THE ABYSM OF A HILBERT ALGEBRA

YOUNG BAE JUN, SEON YU KIM AND EUN HWAN ROH*

Received July 6, 2006

Abstract

The notion of abysms in Hilbert algebras is introduced, and related properties are investigated.

1. Introduction

Following the introduction of Hilbert algebras by L. Henkin in early 50-ties and A. Diego [6], the algebra and related concepts were developed by D. Busneag (see [1], [2], and [3]). For the general development of Hilbert algebras, the notion of deductive systems plays an important role. For example, it is known that the set of all deductive systems of a Hilbert algebra forms an algebraic lattice which is distributive. (see [4]). Y. B. Jun gave characterizations of deductive systems in Hilbert algebras (see [7] and [8]).

In this paper, we introduced a new notion, called an abysm, in a Hilbert algebras. We give relations among subalgebras, deductive systems, and abysms. Using a deductive system, we make an abysm. Given an element of a Hilbert algebra, we establish the least abysm containing this element.

2. Preliminaries

A Hilbert algebra can be considered as a fragment of propositional logic containing only a logical connective implication $" \rightarrow$ " and the constant 1 which is interpreted as the value "true".

An algebra $\mathcal{H}:=(H ; \rightarrow, 1)$ of type $(2,0)$ is called a Hilbert algebra if it satisfies:
(H1) $(\forall a, b \in H)(a \rightarrow(b \rightarrow a)=1)$.
(H2) $(\forall a, b, c \in H)((a \rightarrow(b \rightarrow c)) \rightarrow((a \rightarrow b) \rightarrow(a \rightarrow c))=1)$.
(H3) $(\forall a, b \in H)(a \rightarrow b=b \rightarrow a=1 \Rightarrow a=b)$.
If $\mathcal{H}:=(H ; \rightarrow, 1)$ is a Hilbert algebra and we define a binary relation \leq in \mathcal{H} by $a \leq b$ if and only if $a \rightarrow b=1$, then \leq is a partial order in $\mathcal{H}:=(H ; \rightarrow, 1)$. A Hilbert algebra $\mathcal{H}:=(H ; \rightarrow, 1)$ is said to be commutative if $(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x$ for all $x, y \in H$. A nonempty subset S of a Hilbert algebra $\mathcal{H}:=(H ; \rightarrow, 1)$ is called a subalgebra of \mathcal{H} if $x * y \in S$ whenever $x, y \in S$. A mapping f from a Hilbert algebra $\mathcal{G}=(G ; \rightarrow, 1)$ into a Hilbert algebra $\mathcal{H}=(H ; \rightarrow 1)$ is called a morphism if $f(a \rightarrow b)=f(a) \rightarrow f(b)$ for all $a, b \in G$. Note that if f is a morphism from a Hilbert algebra $\mathcal{G}=(G ; \rightarrow, 1)$ into a Hilbert algebra $\mathcal{H}=(H ; \rightarrow 1)$, then $f(1)=1$.

In a Hilbert algebra $\mathcal{H}:=(H ; \rightarrow, 1)$, we have the following assertions:
(a1) $x \leq y \rightarrow x$.
(a2) $x \rightarrow 1=1,1 \rightarrow x=x$.
$(\mathrm{a} 3) x \rightarrow(y \rightarrow z)=(x \rightarrow y) \rightarrow(x \rightarrow z)$.

[^0](a4) $x \leq(x \rightarrow y) \rightarrow y$.
(a5) $x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$.
(a6) $x \rightarrow y \leq(y \rightarrow z) \rightarrow(x \rightarrow z)$.
(a7) $x \leq y \Rightarrow z \rightarrow x \leq z \rightarrow y, y \rightarrow z \leq x \rightarrow z$.
The concept of a deductive system on a Hilbert algebra $\mathcal{H}:=(H ; \rightarrow, 1)$ was also introduced by A. Diego [6] as a subset of H containing 1 and closed under a "deduction", i.e.:

Definition 2.1. A nonempty subset D of a Hilbert algebra $\mathcal{H}:=(H ; \rightarrow, 1)$ is called a deductive system of \mathcal{H} if it satisfies:
(Di) $1 \in D$,
(Dii) $(\forall x \in D)(\forall y \in H)(x \rightarrow y \in D \Rightarrow y \in D)$.

