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Abstract. If a variety V contains all algebras derived by hypersubstitutions, then it
is called solid. If the only derived algebras obtained from an algebra A in V are those
isomorphic to A, then the variety V is called fluid. We generalize this concept to the
concepts of n-fluid, weakly fluid and ℵ0-fluid varieties, prove some general properties
and determine all n-fluid varieties of bands.

1 Preliminaries Let Wτ (X) be the set of all terms built up from operation symbols
from an indexed set (fi)i∈I and from variables of an alphabet X . Hypersubstitutions map
operation symbols to terms and preserve arities. Any hypersubstitution σ : {fi | i ∈ I} −→
Wτ (X) induces a mapping σ̂ : Wτ (X) −→ Wτ (X) by the following inductive definition

(i) σ̂[x] := x for every variable x ∈ X.

(ii) σ̂[fi(t1, . . . , tni)] := σ(fi)(σ̂[t1], . . . , σ̂[tni ]) for compound terms fi(t1, . . . , tni).

Using this extension we may define a multiplication σ1 ◦h σ2 := σ̂1 ◦ σ2 of hypersub-
stitutions where ◦ is the usual composition of mappings. Let Hyp(τ) be the set of
all hypersubstitutions of type τ . Using the identity hypersubstitution σid defined by
σid(fi) := fi(x1, . . . , xni) for all i ∈ I one obtains the monoid (Hyp(τ); ◦h, σid) of all
hypersubstitutions of type τ . An identity s ≈ t in a variety V of algebras of type τ is said
to be a hyperidentity in V if σ̂[s] ≈ σ̂[t] is an identity in V for any σ ∈ Hyp(τ). A variety
V is called solid if each of its identities is a hyperidentity. Throughout we will use the
following notation: Let IdV be the set of all identities satisfied in the variety V , and let
A |= s ≈ t mean that the equation s ≈ t is an identity in the algebra A. Let P (V ) be the
set of all hypersubstitutions of Hyp(τ) which preserve all identities in the variety V , i.e.
P (V ) := {σ | ∀s ≈ t ∈ IdV (σ̂[s] ≈ σ̂[t] ∈ IdV )}. Hypersubstitutions from P (V ) are called
V -proper ([6]). It is easy to see that P (V ) forms a submonoid of Hyp(τ). The variety V is
solid if and only if P (V ) = Hyp(τ). J. P�lonka defined in [6] the following binary relation
on Hyp(τ):

σ1 ∼V σ2 :⇐⇒ ∀i ∈ I(σ1(fi) ≈ σ2(fi) ∈ IdV ).

Clearly, the relation ∼V is an equivalence relation on Hyp(τ) but in general it is not a
congruence relation. Further, it was proved that the set P (V ) is a union of full equivalence
classes with respect to ∼V (i.e. P (V ) is ∼V -saturated), i.e. if V is a variety of type
τ , if s ≈ t ∈ IdV, σ̂1[s] ≈ σ̂1[t] ∈ IdV and σ1 ∼V σ2, then σ̂2[s] ≈ σ̂2[t] ∈ IdV . The
elements of P0(V ) := [σid]∼V are called inner hypersubstitutions. Clearly, the set of inner
hypersubstitutions forms a submonoid of P (V ) (see e.g. [2], [3]).
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A hypersubstitution can also be applied to an algebra A. The algebra σ(A) derived from
a hypersubstitution σ is the algebra σ(A) := (A; (σ(fi)A)i∈I). Here σ(fi)A is the term
operation induced by the term σ(fi). For a variety V of algebras of type τ let σ(V ) be the
class of all derived algebras σ(A), for A ∈ V . Using the concept of a derived algebra in [4]
the following binary relation ∼V −iso on Hyp(τ) was defined:

σ1 ∼V −iso σ2 :⇐⇒ ∀A ∈ V (σ1(A) ∼= σ2(A)).

