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THE ABYSM OF A HILBERT ALGEBRA
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Abstract. The notion of abysms in Hilbert algebras is introduced, and related prop-
erties are investigated.

1. Introduction

Following the introduction of Hilbert algebras by L. Henkin in early 50-ties and A. Diego
[6], the algebra and related concepts were developed by D. Busneag (see [1], [2], and [3]).
For the general development of Hilbert algebras, the notion of deductive systems plays
an important role. For example, it is known that the set of all deductive systems of a
Hilbert algebra forms an algebraic lattice which is distributive. (see [4]). Y. B. Jun gave
characterizations of deductive systems in Hilbert algebras (see [7] and [8]).

In this paper, we introduced a new notion, called an abysm, in a Hilbert algebras. We give
relations among subalgebras, deductive systems, and abysms. Using a deductive system,
we make an abysm. Given an element of a Hilbert algebra, we establish the least abysm
containing this element.

2. Preliminaries

A Hilbert algebra can be considered as a fragment of propositional logic containing only
a logical connective implication “→” and the constant 1 which is interpreted as the value
“true”.

An algebra H := (H;→, 1) of type (2,0) is called a Hilbert algebra if it satisfies:
(H1) (∀a, b ∈ H) (a → (b → a) = 1).
(H2) (∀a, b, c ∈ H) ((a → (b → c)) → ((a → b) → (a → c)) = 1).
(H3) (∀a, b ∈ H) (a → b = b → a = 1 ⇒ a = b).
If H := (H;→, 1) is a Hilbert algebra and we define a binary relation ≤ in H by a ≤ b
if and only if a → b = 1, then ≤ is a partial order in H := (H;→, 1). A Hilbert algebra
H := (H;→, 1) is said to be commutative if (x → y) → y = (y → x) → x for all x, y ∈ H.
A nonempty subset S of a Hilbert algebra H := (H;→, 1) is called a subalgebra of H if
x ∗ y ∈ S whenever x, y ∈ S. A mapping f from a Hilbert algebra G = (G;→, 1) into a
Hilbert algebra H = (H;→ 1) is called a morphism if f(a → b) = f(a) → f(b) for all
a, b ∈ G. Note that if f is a morphism from a Hilbert algebra G = (G;→, 1) into a Hilbert
algebra H = (H;→ 1), then f(1) = 1.

In a Hilbert algebra H := (H;→, 1), we have the following assertions:
(a1) x ≤ y → x.
(a2) x → 1 = 1, 1 → x = x.
(a3) x → (y → z) = (x → y) → (x → z).
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(a4) x ≤ (x → y) → y.
(a5) x → (y → z) = y → (x → z).
(a6) x → y ≤ (y → z) → (x → z).
(a7) x ≤ y ⇒ z → x ≤ z → y, y → z ≤ x → z.

The concept of a deductive system on a Hilbert algebra H := (H;→, 1) was also in-
troduced by A. Diego [6] as a subset of H containing 1 and closed under a “deduction”,
i.e.:

Definition 2.1. A nonempty subset D of a Hilbert algebra H := (H;→, 1) is called a
deductive system of H if it satisfies:
(Di) 1 ∈ D,
(Dii) (∀x ∈ D) (∀y ∈ H) (x → y ∈ D ⇒ y ∈ D).

Lemma 2.2. [5] A deductive system D of a Hilbert algebra H has the following property:

(∀x ∈ D)(∀y ∈ H)(x ≤ y ⇒ y ∈ D).

3. Abysms of a Hilbert algebra

For any subsets A and B of a Hilbert algebra H := (H;→, 1), we define

A → B := {x → y | x ∈ A, y ∈ B}.
We use the notation A → b (resp. a → B) instead of A → {b} (resp. {a} → B). Note that
A → B =

⋃

a∈A

(a → B) =
⋃

b∈B

(A → b).

Lemma 3.1. If A is a subset of a Hilbert algebra H := (H;→, 1) containing 1, then B is
contained in A → B for every subset B of H.

Proof. Let b ∈ B. Then b = 1 → b ∈ A → B by (a2), and so B is contained in A → B.

Lemma 3.2. Assume that a Hilbert algebra H := (H;→, 1) is commutative. For any subset
A of H, we have

H → A = {x ∈ H | e ≤ x for some e ∈ A}.
Proof. Let Ω := {x ∈ H | e ≤ x for some e ∈ A}. If a ∈ H → A, then e ≤ b → e = a for
some b ∈ H and e ∈ A. Hence a ∈ Ω, and so H → A ⊆ Ω. Conversely, let a ∈ Ω. Then
e ≤ a for some e ∈ A. Since H is commutative, it follows from (a2) that

a = 1 → a = (e → a) → a = (a → e) → e ∈ H → A

so that Ω ⊆ H → A. This completes the proof.