Lemma 2.2. [5] A deductive system D of a Hilbert algebra \mathcal{H} has the following property:

$$
(\forall x \in D)(\forall y \in H)(x \leq y \Rightarrow y \in D)
$$

3. Abysms of a Hilbert algebra

For any subsets A and B of a Hilbert algebra $\mathcal{H}:=(H ; \rightarrow, 1)$, we define

$$
A \rightarrow B:=\{x \rightarrow y \mid x \in A, y \in B\}
$$

We use the notation $A \rightarrow b$ (resp. $a \rightarrow B$) instead of $A \rightarrow\{b\}$ (resp. $\{a\} \rightarrow B$). Note that $A \rightarrow B=\bigcup_{a \in A}(a \rightarrow B)=\bigcup_{b \in B}(A \rightarrow b)$.
Lemma 3.1. If A is a subset of a Hilbert algebra $\mathcal{H}:=(H ; \rightarrow, 1)$ containing 1 , then B is contained in $A \rightarrow B$ for every subset B of H.

Proof. Let $b \in B$. Then $b=1 \rightarrow b \in A \rightarrow B$ by (a2), and so B is contained in $A \rightarrow B$.
Lemma 3.2. Assume that a Hilbert algebra $\mathcal{H}:=(H ; \rightarrow, 1)$ is commutative. For any subset A of H, we have

$$
H \rightarrow A=\{x \in H \mid e \leq x \text { for some } e \in A\}
$$

Proof. Let $\Omega:=\{x \in H \mid e \leq x$ for some $e \in A\}$. If $a \in H \rightarrow A$, then $e \leq b \rightarrow e=a$ for some $b \in H$ and $e \in A$. Hence $a \in \Omega$, and so $H \rightarrow A \subseteq \Omega$. Conversely, let $a \in \Omega$. Then $e \leq a$ for some $e \in A$. Since H is commutative, it follows from (a2) that

$$
a=1 \rightarrow a=(e \rightarrow a) \rightarrow a=(a \rightarrow e) \rightarrow e \in H \rightarrow A
$$

so that $\Omega \subseteq H \rightarrow A$. This completes the proof.
Lemma 3.3. For any subsets A, B and E of a Hilbert algebra \mathcal{H}, we have
(i) $A \subseteq B \Rightarrow A \rightarrow E \subseteq B \rightarrow E, E \rightarrow A \subseteq E \rightarrow B$.
(ii) $(A \cap B) \rightarrow E \subseteq(A \rightarrow E) \cap(B \rightarrow E)$.
(iii) $E \rightarrow(A \cap B) \subseteq(E \rightarrow A) \cap(E \rightarrow B)$.
(iv) $(A \cup B) \rightarrow E=(A \rightarrow E) \cup(B \rightarrow E)$.
(v) $E \rightarrow(A \cup B)=(E \rightarrow A) \cup(E \rightarrow B)$.

Proof. (i) Let $x \in A \rightarrow E$. Then $x=a \rightarrow e$ for some $a \in A$ and $e \in E$. Since $A \subseteq B$, it follows that $x=a \rightarrow e$ for some $a \in B$ and $e \in E$ so that $x \in B \rightarrow E$. Therefore $A \rightarrow E \subseteq B \rightarrow E$. Similarly, we get $E \rightarrow A \subseteq E \rightarrow B$.
(ii) Since $A \cap B \subseteq A, B$, it follows from (i) that $(A \cap B) \rightarrow E \subseteq A \rightarrow E$ and $(A \cap B) \rightarrow$ $E \subseteq B \rightarrow E$ so that $(A \cap B) \rightarrow E \subseteq(A \rightarrow E) \cap(B \rightarrow E)$. Similarly, (iii) is valid.
(iv) Since $A, B \subseteq A \cup B$, we have $A \rightarrow E \subseteq(A \cup B) \rightarrow E$ and $B \rightarrow E \subseteq(A \cup B) \rightarrow E$ by (i), and so $(A \rightarrow E) \cup(B \rightarrow E) \subseteq(A \cup B) \rightarrow E$. If $x \in(A \cup B) \rightarrow E$, then $x=y \rightarrow e$
for some $y \in A \cup B$ and $e \in E$. It follows that $x=y \rightarrow e$ for some $y \in A$ and $e \in E$; or $x=y \rightarrow e$ for some $y \in B$ and $e \in E$ so that $x=y \rightarrow e \in A \rightarrow E$ or $x=y \rightarrow e \in B \rightarrow E$. Hence $x \in(A \rightarrow E) \cup(B \rightarrow E)$, which shows that $(A \cup B) \rightarrow E \subseteq(A \rightarrow E) \cup(B \rightarrow E)$. Therefore (iv) is valid. Similarly we can prove that (v) is valid.