Since σ1 ∼V σ2 is equivalent to σ1(A) = σ2(A), the relation ∼V is a subrelation of ∼V −iso.
The relation ∼V −iso is in general not a congruence relation on Hyp(τ). As in the case of
∼V , the set P (V ) of all proper hypersubstitutions is a union of equivalence classes with
respect to ∼V −iso (i.e. P (V ) is ∼V −iso-saturated). In some cases, for instance for varieties
of bands, the relations ∼V and ∼V −iso collapse. In general we have ∼V ⊆∼V −iso. The
cardinality dp(V ) := |P (V )/∼V | which is called the degree of proper hypersubstitutions of
V measures the degree of invariance of a variety V under application of hypersubstitutions.
In [4] we introduced the degree dp(V ) of proper hypersubstitutions as well as isdp(V ) :=
|P (V )/ ∼V −iso |, the isomorphism degree of proper hypersubstitutions. The inclusion
∼V ⊆∼V −iso implies dp(V ) ≥ isdp(V ). In [5] (see also [1]) D. Schweigert introduced the
concept of a fluid variety.

Definition 1.1. A variety V is called fluid if the following implication is satisfied for every
algebra A ∈ V and every σ ∈ Hyp(τ):

σ(A) ∈ V =⇒ σ(A) ∼= A. (F1)

This means that a fluid variety contains no proper derived algebra. The following simple
consequences are easy to prove:

Proposition 1.2. ([5],[4])

(i) Let V be a fluid variety of type τ . Then P (V ) = [σid]∼V −iso , i.e. isdp(V ) = 1.

(ii) Let V be a solid variety of type τ . Then V is fluid if and only if P (V ) = Hyp(τ) =
[σid]∼V −iso , i.e. if isdp(V ) = 1.

In [5] the following was proved:

Theorem 1.3. Every subvariety of a fluid variety is fluid.

In the next sections we want to generalize the concept of a fluid variety in several
directions.

2 N-Fluid Varieties We define n-fluid varieties as follows:

Definition 2.1. Let n ≥ 1 be a natural number. A variety V of type τ is called n-fluid if
there are hypersubstitutions σ1, . . . , σn ∈ P (V ) with σi �∼V −iso σj for 1 ≤ i < j ≤ n such
that for all A ∈ V and for all σ ∈ Hyp(τ) the following implication holds:

σ(A) ∈ V =⇒ ∃k ∈ {1, . . . , n} such that σ(A) ∼= σk(A). (Fl)

Fluid varieties are 1-fluid. Therefore this new concept generalizes that of a fluid variety.
By definition, for any n-fluid variety V we have isdp(V ) ≥ n. But we get:

Proposition 2.2. For any n-fluid variety V with dp(V ) = n we have isdp(V ) = n.

Proof. We have n = dp(V ) ≥ isdp(V ) ≥ n and thus isdp(V ) = n.
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The converse of Proposition 2.2 is in general not true. But for a solid variety we have:

Proposition 2.3. If V is a solid variety with isdp(V ) = n, then V is n-fluid.

Proof. Because of isdp(V ) = n there are hypersubstitutions σ1, . . . , σn such that

P (V ) =
n⋃

i=1

[σi]∼V −iso and σi �∼V −iso σj for 1 ≤ i < j ≤ n. Since V is solid, we have

P (V ) = Hyp(τ) =
n⋃

i=1

[σi]∼V −iso . Therefore for every hypersubstitution σ ∈ Hyp(τ) there

is an integer k ∈ {1, . . . , n} such that σ ∼V −iso σk. Thus, for every A ∈ V we have
σ(A) ∼= σk(A). Since σ(A) ∈ V for every A ∈ V when V is solid, the implication (Fl) is
satisfied. This shows that V is n-fluid.