Lemma 3.3. For any subsets A,B and E of a Hilbert algebra H, we have
(i) A ⊆ B ⇒ A → E ⊆ B → E, E → A ⊆ E → B.
(ii) (A ∩ B) → E ⊆ (A → E) ∩ (B → E).
(iii) E → (A ∩ B) ⊆ (E → A) ∩ (E → B).
(iv) (A ∪ B) → E = (A → E) ∪ (B → E).
(v) E → (A ∪ B) = (E → A) ∪ (E → B).

Proof. (i) Let x ∈ A → E. Then x = a → e for some a ∈ A and e ∈ E. Since A ⊆ B,
it follows that x = a → e for some a ∈ B and e ∈ E so that x ∈ B → E. Therefore
A → E ⊆ B → E. Similarly, we get E → A ⊆ E → B.

(ii) Since A ∩ B ⊆ A,B, it follows from (i) that (A ∩ B) → E ⊆ A → E and (A ∩ B) →
E ⊆ B → E so that (A ∩ B) → E ⊆ (A → E) ∩ (B → E). Similarly, (iii) is valid.

(iv) Since A,B ⊆ A ∪ B, we have A → E ⊆ (A ∪ B) → E and B → E ⊆ (A ∪ B) → E
by (i), and so (A → E) ∪ (B → E) ⊆ (A ∪ B) → E. If x ∈ (A ∪ B) → E, then x = y → e
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for some y ∈ A ∪ B and e ∈ E. It follows that x = y → e for some y ∈ A and e ∈ E; or
x = y → e for some y ∈ B and e ∈ E so that x = y → e ∈ A → E or x = y → e ∈ B → E.
Hence x ∈ (A → E) ∪ (B → E), which shows that (A ∪ B) → E ⊆ (A → E) ∪ (B → E).
Therefore (iv) is valid. Similarly we can prove that (v) is valid.

Definition 3.4. If a nonempty subset A of a Hilbert algebra H := (H;→, 1) satisfies the
following equality:

H → A = A,

then we say that A is an abysm of H.

Note that {1} and H itself are abysms of H.

Example 3.5. (1) Let H = {a, b, c, d, 1} be a set with the following Cayley table and Hasse
diagram:

→ 1 a b c d
1 1 a b c d
a 1 1 b c d
b 1 1 1 c d
c 1 a b 1 d
d 1 1 1 1 1

�

d

�
�

��

��
�b

��� a���c

�

1

Then H := (H;→, 1) is a Hilbert algebra. The subsets A = {1, a}, B = {1, b}, C = {1, c},
D = {1, a, b}, E = {1, a, c}, F = {1, a, b, c} are abysms of H.

(2) Let G = {1, a, b, c} be a set with the following Cayley table.

→ 1 a b c
1 1 a b c
a 1 1 b b
b 1 a 1 a
c 1 1 1 1

� 1
�
���

�

�
��

a � b

�

c
�
��

Then G := (G;→, 1) is a Hilbert algebra. It is easy to check that A := {1, a}, B := {1, b}
and C := {1, a, b} are abysms of G, while D := {1, c} is not an abysm of G.

Following Example 3.5(2), we know that if e is an element of H such that H → e = H,
then any proper subset A of H containing e can not be an abysm of H.

Proposition 3.6. Every abysm contains the constant 1.

Proof. Let A be an abysm of H. Then ∅ �= A = H → A, and so there exists a ∈ A and thus
1 = a → a ∈ H → A = A. This completes the proof.

Theorem 3.7. Every abysm is a subalgebra.

Proof. Let A be an abysm of H and let a, b ∈ A. Then

a → b ∈ A → A ⊆ H → A = A

by Lemma 3.3(i), and so A is a subalgebra of H.

The converse of Theorem 3.7 is not true. For example, the set D := {1, c} in Example
3.5(2) is a subalgebra which is not an abysm of G.

Theorem 3.8. Every deductive system is an abysm.
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Proof. Let D be a deductive system of H. Then 1 ∈ D, and so D �= ∅. Since d ≤ b → d for
all d ∈ D and b ∈ H, we have b → d ∈ D. Thus H → D ⊆ D. Obviously, D = {1} → D ⊆
H → D by Lemma 3.3(i). Therefore H → D = D, i.e., D is an abysm of H.