Definition 3.4. If a nonempty subset A of a Hilbert algebra $\mathcal{H}:=(H ; \rightarrow, 1)$ satisfies the following equality:

$$
H \rightarrow A=A
$$

then we say that A is an abysm of \mathcal{H}.
Note that $\{1\}$ and H itself are abysms of \mathcal{H}.
Example 3.5. (1) Let $H=\{a, b, c, d, 1\}$ be a set with the following Cayley table and Hasse diagram:

\rightarrow	1	a	b	c	d
1	1	a	b	c	d
a	1	1	b	c	d
b	1	1	1	c	d
c	1	a	b	1	d
d	1	1	1	1	1

Then $\mathcal{H}:=(H ; \rightarrow, 1)$ is a Hilbert algebra. The subsets $A=\{1, a\}, B=\{1, b\}, C=\{1, c\}$, $D=\{1, a, b\}, E=\{1, a, c\}, F=\{1, a, b, c\}$ are abysms of \mathcal{H}.
(2) Let $G=\{1, a, b, c\}$ be a set with the following Cayley table.

\rightarrow	1	a	b	c
1	1	a	b	c
a	1	1	b	b
b	1	a	1	a
c	1	1	1	1

Then $\mathcal{G}:=(G ; \rightarrow, 1)$ is a Hilbert algebra. It is easy to check that $A:=\{1, a\}, B:=\{1, b\}$ and $C:=\{1, a, b\}$ are abysms of \mathcal{G}, while $D:=\{1, c\}$ is not an abysm of \mathcal{G}.

Following Example 3.5(2), we know that if e is an element of H such that $H \rightarrow e=H$, then any proper subset A of H containing e can not be an abysm of \mathcal{H}.

Proposition 3.6. Every abysm contains the constant 1.
Proof. Let A be an abysm of \mathcal{H}. Then $\emptyset \neq A=H \rightarrow A$, and so there exists $a \in A$ and thus $1=a \rightarrow a \in H \rightarrow A=A$. This completes the proof.

Theorem 3.7. Every abysm is a subalgebra.
Proof. Let A be an abysm of \mathcal{H} and let $a, b \in A$. Then

$$
a \rightarrow b \in A \rightarrow A \subseteq H \rightarrow A=A
$$

by Lemma 3.3(i), and so A is a subalgebra of \mathcal{H}.
The converse of Theorem 3.7 is not true. For example, the set $D:=\{1, c\}$ in Example $3.5(2)$ is a subalgebra which is not an abysm of \mathcal{G}.

Theorem 3.8. Every deductive system is an abysm.

Proof. Let D be a deductive system of \mathcal{H}. Then $1 \in D$, and so $D \neq \emptyset$. Since $d \leq b \rightarrow d$ for all $d \in D$ and $b \in H$, we have $b \rightarrow d \in D$. Thus $H \rightarrow D \subseteq D$. Obviously, $D=\{1\} \rightarrow D \subseteq$ $H \rightarrow D$ by Lemma 3.3(i). Therefore $H \rightarrow D=D$, i.e., D is an abysm of \mathcal{H}.

The converse of Theorem 3.8 may not be true. For example, the set $C:=\{1, a, b\}$ in Example 3.5(2) is an abysm which is not a deductive system of \mathcal{G} since $a \rightarrow c=b \in C$ and $c \notin C$.