Now we want to prove that the proper hypersubstitutions from Definition 2.1 may be taken
to be hypersubstitutions of special kind. A projection hypersubstitution is a mapping
which maps each operation symbol of the type to a variable, i.e. for every i ∈ I there is an
integer j with 1 ≤ j ≤ ni such that σ(fi) = xj . Non-trivial algebras derived by projection
hypersubstitutions are called projection algebras. All fundamental operations of a projection
algebra are projections, i.e. mappings eni,A

j : Ani −→ A satisfying eni,A
j (a1, . . . , ani) = aj

for 1 ≤ j ≤ ni. Let RAτ be the variety of type τ generated by the set of all projection
algebras of this type. It is well-known (see e.g. [2]) that RAτ (which is called the variety
of rectangular algebras) is the least non-trivial solid variety of type τ .
If our type is (1, . . . , 1) then there is exactly one projection hypersubstitution for the type.
Therefore we now consider types with at least one symbol of arity at least two, where more
than one projection hypersubstitution exist. Then we have

Lemma 2.4. Let V be a non-trivial variety of type τ = (ni)i∈I with at least one operation
symbol of arity > 1 and let σ, σ′ be distinct projection hypersubstitutions of this type. Then
σ �∼V −iso σ′.

Proof. Since σ and σ′ are distinct projection hypersubstitutions, we have σ(fj) =
xk(j) �= xl(j) = σ′(fj) for at least one j ∈ I with nj > 1 and k(j), l(j) ∈ {1, . . . , nj}. Since
V is non-trivial, it contains a non-trivial algebra B ∈ V , and σ(B), and σ′(B) are non-trivial
projection algebras. Since the set B has cardinality greater than one, we can choose some
elements a �= b ∈ B. Suppose that σ ∼V −iso σ′. Then there is an isomorphism h from σ(B)
onto σ′(B). Consider the nj-tuple (a, . . . , a, b, a, . . . , a) where ai = a for all i ∈ {1, . . . , nj}\

{l(j)} and al(j) = b.

Then h(a) = h(enj ,B

k(j) (a, . . . , a, b, a, . . . , a))
= h(σ(fj)B(a, . . . , a, b, a, . . . , a))
= σ′(fj)B(h(a), . . . , h(a), h(b), h(a), . . . , h(a))
= e

nj,B

l(j) (h(a), . . . , h(a), h(b), h(a), . . . , h(a))
= h(b)

which is a contradiction since h is bijective. Therefore σ �∼V −iso σ′.

We show next that if V is a non-trivial solid variety, then the identity hypersubstitution
σid is not ∼V −iso-related to any projection hypersubstitution.

Proposition 2.5. Let V be a non-trivial solid variety of type τ = (ni)i∈I with at least one
operation symbol of arity > 1 and let σ be a projection hypersubstitution. Then σ �∼V −iso

σid.

Proof. Since there is a j ∈ I such that nj > 1, there is a projection hypersubstitution
σ′ which is different from the projection hypersubstitution σ. This means that there are
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integers k(j), l(j) ∈ {1, . . . , nj}, k(j) �= l(j), such that σ(fj) = xk(j) �= xl(j) = σ′(fj). Since
V is solid, we obtain σ, σ′ ∈ P (V ). Suppose that σ ∼V −iso σid. Then σ(A) ∼= A for each
A ∈ V implies that every algebra A ∈ V is isomorphic to a projection algebra and for
every i ∈ I we have A |= fi(x1, . . . , xni) ≈ xk(i) and thus fi(x1, . . . , xni) ≈ xk(i) ∈ IdV .
Since σ′ is proper, we get σ̂′[fi(x1, . . . , xni)] ≈ σ̂′[xk(i)] ∈ IdV and then also xl(j) ≈
σ̂′[fj(x1, . . . , xnj )] ≈ σ̂′[xk(j)] = xk(j) ∈ IdV , a contradiction since V is non-trivial.

One more property of an n-fluid variety can be expressed by the following proposition.

Proposition 2.6. Let V be a variety of type τ containing pairwise different projection
algebras A1, . . . ,Am, i.e. with different sequences of projections as fundamental operations
and assume that isdp(V ) = m + 1. Then V is (m + 1)-fluid if and only if V is not k-fluid
for all k ≤ m and there are projection hypersubstitutions σ1, . . . , σm ∈ P (V ) such that for
any A ∈ V and σ ∈ Hyp(τ):

σ(A) ∈ V =⇒ σ(A) ∼= σk(A) (∗)

for some k ∈ {0, 1, . . . , m} where σ0 := σid.

