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Abstract. Let X1, X2, Y1, Y2 are i.i.d. r.v.s obeying the same probability destribu-
tion. Player I [II] looks privately (X1, X2) = (x1, x2), [(Y1, Y2) = (y1, y2)]. They choose
a single common number θ, and player II opens the nearest number to θ among y1 and
y2 and covers the other number. If II’s opened number is > (<)θ, then I gets as his
payoff, the opened (covered) number. The problem is to determine θ under which the
expected payoff M1(θ), I can get, is maximized. The maximization problem for II is
quite similar as for I. Because of symmetry between the two players, our problem es-
sentially reduces to computation of M1(θ) and finding the θ which maximizes M1(θ).
This game is solved for (1) uniform distribution on [0, 1], (2) exponential distribu-
tion on [0,∞), (3) normal distribution on (−∞,∞), and (4) some other distributions
around them.

1 Two-player One-sided Games of Deception. Two numbers x1 and x2 are chosen
from [0, 1] by means of independent bivariate uniform distribution on [0, 1]2. Player I now
looks at the numbers privately and chooses one of the two and opens it to Player II, and
the other number is covered. Player II then accepts either one of the opened number or the
covered number, and receives from player I the number he accepted. Player I (II) aims to
minimize (maximize) the expected payoff to II.

In Baston and Bostock (Ref.[1]) it is proven that the strategies;
σ∗ : Choose the nearest number to 1

2 among x1 and x2, and open it. The other number
is covered.
for I and

τ∗ : Accept the opened (covered) number if it is > (<)1
2 ,

for II, constitute an optimal strategy-pair, and the value of the game is 7/12.
By Sakaguchi (Ref.[5]) it is proven that, if x1 and x2 are independent bivariate standard

normal distribution in (−∞,∞)2, then the above strategy-pair σ∗ and τ∗ with 1
2 replaced

by 0, is optimal, and the value of the game is 2−√
2√

2π
≈ 0.2337.

In the present paper, we make an approach to consider the two-sided game, where each
player aims to maximize his expected payoff he obtains from his opponent.

2 Two-player Two-sided Games of Deception. Let X1, X2, Y1, Y2 are i.i.d. r.v.s
with an identical p.d.f. Player I observes (X1, X2) and chooses his decision number θ1 ∈
[0, 1]. Player II observes (Y1, Y2) and chooses his decision number θ2 ∈ [0, 1]. Each player’s
choice of his decision number is made independently of the opponent’s choice.

Player I chooses the nearest number to θ1 among x1 and x2 and open it and the other
number is covered. Player II chooses the nearest number to θ2 among y1 and y2 and opens it
and the other number is covered. If II’s opened number is > (<)θ1, then I gets II’s opened
(covered) number. If I’s opened number is > (<)θ2, then II gets I’s opened (covered)
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number. For the sake of symmetry it should be θ1 = θ2(= θ, say). Both players want to
choose the optimal θ which maximizes the common expected payoff, they can get.

An example of non-simple two-sided games of deception is mentioned in Remark 3 of
Section 6.

3a Uniform Destribution in [0, 1]. We divide the plane [0, 1]2 by the four “quad-
rant”s by the two axis y1 = θ and y2 = θ, and denote them Q(1), Q(2), Q(3) and Q(4), in the
clock-wise order. We use this convention throughout this paper.

We consider the two case 0 ≤ θ < 1
2 and 1

2 ≤ θ ≤ 1. First let 0 ≤ θ < 1
2 , Player I can

get his payoff shown as in Figure 1.
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Figure 1. Case 0 ≤ θ < 1
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The proof is as follows. In the upper-left of Q(1), y1 +y2 > 2θ and θ < y1 < y2 hold, and
hence II opens y1, and I gets y1. In the lower-right of Q(1), y1 + y2 > 2θ and y1 > y2 > θ,
and hence II opens y2 and I gets y2. In the upper-right of Q(2), y1 +y2 > 2θ and y2 < y1∧θ,
and so II opens y2, and I gets the covered y1. In the lower-left of Q(2), y1 + y2 < 2θ and
y1 > y2 ∨ θ, and so II opens y1 and I gets y1. In Q(3) and Q(4) similar arguments can be
made and the result is as shown in Figure 1.