Theorem 3.9. If D is a deductive system of a Hilbert algebra \mathcal{H}, then $A \rightarrow D$ is an abysm of \mathcal{H} for every nonempty subset A of H.

Proof. Let A be a nonempty subset of H and assume that D is a deductive system of \mathcal{H}. Then D is an abysm of \mathcal{H} (see Theorem 3.8). Using (a5), we have

$$
H \rightarrow(A \rightarrow D)=A \rightarrow(H \rightarrow D)=A \rightarrow D
$$

and hence $A \rightarrow D$ is an abysm of \mathcal{H}.
Corollary 3.10. If A is a nonempty proper subset of a Hilbert algebra \mathcal{H}, then $A \rightarrow H$ is an abysm of \mathcal{H}.

Theorem 3.11. Let A and B be abysms of a Hilbert algebra \mathcal{H}. Then $A \cap B$ and $A \cup B$ are abysms of \mathcal{H}.
Proof. Let $K=A \cap B$. Then

$$
K=1 \rightarrow K \subseteq H \rightarrow K=H \rightarrow(A \cap B) \subseteq(H \rightarrow A) \cap(H \rightarrow B)=A \cap B=K
$$

and so $H \rightarrow K=K$, that is, $K=A \cap B$ is an abysm of \mathcal{H}. Now let $L=A \cup B$. Then

$$
L=1 \rightarrow L \subseteq H \rightarrow L=H \rightarrow(A \cup B)=(H \rightarrow A) \cup(H \rightarrow B)=A \cup B=L
$$

and thus $H \rightarrow L=L$, i.e., $L=A \cup B$ is an abysm of \mathcal{H}.
Generally, we have the following result.
Theorem 3.12. If $\left\{A_{i} \mid i \in \Lambda \subseteq \mathbb{N}\right\}$ is a family of abysms of a Hilbert algebra \mathcal{H}, then $\bigcup_{i \in \Lambda} A_{i}$ and $\bigcap_{i \in \Lambda} A_{i}$ are abysms of \mathcal{H}.

In general, the union of two deductive systems of a Hilbert algebra \mathcal{H} may not be a deductive system of \mathcal{H}. For example, in Example 3.5(2), $A=\{1, a\}$ and $B=\{1, b\}$ are deductive systems, but $A \cup B=\{1, a, b\}$ is not a deductive system. But we know that the following result is derived from Theorems 3.8 and 3.11.

Corollary 3.13. The union of two deductive systems of a Hilbert algebra \mathcal{H} is an abysm of \mathcal{H}.

Let A be an abysm and B a subalgebra of a Hilbert algebra \mathcal{H}. Then $A \cup B$ is not an abysm of \mathcal{H} in general as seen in the following example.

Example 3.14. Let $H=\{a, b, c, d, 1\}$ be a set with the following Cayley table and Hasse diagram:

\rightarrow	1	a	b	c	d
1	1	a	b	c	d
a	1	1	b	b	d
b	1	a	1	a	d
c	1	1	1	1	d
d	1	a	b	c	1

Then $\mathcal{H}:=(H ; \rightarrow, 1)$ is a Hilbert algebra. It is easy to check that $A=\{1, a, b\}$ is an abysm of \mathcal{H} and $B=\{1, c\}$ is a subalgebra of \mathcal{H}. But $A \cup B=\{1, a, c, d\}$ is not an abysm of \mathcal{H}.

Theorem 3.15. Let \mathcal{H} be a Hilbert algebra. If A is an abysm of \mathcal{H} and B is a subalgebra of \mathcal{H}, then $A \cap B$ is an abysm of B.

Proof. Using Lemma 3.3(iii), we have

$$
B \rightarrow(A \cap B) \subseteq(B \rightarrow A) \cap(B \rightarrow B) \subseteq(H \rightarrow A) \cap B=A \cap B \subseteq B \rightarrow(A \cap B)
$$

and so $B \rightarrow(A \cap B)=A \cap B$. Therefore $A \cap B$ is an abysm of B.
Proposition 3.16. Let A be an abysm of a Hilbert algebra \mathcal{H}. If $1 \in B \subseteq H$, then $B \rightarrow$ $A=A$.