Proof. Since V contains m pairwise different projection algebras, we have m ≥ 2. There-
fore type τ has at least one operation symbol of arity > 1. Assume that V is not k-fluid for
all k ≤ m and that there are projection hypersubstitutions σ1, . . . , σm ∈ P (V ) which satisfy
condition (∗) for all A ∈ V and for all σ ∈ Hyp(τ). Then Lemma 2.4 implies σi �∼V −iso σj

for all i, j ∈ {1, . . . , m} with i �= j. Since m ≥ 2, there are at least two different V -proper
projection hypersubstitutions. This shows that σi �∼V −iso σid for all i ∈ {1, . . . , m}. There-
fore σi �∼V −iso σj for all i, j ∈ {0, 1, . . . , m} such that i �= j. Because of (∗) the variety V
is (m + 1)-fluid.
Assume now that V is (m + 1)-fluid. Since A1, . . . ,Am are projection algebras, for each
i ∈ I, there are k1(i), . . . , km(i) ∈ {1, . . . , m} such that fAl

i (a1, . . . , ani) = akl(i) for all
a1, . . . , ani ∈ Al and 1 ≤ l ≤ m. Clearly, Mod{fi(x1, . . . , xni) ≈ xkl(i) | i ∈ I} =
ModIdAl ⊆ V for all l ∈ {1, . . . , m}. Let l ∈ {1, . . . , m} and let σkl

be the hypersub-
stitution defined by σkl

(fi) = xkl(i) for all i ∈ I. Then σkl
(B) ∈ Mod{fi(x1, . . . , xni) ≈

xkl(i) | i ∈ I} for all B ∈ V . Therefore σkl
(B) ∈ V for all B ∈ V and σkl

∈ P (V ).
Since A1, . . . ,Am are pairwise different projection algebras, the variety V is non-trivial
and the hypersubstitutions σkp , σkq are different for all p, q ∈ {1, . . . , m} with p �= q.
Lemma 2.4 implies σkp �∼V −iso σkq for all p, q ∈ {1, . . . , m} with p �= q. Next we
will show that ModIdAl ⊂ V for all l ∈ {1, . . . , m}. Suppose that there is an inte-
ger l ∈ {1, . . . , m} such that Mod{fi(x1, . . . , xni) ≈ xkl(i) | i ∈ I} = ModIdAl = V .
Then fi(x1, . . . , xni) ≈ xkl(i) ∈ IdV for all i ∈ I. For p ∈ {1, . . . , m} \ {l} there is
an integer j ∈ I such that σkp(fj) = xkp(j) �= xkl(j) = σkl

(fj). Since V is non-trivial,
this implies that σ̂kp [fj(x1, . . . , xnj )] ≈ σ̂kp [xkl(j)] �∈ IdV . So σkp �∈ P (V ), a contra-
diction. Therefore, ModIdAl ⊂ V for all l ∈ {1, . . . , m}. This means that there are
algebras Bl ∈ V \ ModIdAl for all l ∈ {1, . . . , m}. We have σkl

(Bl) �∼= Bl = σid(Bl) for
all l ∈ {1, . . . , m}. Therefore σkl

�∼V −iso σid. Since isdp(V ) = m + 1, we obtain that
P (V ) = [σid]∼V −iso ∪ [σk1 ]∼V −iso ∪ . . . ∪ [σkm ]∼V −iso and we may take the set M consisting
of these m+1 different hypersubstitutions to be a set of representatives of the m+1 classes
with respect to ∼V −iso. Since V is (m + 1)-fluid, M satisfies the implication (Fl). This
shows that condition (*) is satisfied.

