMS 126 Operator Algebras and Non-Commutative Geometry VII, Springer, (2002).
- [6] N.E. WEGGE-OLSEN, K-theory and C*-algebras, Oxford Univ. Press (1993).

Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.

Email: sudo@math.u-ryukyu.ac.jp