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Abstract. Whittle estimators are important and fundamental in time series esti-
mation. We apply Whittle estimation to the square transformed ARCH(∞) models,
which can be expressed as linear processes. Whittle estimators for linear processes are
known to be asymptotically normal with asymptotic variance VW = V2 +V4, where V2

is written in terms of the second-order spectra only, and V4 includes the fourth-order
cumulant spectra. This note gives a useful and explicit expression of V4, and shows
that there exists a case of V4 < 0. Since V2 can be regarded as the inverse of Fisher
information F−1 in terms of the second-order spectra, the result implies that there is
a case when VW < F−1. For ARCH models with various innovation distributions, we
evaluate VW , V2 and V4 numerically. The numerical studies elucidate some interesting
features of the Whittle estimators.

1. Introduction

ARCH model arises frequently in economic time series, which was introduced by Engle
(1982). This model assumes the dependence of the one period forecast variance on a finite
number of passed variables. Robinson (1991) extended this model to ARCH(∞) model, the
one period forecast variance depends on an infinite number of passed variables. Giraitis
et al. (2000) have derived sufficient conditions for the existence of a stationary solution
of ARCH(∞) model. The square transformed ARCH(∞) models have representations as
linear processes.

To estimate a parameter θ of linear process, Whittle estimation is widely used. Recently,
Whittle estimators for a class of parametric ARCH(∞) models are shown to be asymptot-
ically normal in Giraitis and Robinson (2001). For a general class of linear processes,
Hosoya and Taniguchi (1982) introduced a Whittle estimator, which is obtained by mini-
mizing

∫ π

−π

{
log fθ(λ) + Ix(λ)

fθ(λ)

}
dλ, where Ix(λ) is the periodogram and fθ(λ) is the spectral

density of the process concerned, and derived the asymptotic variance, VW = V2 +V4, where
V2 is written in terms of the second-order spectra only, and V4 includes the fourth-order
cumulant spectra. V2 is known to be the inverse of time series Fisher information F−1. In
this note we apply the Whittle estimators to the squared ARCH(∞) models, and investi-
gate behavior of VW . Then it is shown that there is a case when VW < F−1. Numerical
evaluation for VW , V2 and V4 are also provided.

This note is organized as follows. Section 2 describes Whittle estimators for the square
transformed ARCH(∞) models and gives results of these asymptotics and provides a useful
and explicit representation of V4. We also give two examples satisfying VW = F−1 and
VW < F−1. Section 3 provides numerical studies of VW , V2 and V4. The results elucidate
some interesting features of the asymptotics of the Whittle estimator for the parameter of
ARCH(∞) model. Proof is relegated to Section 4.
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2. Estimation and Asymptotics

Throughout this paper we deal with the following ARCH(∞) model.

Xt = ut

√√√√a0 +
∞∑

j=1

ajX2
t−j

where a0 > 0, aj ≥ 0, j = 1, · · · , and {ut} is a sequence of i.i.d random variables with mean
0, variance 1. Let Yt ≡ X2

t , ξt ≡ u2
t , σ2

t = a0 + a1Yt−1 + · · · , then we may write Yt = σ2
t ξt

and E[ξt] = 1. If we define εt ≡ Yt−a0−a1Yt−1−· · · = σ2
t (ξt−1), then εt is an uncorrelated

process. So Yt is an autoregressive process. We impose the following assumption for the
estimation of the parameter of {Xt}.

Assumption 1.
(i)E[u4

t ]
1
2

∑∞
j=1 aj < 1

(ii)Eu8
t < ∞.

(iii)a0 and aj ’s are functions of an unknown parameter θ = (θ1, θ2, · · · , θq).
(iv)aj = aj(θ)’s are differentiable with respect to θ.

The assumption (i) implies the second order stationarity of {Yt} (see, Giraitis et al
(2000)). Hence {εt} is second order stationary. Henceforth we denote the spectral densities
of {Yt} and {εt} by fY,θ and fε,θ, respectively.

Hosoya and Taniguchi (1982) introduced a Whittle estimator for a linear process in the
case when the innovation variance depends on θ. We estimate θ by use of the Whittle
likelihood for the square-transformed stretch Y1, · · · , Yn. That is,

θ̂W
n ≡ argminθ

∫ π

−π

{
log fY,θ(λ) +

IY (λ)
fY,θ(λ)

}
dλ

where IY (λ) is the periodogram i.e., IY (λ) = 1
2πn |

∑n
t=1 Yte

itλ|2.
To describe the asymptotics of θ̂W

n , we need the following assumption.

Assumption 2.
(i) fY,θ is square-integrable with respect to λ.
(ii) Let

∞∑
l1,l2,l3=−∞

|Cε,θ(l1, l2, l3)| < ∞,

where Cε,θ(l1, l2, l3) is the fourth cumulant of εt.
(iii)

M(θ) =
∫ π

−π

[
f2

Y (λ)
∂

∂θ
(fY,θ(λ))−1 ∂

∂θ′
(fY,θ(λ))−1

]
dλ

is a nonsingular matrix.