For minimal varieties we have:

Proposition 2.7. If V is a minimal variety and dp(V ) = n, then there is a natural number
m with m ≤ n such that V is m-fluid.
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Proof. We consider the following two cases for hypersubstitutions.
case 1: σ �∈ P (V ). Then there is an identity s ≈ t ∈ IdV such that σ̂[s] ≈ σ̂[t] �∈ IdV . Since
V is minimal, so IdV = IdA for all non-trivial algebras A ∈ V . Therefore σ̂[s] ≈ σ̂[t] �∈ IdA
for all non-trivial algebras A ∈ V . So σ(A) �∈ V for all non-trivial algebras A ∈ V . If A
is trivial, then σ(A) is also trivial and σ(A) ∼= A. This means that the implication (Fl) is
satisfied.
case 2: σ ∈ P (V ). From dp(V ) = n we get that there are σ1, . . . , σn ∈ P (V ) with |P (V )/∼V

| = |{[σ1]∼V , . . . , [σn]∼V }| = n. But ∼V ⊆∼V −iso, so |P (V )/∼V −iso | ≤ |P (V )/∼V |; i.e.
there is an m ∈ N with m ≤ n and |P (V )/∼V −iso | = m. Hence, there are σ′

1, . . . , σ′
m ∈

{σ1, . . . , σn} with P (V )/∼V −iso= {[σ′
1]∼V −iso , . . . , [σ′

m]∼V −iso}. From σ ∈ P (V ) we get
that there is a k ∈ {1, . . . , m} with σ ∼V −iso σ′

k. So σ(A) ∼= σ′
k(A) for all A ∈ V . This

means that the implication (Fl) is satisfied.

We define the following generalization of n-fluidity.

Definition 2.8. A variety V of type τ is weakly fluid if for all A ∈ V and for all σ ∈ Hyp(τ)
the following implication holds:

σ(A) ∈ V =⇒ ∃σ′ ∈ P (V ) (σ(A) ∼= σ′(A)).

Clearly every solid variety is weakly fluid. If V is n-fluid, (n ≥ 1), then it is also weakly
fluid.

Proposition 2.9. Let V be a weakly fluid variety of type τ = (ni)i∈I with at least one
operation symbol of arity > 1 and P (V ) ⊆ {σid} ∪ {σ ∈ Hyp(τ) | σ is a projection
hypersubstitution}. Then V is n-fluid iff dp(V ) = n.

Proof. Clearly, if dp(V ) = n, then V is n-fluid since V is a weakly fluid variety and from
P (V ) ⊆ {σid} ∪ {σ ∈ Hyp(τ) | σ is a projection hypersubstitution }, we have

|P (V )/∼V −iso | = |P (V )/∼V |
because the projection hypersubstitutions are all pairwise non-equivalent with respect to
∼V −iso. Otherwise, if σ ∼V −iso σid where σ is a projection hypersubstitution defined by
σ(fi) = xk(i) for all i ∈ I, then A ∼= σ(A) for all A ∈ V and σ(A) |= fi(x1, . . . , xni) ≈ xk(i),
so fi(x1, . . . , xni) ≈ xk(i) ∈ IdV there follows σ̂id[fi(x1, . . . , xni)] = fi(x1, . . . , xni) ≈
xk(i) = σ̂[fi(x1, . . . , xni)]. Therefore σ ∼V σid. Conversely, assume that V is n-fluid. Then
isdp(V ) ≥ n and there are σ1, . . . , σn ∈ P (V ) which satisfy the condition (Fl). Now we
show that dp(V ) = n.
case 1: n = 1. This means that σ1 satisfies the implication (Fl). Let σ ∈ P (V ). Then
σ(A) ∈ V for all A ∈ V implies σ(A) ∼= σ1(A) by (Fl). So σ ∼V −iso σ1. Therefore
P (V )/∼V −iso= {[σ1]∼V −iso}, i.e. dp(V ) = 1.
case 2: n �= 1. Now we show that σid ∈ {σ1, . . . , σn}. Suppose that σid �∈ {σ1, . . . , σn}.
From P (V ) ⊆ {σid} ∪ {σ ∈ Hyp(τ) | σ is a projection hypersubstitution }, we get that σi,
i ∈ {1, . . . , n} is a projection hypersubstitution. Since σid �∈ {σ1, . . . , σn}, for each A ∈ V ,
A = σid(A) ∼= σi(A) for some i ∈ {1, . . . , n} by (Fl). Because σi and σj , i �= j are different
projection hypersubstitutions, we know that V cannot be 1-fluid since different projection
algebras are not isomorphic. This means that V is a variety consisting only of projection
algebras and at least two elements of V are projection algebras which have different sets of
projections as fundamental operations, a contradiction because direct products of different
projection algebras are not projection algebras. Therefore σid ∈ {σ1, . . . , σn}. Now we show
that |P (V )/∼V −iso | = n. Suppose that |P (V )/∼V −iso | > n. Then there is a projection
hypersubstitution σ ∈ P (V ) \ {σ1, . . . , σn} which satisfies the following condition:
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∀A ∈ V ∃i ∈ {1, . . . , n} (σ(A) ∼= σi(A)).