I’s total expected reward is

2

[∫ 1

θ

dy2

∫ y2

θ

y1dy1 +
∫ θ

0

dy2

∫ 1

θ

y1dy1 +
∫ θ

0

dy2

∫ y2

0

y1dy1

]
.(3.1)

The reason of why (3.1) is 2 times of [· · ·] is that “y1 domain” and “y2 domain” are located
symmetric about the straight line y1 = y2, and y1 and y2 are i.i.d. distributed.
Here, the first (second, third) term gives the reward from Q(1)(Q(2), Q(3)). The sum of
these three is equal to

2
[(

1
6
− 1

2
θ2 +

1
3
θ3

)
+

1
2
(θ − θ3) +

1
6
θ3

]
=

1
3

+ θ − θ2(3.2)

which is concave, increasing with values 1
3 at θ = 0 and 7

12 at θ = 1
2 .

Now secondly, let 1
2 ≤ θ ≤ 1. We repeat the same arguments as in the case 0 ≤ θ < 1

2
(see Figure 2) and we obtain the same result 1

3 + θ − θ2, which is concave, decreasing with
values 7

12 at θ = 1
2 and 1

3 at θ = 1.
Thus we can state
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Theorem 1 In Case 3a, the optimal choice is θ∗ = 1
2 and the common OPR (optimal

reward) is 7/12.

3b Triangular Distribution in [0, 1]. The p.d.f. is f(x) = 2x, x ∈ [0, 1]. Mean value
is 2/3. Figures 1 and 2 remain unchanged as in section 3a. We explain in the following the
values in Q(3) and Q(4). In the upper-left of Q(3) in Figure 1, we have y1 + y2 < 2θ and
y1 < y2 < θ and so II opens y2 and I gets the covered number y1. In the lower-right of
Q(3), y1 + y2 < 2θ and θ > y1 > y2, and so II opens y1 and I gets the covered number y2.
In the upper-right of Q(4) we have y1 + y2 > 2θ and y1 < y2 ∧ θ, and so II opens y1 and I
gets the covered number y2. In the upper-left of Q(4) we have y1 + y2 < 2θ and y2 > y1 ∨ θ,
and so II opens y2 and I gets y2. The result is as shown in Figure 1.

I’s total expected reward is

8

[∫ 1

θ

y2dy2

∫ y2

0

y2
1dy1 +

∫ θ

0

y2dy2

∫ 1

θ

y2
1dy1 +

∫ θ

0

y2dy2

∫ y2

0

y2
1dy1

]
(3.3)

= 8
[(

1
15

− 1
6
θ3 +

1
10

θ5

)
+

1
6
(θ2 − θ3) +

1
15

θ5

]
= 8

(
1
15

+
1
6
θ2 − 1

6
θ3

)

which is increasing and convex-concave (with the point of inflexion θ = 1/3), with values
8
15 ≈ 0.5333 at θ = 0, 256

405 ≈ 0.6321 at θ = 1
3 , and 0.7 at θ = 1

2 .
As for Figure 2, i.e. the case 1

2 ≤ θ ≤ 1, computation is made similarly, and we find
that I’s total expected reward remains unchanged and is (3.3) again. However, this (3.3)
for 1

2 ≤ θ ≤ 1 is unimodal, concave with the maximal value 296
405 ≈ 0.7309 at θ = 2

3 . I’s total
expected reward as a function of θ ∈ [0, 1] is shown by Figure 3.

8/15

0.7

296/405

θ

Figure 3. The function of θ ∈ [0, 1]

8/15 ≈ 0.533

296/405 ≈ 0.731

1/3 1/2 2/3 10

Theorem 2 In Case 3b, the optimal choice is θ∗ = 2
3 and the common OPR is 296

405 ≈
0.7309.

Moreover, we can show in the same way that

Theorem 2′ In Case 3b′, where f(x) = 2x, in [0, 1], the optimal choice is θ∗ = 1
3 , and

the common OPR is 161
405 ≈ 0.39753.
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It is interesting that 296
405 − 161

405 = 1
3 .