Under Assumptions 1 and 2, from Hosoya and Taniguchi (1982) we obtain
√

n(θ̂W
n − θ) d−→ N(0, M(θ)−1V (θ)M(θ)−1)
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where

V (θ) = 4πM(θ) + 2π

∫ ∫ π

−π

[
∂

∂θ
(f−1

Y,θ(λ1))
∂

∂θ′
(f−1

Y,θ(λ2))
]

fY,θ(−λ1, λ2,−λ2)dλ1dλ2,

fY,θ(λ1, λ2, λ3) =
1

(2π)3

∞∑
t1,t2,t3=−∞

exp {−i(λ1t1 + λ2t2 + λ3t3)}CY,θ(t1, t2, t3)

and CY,θ(t1, t2, t3) is the fourth order cumulant of Y (t), Y (t+t1), Y (t+t2), Y (t+t3). Further

2π

∫ ∫ π

−π

[
∂

∂θ
(f−1

Y,θ(λ1))
∂

∂θ′
(f−1

Y,θ(λ2))
]

fY (−λ1, λ2,−λ2)dλ1dλ2

=
(2π)2

(m − 1)2

[
∂

∂θ

(
1

E(σ4
t )

)
∂

∂θ′

(
1

E(σ4
t )

)]
(2πfη,θ(0) − 2(E(η0)))2)(1)

where ηt = ε2t , fη,θ is the spectral density of ηt and m = E[u4
t ]. The proof of (1) is placed

in Section 4.
Let

V2(θ) = 4πM(θ)−1,

V4(θ) = 2πM(θ)−1

∫ ∫ π

−π

[
∂

∂θ
(f−1

Y,θ(λ1))
∂

∂θ′
(f−1

Y,θ(λ2))
]

fY,θ(−λ1, λ2,−λ2)dλ1dλ2M(θ)−1.

Then the asymptotic variance VW (θ) of
√

n(θ̂W
n − θ) is written as

VW (θ) = V2(θ) + V4(θ).

Note that V2(θ) is known to be the inverse of time series Fisher information F (θ)−1 in terms
of the second order spectra. If the asymptotic variance satisfies VW (θ) = F (θ)−1, we say
that θ̂W

n is asymptotically efficient in the sense of second order spectra. ¿From the above
discussion, if

2πfη,θ(0) − 2(E(η0)))2 ≤ 0,(2)

then (2) implies

VW (θ) ≤ F (θ)−1.

Examples satisfying VW (θ) = F (θ)−1 and VW (θ) < F (θ)−1 are given as follows.
(i)Let P (ut = 1) = P (ut = −1) = 1

2 then V4(θ) = 0, that is the Whittle estimator is
asymptotically efficient in the sense of second order spectra.
(ii)Let P (ut = 0) = 1

2 , P (ut =
√

2) = P (ut = −√
2) = 1

4 and aj = 0 j ≥ 1 then V4(θ) is
negative, that is, VW (θ) is smaller than F (θ)−1.

3. Numerical examples

In this section we evaluate the asymptotic variance numerically. Let us consider the
following ARCH(1) models.

Xt =
√

a0 + aX2
t−1ut (θ = a)(3)
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We examine the asymptotic variance VW = VW (a), V2 = V2(a) and V4 = V4(a) of the
Whittle estimator for θ = a. Since the values of VW , V2 and V4 are not affected by a0, we
set a0 = 1.

In Figures 1-5, we plotted VW , V2 and V4 (0 ≤ a < 0.1) for the case of (1) ut ∼N (0, 1),
(2) ut ∼Logistic, (3) ut ∼T-distribution with degrees of freedom 60, (4) ut ∼T-distribution
with degrees of freedom 30, (5) ut ∼T-distribution with degrees of freedom 10, respectively.

Figures 1-5 are about here.

We can see that, VW becomes large as the tail of the distribution becomes heavy, VW and
V4 are much larger than V2, and that V2 goes down as a increases.

In Figure 6, we plotted VW ,V2 and V4 for (3) with P (ut = 1) = P (ut = −1) = 1
2 ,

0 ≤ a ≤ 0.1.

Figure 6 is about here.

We can see that, VW = V2 and V2 goes down as a increases.
In Figure 7, we plotted VW ,V2 and V4 for (3) with P (ut =

√
2) = P (ut = −√

2) = 1
4 ,

P (ut = 0) = 1
2 , 0 ≤ a ≤ 0.4.

Figure 7 is about here.

We can see that, VW < V2, and V2 goes down as a increases.

4. Appendix.

Proof of (1).