From σ �∼V −iso σid we get that there is a non-trivial algebra A ∈ V with σ(A) �∼= σid(A).
There follows that there is a projection hypersubstitution σ′ with σ(A) ∼= σ′(A), a contra-
diction because σ(A), σ′(A) are distinct projection algebras. Therefore |P (V )/∼V −iso | = n
implies that |P (V )/∼V | = n, i.e. dp(V ) = n.

3 N-Fluid Varieties of Bands In this section for each variety V of bands we want to
determine the integer n for which V is n-fluid.

First of all we show that the variety of all semigroups is not weakly fluid. Consider the
variety NB = Mod{x1(x2x3) ≈ (x1x2)x3, x2

1 ≈ x1, x1x2x3x1 ≈ x1x3x2x1} of all normal
bands. The two-generated free algebra over NB contains precisely the blocks [x1]IdNB,
[x2]IdNB, [x1x2]IdNB, [x2x1]IdNB, [x1x2x1]IdNB and [x2x1x2]IdNB. We determine the al-
gebra derived from FNB({x1, x2}) by the hypersubstitution σx1x2x1 which maps the binary
operation symbol to the binary term x1x2x1. Since the variety NB is solid, we have
σ(FNB({x1, x2})) ∈ NB for every σ ∈ Hyp(τ). Therefore σx1x2x1(FNB({x1, x2})) be-
longs to the variety of all semigroups. Obviously, there are exactly the following proper
hypersubstitutions over the variety of all semigroups: σid, σx1 , σx2 , σx2x1 . It is easy to
see that σx1x2x1(FNB({x1, x2})) cannot be isomorphic to one of the algebras derived from
FNB({x1, x2}) by one of the proper hypersubstitutions σid, σx1 , σx2 , σx2x1 .
We mentioned already that in general the relation ∼V is included in ∼V −iso. If we have
equality, then we obtain

Proposition 3.1. Let V be a weakly fluid variety of type τ and ∼V =∼V −iso. If dp(V ) = n,
then V is n-fluid.

Proof. Assume that dp(V ) = n. Then there are σ1, . . . , σn ∈ P (V ) with σi �∼V σj for
1 ≤ i < j ≤ n and by ∼V =∼V −iso we get σi �∼V −iso σj for 1 ≤ i < j ≤ n. Because of
dp(V ) = n and ∼V =∼V −iso, the quotient set P (V )/∼V can be written as P (V )/∼V −iso=
{[σi]∼V −iso | 1 ≤ i ≤ n}. Let A ∈ V and σ ∈ Hyp(τ) such that σ(A) ∈ V . Since V is
weakly fluid, there is a σ′ ∈ P (V ) such that σ(A) ∼= σ′(A). But σ′ belongs to one of the n
blocks of P (V ) with respect to ∼V −iso. Therefore, there is an i with 1 ≤ i ≤ n such that
σ′ ∼V −iso σi and this means σ′(A) ∼= σi(A). By transitivity we have σ(A) ∼= σi(A). This
shows that V is n-fluid.

In [4] the following was proved:

Proposition 3.2. Let V be a variety of bands. Then ∼V =∼V −iso.