4a Exponential Distribution in [0,∞). The p.d.f. is f(x) = e−x, x ∈ [0,∞). Mean
value is 1. The analysis goes just as before and we obtain Figure 4, which shows the reward
I can get.

θ

Figure 4. The reward player II can get.

0

2θ

θ 2θ

y2

y1

y1

y1

y1

y2

y2

y2

The computation as made in (2.1) is 2 times of

∫ ∞

θ

e−y2dy2

∫ y2

θ

y1e
−y1dy1 +

∫ θ

0

e−y2dy2

∫ ∞

θ

y1e
−y1dy1(4.1)

+
∫ θ

0

e−y2dy2

∫ y2

0

y1e
−y1dy1

where the first integral is∫ ∞

θ

−(1 + y2)e−2y2dy2 + (1 + θ)e−2θ,

the second integral is (1 + θ)
(
e−θ − e−2θ

)
, and third integral is

(
1 − e−θ

)
+

∫ θ

0

{−(1 + y2)e−2y2
}

dy2.

Hence the sum is∫ ∞

0

−(1 + y2)e−2y2dy2 + (1 + θ)e−2θ + (1 + θ)
(
e−θ − e−2θ

)
+

(
1 − e−θ

)
= −3

4
+

(
1 + θe−θ

)
=

1
4

+ θe−θ,

which is maximized at θ = 1. Thus we have

Theorem 3 In Case 4a, the optimal choice is θ∗ = 1, and the common OPR is 1
2 +2e−1 ≈

1.23576.
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4b Another Exponential Distribution in [0,∞). The p.d.f. is f(x) = xe−x, x ∈
[0,∞). Mean value is 2. The analysis goes just as before and we obtain Figure 4 again.
The computation as in (4.1) is now 2 times of

∫ ∞

θ

y2e
−y2dy2

∫ y2

θ

y2
1e

−y1dy1 +
∫ θ

0

y2e
−y2dy2

∫ ∞

θ

y2
1e

−y1dy1(4.2)

+
∫ θ

0

y2e
−y2dy2

∫ y2

0

y2
1e

−y1dy1

where the first integral is

∫ ∞

θ

y2e
−y2dy2

[
(−y2 − 2y − 2)e−y

]y2

θ

=
∫ ∞

θ

− (
y3
2 + 2y2

2 + 2y2

)
e−2y2dy2 + (1 + θ)(θ2 + 2θ + 2)e−2θ,

the second integral is

{
1 − (1 + θ)e−θ

}
(θ2 + 2θ + 2)e−θ = (θ2 + 2θ + 2)

{
e−θ − (1 + θ)e−2θ

}
,

and the third integral is

∫ θ

0

y2e
−y2dy2

[
(−y2 − 2y − 2)e−y

]y2

0

=
∫ ∞

0

− (
y3
2 + 2y2

2 + 2y2

)
e−2y2dy2 + 2

{
1 − (1 + θ)e−θ

}
.

Hence the sum is

−
∫ ∞

0

(y3
2 + 2y2

2 + y2)e−2y2dy2 + (θ2 + 2θ + 2)e−θ + 2
{
1 − (1 + θ)e−θ

}
= −1 +

[
2 +

{
θ2 + 2θ + 2 − 2(1 + θ)

}
e−θ

]
= 1 + θ2e−θ,

which is maximized at θ = 2.
For the computations of these integrals we used the formulas∫

te−tdt = −(1 + t)e−t,

∫
t2e−tdt = −(t2 + 2t + 2)e−t,(4.3)

∫
te−2tdt = −1

4
(1 + t)e−t and

∫
t2e−2tdt = −1

8
(t2 + 2t + 2)e−t.

Thus we obtain

Theorem 4 In Case 4b, the optimal choice is θ∗ = 2, and the common OPR is 2(1 +
4e−2) ≈ 3.0827.

5a Normal Distribution in (−∞,∞). We consider the case θ ≥ 0. The case θ < 0 is
not needed to consider, because of symmetry of the p.d.f.. The reward player II can get is
shown, just as in the preceding distribution, by Figure 5.