Since the spectral density of {εt} is given by

fε,θ(λ) =
E[u4

t − 1]E[σ4
t ]

2π

and εt takes the form

εt =
∞∑

j=0

βjVt−j

where β0 = 1, βj = −aj(j ≥ 1), α
∑∞

j=0 βj = a0 and Vt = Yt − α. The transfer function
B(λ) and the spectral density of Y are obtained by

B(λ) =
∞∑

j=0

βj exp(−ijλ)

fY,θ(λ) =
E[u4

t − 1]E[σ4
t ]

2π
× 1

|B(λ)|2 .
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Noting Remark 3.1 of Hosoya and Taniguchi (1982), we have

2π

∫ ∫ π

−π

[
∂

∂θ
(f−1

Y,θ(λ1))
∂

∂θ′
(f−1

Y,θ(λ2))
]

fY,θ(−λ1, λ2,−λ2)dλ1dλ2

=
(2π)3

(m − 1)2

[
∂

∂θ

(
1

E(σ4
t )

)
∂

∂θ′

(
1

E(σ4
t )

)]

×
∫ ∫ π

−π

B(−λ1)B(λ2)B(−λ2)B(λ1)fY,θ(−λ1, λ2,−λ2)dλ1λ2

=
(2π)3

(m − 1)2

[
∂

∂θ

(
1

E(σ4
t )

)
∂

∂θ′

(
1

E(σ4
t )

)] ∫ ∫ π

−π

fε,θ(−λ1, λ2,−λ2)dλ1λ2

=
1

(m − 1)2

[
∂

∂θ

(
1

E(σ4
t )

)
∂

∂θ′

(
1

E(σ4
t )

)]

×
∞∑

l1,l2,l3=−∞
Cε,θ(l1, l2, l3)

∫ π

−π

exp (il1λ1)dλ1

∫ π

−π

exp i(l3 − l2)λ2dλ2

=
(2π)2

(m − 1)2

[
∂

∂θ

(
1

E(σ4
t )

)
∂

∂θ′

(
1

E(σ4
t )

)] ∞∑
l=−∞

Cum(ε0, ε0, εl, εl)

=
(2π)2

(m − 1)2

[
∂

∂θ

(
1

E(σ4
t )

)
∂

∂θ′

(
1

E(σ4
t )

)]
(E[η2

0 ] − 3(E(η0)))2 +
∑
l �=0

Rη(l))

=
(2π)2

(m − 1)2

[
∂

∂θ

(
1

E(σ4
t )

)
∂

∂θ′

(
1

E(σ4
t )

)]
(2πfη,θ(0) − 2(E(η0)))2)

where fε,θ(λ1, λ2, λ3) is a fourth cumulant spectrum of εt and Rη(l) is an autocovariance
function of ηt.
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Figure 1: VW (dashed line), V2 (solid line) and V4 (dotted line) of the Whittle estimators for

the parameter of ARCH(1) models (Xt =
√

a0 + aX2
t−1ut) with ut ∼N (0, 1), 0 ≤ a ≤ 0.1.
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Figure 2: VW (dashed line), V2 (solid line) and V4 (dotted line) of the Whittle estimators for

the parameter of ARCH(1) models (Xt =
√

a0 + aX2
t−1ut) with ut ∼Logistic, 0 ≤ a ≤ 0.1.
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Figure 3: VW (dashed line), V2 (solid line) and V4 (dotted line) of the Whittle estimators

for the parameter of ARCH(1) models (Xt =
√

a0 + aX2
t−1ut) with ut ∼T-distribution

(degrees of freedoms is 60), 0 ≤ a ≤ 0.1.
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Figure 4: VW (dashed line), V2 (solid line) and V4 (dotted line) of the Whittle estimators

for the parameter of ARCH(1) models (Xt =
√

a0 + aX2
t−1ut) with ut ∼T-distribution

(degrees of freedoms is 30), 0 ≤ a ≤ 0.1.
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Figure 5: VW (dashed line), V2 (solid line) and V4 (dotted line) of the Whittle estimators

for the parameter of ARCH(1) models (Xt =
√

a0 + aX2
t−1ut) with ut ∼T-distribution

(degrees of freedoms is 10), 0 ≤ a ≤ 0.1.
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Figure 6: VW , V2 (solid line) and V4 (dotted line) of the Whittle estimators for the parameter

of ARCH(1) models (Xt =
√

a0 + aX2
t−1ut) with P (ut = 1) = P (ut = −1) = 1

2 , 0 ≤ a ≤
0.1.
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Figure 7: VW (dashed line), V2 (solid line) and V4 (dotted line) of the Whittle estimators

for the parameter of ARCH(1) models (Xt =
√

a0 + aX2
t−1ut) with P (ut =

√
2) = P (ut =

−√
2) = 1

4 , P (ut = 0) = 1
2 , 0 ≤ a ≤ 0.4.

Tomoyuki.AMANO
Department of Mathematical Sciences
School of Science and Engineering
Waseda University
3-4-1 Okubo Shinjuku-ku
Tokyo 169-8555
Japan
E-mail: tomtochami@ruri.waseda.jp