Now we want to find out which varieties of bands satisfy also the second assumption
of Proposition 3.1, i.e. which varieties of bands are weakly fluid. For the following inves-
tigations we need the lower part of the lattice of all varieties of bands which is pictured
below
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RQNLQN

RegB

 

TR = Mod{x1 ≈ x2},
LZ = Mod{x1x2 ≈ x1},
RZ = Mod{x1x2 ≈ x2},
SL = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2 ≈ x2x1},
RB = Mod{x1(x2x3) ≈ (x1x2)x3 ≈ x1x3, x1

2 ≈ x1},
NB = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2x3x4 ≈ x1x3x2x4},
RegB = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2x1x3x1

≈ x1x2x3x1},
LN = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2x3 ≈ x1x3x2},
RN = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2x3 ≈ x2x1x3},
LReg = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2 ≈ x1x2x1},
RReg = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2 ≈ x2x1x2},
LQN = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2x3 ≈ x1x2x1x3},
RQN = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2x3 ≈ x1x3x2x3}.

Proposition 3.3. A variety V of bands is weakly fluid iff V ⊆ NB or V ∈
{LReg, RReg, RegB}.

Proof. The trivial variety TR and the varieties RB, NB and RegB are solid (see
[1]) and therefore weakly fluid. It is easy to check that the varieties LZ, RZ and
SL are weakly fluid. We consider the cases V �⊆ RegB and V ⊆ RegB. As-
sume that V �⊆ RegB. Let FNB({x1, x2}) be the two-generated free algebra over
NB. Since NB is solid, the derived algebra σx1x2x1(FNB({x1, x2})) where σx1x2x1 is
the hypersubstitution mapping the binary operation symbol to the term x1x2x1, be-
longs to NB. Since V �⊆ RegB, we have NB ⊆ V , i.e. σx1x2x1(FNB({x1, x2})) ∈
V . We have P (V )/ ∼V ⊆ {[σx1 ]∼V , [σx2 ]∼V , [σx1x2 ]∼V , [σx2x1 ]∼V } (see [4]). More-
over, the algebra σx1x2x1(FNB({x1, x2})) is not isomorphic to one of the alge-
bras σx1(FNB({x1, x2})), σx2(FNB({x1, x2})), σx1x2(FNB({x1, x2})), σx2x1(FNB({x1, x2})).
This shows that V is not weakly fluid. Now we suppose that V ⊆ RegB and
that V is different from a solid and from a fluid variety (see [4]). Then V ∈
{LN, RN, LReg, RReg, LQN, RQN}. If V = LQN or V = RQN , then NB ⊆ V and
FNB({x1, x2})} ∈ V . Since NB is solid, the algebra σx2x1(FNB({x1, x2})) belongs to
NB ⊆ V . In this case we have P (V )/ ∼V = {[σx1 ]∼V , [σx2 ]∼V , [σx1x2 ]∼V , [σx1x2x1 ]∼V }
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for V = LQN and P (V )/∼V = {[σx1 ]∼V , [σx2 ]∼V , [σx1x2 ]∼V , [σx2x1x2 ]∼V } for V = RQN .
Then we have σx2x1(FNB({x1, x2})) �∼= σt(FNB({x1, x2})) for t ∈ {x1, x2, x1x2, x1x2x1}
and t ∈ {x1, x2, x1x2, x2x1x2} in the second case. This shows that V is not weakly
fluid. Suppose that V = LN or V = LReg. Let σ ∈ Hyp(2) and A ∈ V with
σ(A) ∈ V . We have Hyp(2)/ ∼V = {[σx1 ]∼V , [σx2 ]∼V , [σx1x2 ]∼V , [σx2x1 ]∼V }. If σ ∼V σx1

or σ ∼V σx1x2 ∼V σx1x2x1 , then σ(A) ∼= σx1(A) or σ(A) ∼= σx1x2(A) ∼= σx1x2x1(A)
where both hypersubstitutions σx1 and σx1x2 belong to P (V ). If σ ∼V σx2 , then
σ(A) ∼= σx2(A) ∈ RZ, i.e. σx2(A) ∈ RZ ∩ V = TR. Thus A is the trivial algebra
and then σx2(A) ∼= σx1x2(A), i.e. σ(A) ∼= σx1x2(A). If σ ∼V σx2x1 ∼V σx2x1x2 , then
σ(A) ∼= σx2x1(A), i.e. σx2x1(A) ∈ V . Since x1x2 ≈ x1x2x1 ∈ IdV , this equation is also an
identity in A and then σ̂x2x1 [x1x2] ≈ σ̂x2x1 [x1x2x1] ∈ IdA. Thus x1x2x1 ≈ x2x1 ∈ IdA
and A ∈ RReg. This shows that A ∈ RReg ∩LReg = SL. Since σx2x1 ∼SL σx1x2 , we have
σx2x1(A) ∼= σx1x2(A) and consequently, σ(A) ∼= σx1x2(A). This shows that V is weakly
fluid. Dually we can show that both varieties RN and RReg are weakly fluid.