1050 MINORU SAKAGUCHI

θ

Figure 5. Case θ ≥ 0.
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I’s total expected reward is 2 times of∫ ∞

θ

φ(y2)dy2

∫ y2

θ

y1φ(y1)dy1 + Φ(θ)
∫ ∞

θ

y1φ(y1)dy1(5.1)

+
∫ θ

−∞
y1φ(y1)(Φ(θ) − Φ(y1))dy1,

where

φ(t) ≡ 1√
2π

e−
1
2 t2 and Φ(t) ≡

∫ t

−∞
φ(s)ds.

The first integral is[
−φ(t)Φ(t)

]∞

θ

−
∫ ∞

θ

(φ(t))2 dt = φ(θ)Φ(θ) −
∫ ∞

θ

(φ(t))2 dt,

the second integral is Φ(θ)
[
−φ(t)

]∞
θ

= Φ(θ)φ(θ), and the third integral is

[
−φ(t) (Φ(θ) − Φ(t))

]θ

t=−∞
−

∫ θ

−∞
(φ(t))2 dt = −

∫ θ

−∞
(φ(t))2 dt.

Hence the sum is

φ(θ) −
∫ ∞

θ

(φ(t))2 dt −
∫ θ

−∞
(φ(t))2 dt(5.2)

and its derivative is
−θφ(θ) + (φ(θ))2 − (φ(θ))2 = −θφ(θ) < 0.

Therefore the sum is maximized at θ = 0, and has the value

φ(0) −
∫ ∞

0

(φ(t))2 dt −
∫ 0

−∞
(φ(t))2 dt =

1√
2π

− 2 · 1
4
√

π
=

2 −√
2

2
√

2π(
Note that

∫ ∞

0

(φ(t))2 dt =
1

4
√

π

)
. Thus we arrive at
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Theorem 5 In Case 5a, the optimal choice is θ∗ = 0, and the common OPR is 2−√
2√

2π
≈

0.2337.

5b. Symmetric Exponential Distribution in (−∞,∞). The p.d.f. is f(x) = 1
2e−|x|.

The mean value is 0. We consider the case θ ≥ 0 only. The reward I can get is shown by
Figure 5, again.

I’s total expected reward is 2 × 1
4 times of

∫ ∫
θ<y1<y2<∞

y1e
−(y1+y2)dy1dy2 +

{∫ θ

0

e−y2dy2 +
∫ 0

−∞
ey2dy2

} {∫ ∞

θ

y1e
−y1dy1

}
(5.3)

+

⎧⎪⎨
⎪⎩

∫∫
−∞<y1<0<y2<θ

y1e
y1−y2dy1dy2 +

∫ ∫
0<y1<y2<θ

y1e
−(y1+y2)dy1dy2

+
∫ ∫

−∞<y1<y2<0

y1e
y1+y2dy1dy2

⎫⎬
⎭ ,

i.e., the sum of the reward in Q(1), Q(2) and Q(3), in this order. For computation of these
integrals, we used the formulas (4.3).

The part in Q(1) is∫ ∞

θ

e−y2dy2

∫ y2

θ

y1e
−y1dy1 =

∫ ∞

θ

{
(1 + θ)e−θ − (1 + y2)e−y2

}
e−y2dy2

=
(

1
2

+ θ

)
e−2θ − 1

4
(1 + θ)e−θ,

the part in Q(2) is (1 + θ)
(
2 − e−θ

)
e−θ, and the part in Q(3) is

− (
1 − e−θ

)
+

∫ ∞

0

{
1 − (1 + y2)e−y2

}
e−y2dy2 +

∫ 0

−∞
−(1 − y2)e2y2dy2

= e−θ −
∫ ∞

0

(1 + t)e−2tdt −
(

1
2
− 1

4

)
= e−θ − 1.

Hence the sum of the three parts is{(
1
2

+ θ

)
e−2θ − 1

4
(1 + θ)e−θ

}
+ (1 + θ)

(
2 − e−θ

)
e−θ +

(
e−θ − 1

)
(5.4)

=
(

11
4

+
7
4
θ

)
e−θ − 1

2
e−2θ − 1.

Its derivative satisfies

−e−θ

(
1 +

7
4
θ − e−θ

) {
=
<

}
0, if θ

{
=
>

}
0.