Proof. The desired result is by

$$
A=1 \rightarrow A \subseteq B \rightarrow A \subseteq H \rightarrow A=A
$$

Theorem 3.17. Let $f: \mathcal{H} \rightarrow \mathcal{G}$ be a morphism of Hilbert algebras.
(i) If f is onto and A is an abysm of \mathcal{H}, then $f(A)$ is an abysm of \mathcal{G}.
(ii) If B is an abysm of \mathcal{G}, then $f^{-1}(B)$ is an abysm of \mathcal{H}.

Proof. (i) Assume that f is onto and A is an abysm of \mathcal{H}. Using (a2) and Lemma 3.3(i), we have $f(A)=1 \rightarrow f(A) \subseteq G \rightarrow f(A)$. Let $b \in f(A)$ and $y \in G$. Then $b=f(a)$ and $y=f(x)$ for some $a \in A$ and $x \in H$. Thus

$$
y \rightarrow b=f(x) \rightarrow f(a)=f(x \rightarrow a) \in f(H \rightarrow A)=f(A)
$$

and so $G \rightarrow f(A) \subseteq f(A)$. Therefore $f(A)$ is an abysm of \mathcal{G}.
(ii) Using Lemma 3.3(i), we have $f^{-1}(B) \subseteq H \rightarrow f^{-1}(B)$. Let $a \in f^{-1}(B)$ and $x \in H$. Then $f(a) \in B$ and $f(x) \in G$. It follows that

$$
f(x \rightarrow a)=f(x) \rightarrow f(a) \in G \rightarrow B=B
$$

so that $x \rightarrow a \in f^{-1}(B)$, i.e., $H \rightarrow f^{-1}(B) \subseteq f^{-1}(B)$. Hence $f^{-1}(B)$ is an abysm of \mathcal{H}.
Corollary 3.18. If $f: \mathcal{H} \rightarrow \mathcal{G}$ is a morphism of Hilbert algebras, then $f^{-1}(1)$ is an abysm of \mathcal{H}.

4. Acknowledgements

The author Y. B. Jun was supported by Korea Research Foundation Grant (KRF-2003-005-C00013).

References

[1] D. Busneag, A note on deductive systems of a Hilbert algebra, Kobe J. Math. 2 (1985), 29-35.
[2] D. Busneag, Hilbert algebras of fractions and maximal Hilbert algebras of quotients, Kobe J. Math. 5 (1988), 161-172.
[3] D. Busneag, Hertz algebras of fractions and maximal Hertz algebras of quotients, Math. Japon. 39 (1993), 461-469.
[4] I. Chajda, The lattice of deductive systems on Hilbert algebras, SEA Bull. Math. 26 (2002), 21-26.
[5] I. Chajda, R. Halaš and Y. B. Jun, Annihilators and deductive systems in commutative Hilbert algebras, Comment. Math. Univ. Carolinae 43 (2002), no. 3, 407-417.
[6] A. Diego, Sur les algébres de Hilbert, Collection de Logigue Math. Ser. A (Ed. Hermann, Paris) 21 (1966), 1-52.
[7] Y. B. Jun, Deductive systems of Hilbert algebras, Math. Jpn. 43 (1996), no. 1, 51-54.
[8] Y. B. Jun, Commutative Hilbert algebras, Soochow J. Math. 22 (1996), no. 4, 477-484.

Young Bae Jun, Department of Mathematics Education, Gyeongsang National University, Jinju 660-701, Korea

E-mail address: ybjun@gsnu.ac.kr
S. Y. Kim and E. H. Roh, Department of Mathematics Education, Chinju National University of Education, Jinju 660-756, Korea

E-mail address: sykim@cue.ac.kr, ehroh@cue.ac.kr

[^0]: 2000 Mathematics Subject Classification. 03G25, 08A30.
 Key words and phrases. Hilbert algebra, morphism, abysm, deductive system.

 * Corresponding author: Tel.: +8255740 1232; fax: +8255740 1230