The converse of Theorem 3.8 may not be true. For example, the set C := {1, a, b} in
Example 3.5(2) is an abysm which is not a deductive system of G since a → c = b ∈ C and
c /∈ C.

Theorem 3.9. If D is a deductive system of a Hilbert algebra H, then A → D is an abysm
of H for every nonempty subset A of H.

Proof. Let A be a nonempty subset of H and assume that D is a deductive system of H.
Then D is an abysm of H (see Theorem 3.8). Using (a5), we have

H → (A → D) = A → (H → D) = A → D,

and hence A → D is an abysm of H.

Corollary 3.10. If A is a nonempty proper subset of a Hilbert algebra H, then A → H is
an abysm of H.

Theorem 3.11. Let A and B be abysms of a Hilbert algebra H. Then A ∩ B and A ∪ B
are abysms of H.

Proof. Let K = A ∩ B. Then

K = 1 → K ⊆ H → K = H → (A ∩ B) ⊆ (H → A) ∩ (H → B) = A ∩ B = K,

and so H → K = K, that is, K = A ∩ B is an abysm of H. Now let L = A ∪ B. Then

L = 1 → L ⊆ H → L = H → (A ∪ B) = (H → A) ∪ (H → B) = A ∪ B = L,

and thus H → L = L, i.e., L = A ∪ B is an abysm of H.

Generally, we have the following result.

Theorem 3.12. If {Ai | i ∈ Λ ⊆ N} is a family of abysms of a Hilbert algebra H, then⋃

i∈Λ

Ai and
⋂

i∈Λ

Ai are abysms of H.

In general, the union of two deductive systems of a Hilbert algebra H may not be a
deductive system of H. For example, in Example 3.5(2), A = {1, a} and B = {1, b} are
deductive systems, but A ∪ B = {1, a, b} is not a deductive system. But we know that the
following result is derived from Theorems 3.8 and 3.11.

Corollary 3.13. The union of two deductive systems of a Hilbert algebra H is an abysm
of H.

Let A be an abysm and B a subalgebra of a Hilbert algebra H. Then A ∪ B is not an
abysm of H in general as seen in the following example.

Example 3.14. Let H = {a, b, c, d, 1} be a set with the following Cayley table and Hasse
diagram:

→ 1 a b c d
1 1 a b c d
a 1 1 b b d
b 1 a 1 a d
c 1 1 1 1 d
d 1 a b c 1

�

c
�

�
�
�

� d� b�	
		

a

�







1
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Then H := (H;→, 1) is a Hilbert algebra. It is easy to check that A = {1, a, b} is an abysm
of H and B = {1, c} is a subalgebra of H. But A ∪ B = {1, a, c, d} is not an abysm of H.

Theorem 3.15. Let H be a Hilbert algebra. If A is an abysm of H and B is a subalgebra
of H, then A ∩ B is an abysm of B.

Proof. Using Lemma 3.3(iii), we have

B → (A ∩ B) ⊆ (B → A) ∩ (B → B) ⊆ (H → A) ∩ B = A ∩ B ⊆ B → (A ∩ B),

and so B → (A ∩ B) = A ∩ B. Therefore A ∩ B is an abysm of B.

Proposition 3.16. Let A be an abysm of a Hilbert algebra H. If 1 ∈ B ⊆ H, then B →
A = A.

Proof. The desired result is by

A = 1 → A ⊆ B → A ⊆ H → A = A.

Theorem 3.17. Let f : H → G be a morphism of Hilbert algebras.
(i) If f is onto and A is an abysm of H, then f(A) is an abysm of G.
(ii) If B is an abysm of G, then f−1(B) is an abysm of H.

Proof. (i) Assume that f is onto and A is an abysm of H. Using (a2) and Lemma 3.3(i), we
have f(A) = 1 → f(A) ⊆ G → f(A). Let b ∈ f(A) and y ∈ G. Then b = f(a) and y = f(x)
for some a ∈ A and x ∈ H. Thus

y → b = f(x) → f(a) = f(x → a) ∈ f(H → A) = f(A),

and so G → f(A) ⊆ f(A). Therefore f(A) is an abysm of G.
(ii) Using Lemma 3.3(i), we have f−1(B) ⊆ H → f−1(B). Let a ∈ f−1(B) and x ∈ H.

Then f(a) ∈ B and f(x) ∈ G. It follows that

f(x → a) = f(x) → f(a) ∈ G → B = B

so that x → a ∈ f−1(B), i.e., H → f−1(B) ⊆ f−1(B). Hence f−1(B) is an abysm of H.

Corollary 3.18. If f : H → G is a morphism of Hilbert algebras, then f−1(1) is an abysm
of H.
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