Therefore we obtain

Theorem 6 In Case 5b, the optimal choice is θ∗ = 0 and the common OPR is 2 × 1
4 ×(

11
4 − 3

2

)
= 5

8 (= 0.625).
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6 Three Remarks

Remark 1 According to our theorems 1∼6, player’s optimal choice θ∗ is equal to the
expected value of each r.v.. The choice is made to the effect that the information concerning
the covered r.v. obtained by the opponent, becomes least.

Suppose that player II doesn’t employ any deception strategy i.e., he chooses Y1 and Y2

with probability 1/2 each, and opens it. If player I knows this policy of his opponent, then
player I can get Ef (Y ∨ µf ), where µf = Ef (Y ). It is clear that

Ef [Y ∨ µf ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1

0

(
y ∨ 1

2

)
dy =

5
8
, if f(y) = 1, ∀y ∈ [0, 1]

∫ ∞

0

(y ∨ 1) e−ydy = 1 + e−1 ≈ 1.368, if f(y) = e−y, ∀y ∈ [0,∞)

∫ ∞

0

y φ(y) dy =
1√
2π

≈ 0.399, if f(y) = φ(y),∀y ∈ (−∞,∞),

these of which are grater than

7
12

(in Th.1),
1
2

+ 2e−1 ≈ 1.236 (in Th.3) and
2 −√

2√
2π

≈ 0.2337 (in Th.5)

respectively, in this order. We interprete that this means that II can deceive his opponent
by enploying the deception strategy as mentioned Section 2. The situation is the same as
for player I.

Remark 2 Let (X1, X2)[(Y1, Y2)] be a bivariate correlated r.v. with p.d.f. f(x1, x2)
[f(y1, y2)]. For example

f(x1, x2) = 1 + γ(1 − 2x1)(1 − 2x2), (x1, x2) ∈ [0, 1]2(6.1)

with γ, |γ| ≤ 1, is a given constnt, and the correlation coefficient is (1/3) γ. This is one
of the simplest one that has identical uniform marginals and correlated components. See
Ref.[3, 5].
Also

f(x1, x2) = e−(x1+x2)
{
1 + γ(2e−x1 − 1)(2e−x2 − 1)

}
, (x1, x2) ∈ [0,∞)2,(6.2)

where γ, |γ| ≤ 1, has identical exponential marginals f(x) = e−x and the correlation coef-
ficient is (1/4)γ. This is one of the simplest one that has identical exponential marginals
and correlated components.

Finally, bivariate normal distribution

f(x1, x2) =
1

2π
√

1 − ρ2
exp

[
− 1

2(1 − ρ2)
(
x2

1 − 2ρx1x2 + x2
2

)]
,(6.3)

(x1, x2) ∈ (−∞,∞)2,

where ρ, |ρ| < 1, is the correlation coefficient. This has the identical marginal p.d.f. φ(x) ≡
1√
2π

e−x2/2.
The two-sided games of deception for bivariate distributions (6.1), (6.2) and (6.3) are

an interesting problem to be solved (see Ref.[5]).
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Remark 3 We give an example of non-simple two-sided games of deception. Let X1

and X2[Y1 and Y2] be i.i.d. r.v.s with p.d.f. f(x)[g(y)]. f(x) and g(y) are different p.d.f.s.
Player I (II) chooses a number θ1(θ2) and he opens the number nearest to θ1(θ2) among
x1, x2(y1, y2), and covers the other number. Each player gets as his reward his opponent’s{

opened
covered

}
number if it is

{
> θ1 ∨ θ2

< θ1 ∧ θ2

}
and 1

2 (opened + covered), if otherwise. I and

II want to choose θ1 and θ2, respectively, under which each player maxmizes the expected
reward he can get. The three cases (1) f(x) ≡ 1 and g(x) = 2x, x ∈ [0, 1], (2) f(x) = e−x

and g(x) = xe−x, x ∈ [0,∞), (3) f(x) = φ(x) and g(x) = 1
2e−|x|, x ∈ (−∞,∞), would be

interesting.

Remark 4 There are a number of interesting researches around the games of deception.
Among these are Ref.[2, 3, 4, 6 and 7].
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