By Proposition 3.3 precisely the following varieties of bands are weakly fluid:
TR, LZ, RZ, SL, RB, LN, RN, NB, LReg, RReg and RegB.
In [4] the following theorem was proved:

Theorem 3.4. Let V be a variety of bands. Then
dp(V ) = 1 iff V ∈ {TR, LZ, RZ, SL},
dp(V ) = 2 iff V ∈ {LN, RN, LReg, RReg},
dp(V ) = 3 iff V is not dual solid and V �∈ {LZ, RZ, LN, RN, LReg,

RReg, LQN, RQN},
dp(V ) = 4 iff V is dual solid, and either V �∈ {TR, SL, NB, RegB}

or V ∈ {LQN, RQN},
dp(V ) = 6 iff V ∈ {NB, RegB}.

Then we obtain the following result.

Theorem 3.5. The varieties TR, LZ, RZ and SL are fluid. LN, RN, LReg,
RReg are 2-fluid. NB, RegB are 6-fluid. For all other varieties V of bands (i.e. if V �⊆
RegB or V ∈ {LQN, RQN}) there is no natural number n ≥ 1 such that V is n-fluid.

4 Some Generalizations of N-Fluidity In section 2 we defined weakly fluid varieties
as a generalization of the concept of an n-fluid variety. If instead of P (V ) in the definition
of a weakly fluid variety we use a set Σ of hypersubstitutions, then we get the concept of a
Σ-fluid variety.

Definition 4.1. Let Σ be a set of hypersubstitutions of type τ . A variety V of type τ is
called Σ-fluid if for all A ∈ V and all σ ∈ Hyp(τ) the implication

σ(A) ∈ V =⇒ σ(A) ∼= σ′(A) for some σ′ ∈ Σ

holds.

Clearly the concept of a Σ-fluid variety generalizes that of a fluid variety since fluid
varieties are precisely {σid}-fluid. Weakly fluid varieties are Σ-fluid for Σ = P (V ) and
n-fluid varieties are Σ-fluid for an n-element subset {σ1, . . . , σn} ⊆ P (V ). If a variety V is
Σ-fluid and if W ⊆ V is a subvariety, then W is also Σ-fluid. For this, let σ(A) ∈ W , then
σ(A) ∈ V and there is a hypersubstitution σ′ ∈ Σ such that σ(A) ∼= σ′(A).

Proposition 4.2. Let V be a variety of type τ and let σ′ be a projection hypersubstitution
of type τ . If V is {σid, σ

′}-fluid, but not fluid, then V is 2-fluid.
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Proof. Since V is not fluid, it is not {σid}-fluid and there is an algebra A ∈ V and a
hypersubstitution σ ∈ Hyp(τ) with σ(A) ∈ V , but σid(A) �∼= σ(A), i.e. with σ �∼V −iso σid.
Because of ∼V ⊆∼V −iso we get σ �∼V σid. Since V is {σid, σ

′}-fluid and σid(A) �∼= σ(A), we
get σ(A) ∼= σ′(A). But then σ′(A) ∈ V . Let B ∈ V with the cardinality a. Then we consider
a direct product C of the algebra σ′(A) with cardinality ≥ a. There is a surjective mapping
α : C → B and for i ∈ I there is a ki ∈ {1, . . . , ni} with α(fC

i (a1, . . . , ani)) = α(aki ) =
f

σ′(B)
i (α(a1), . . . , α(ani)). Thus α : C → σ′(B) is a homomorphism, i.e. σ′(B) ∈ V . This

shows σ′ ∈ P (V ). Consequently, V is 2-fluid.

As a corollary of Proposition 2.6 for m = 1 we get:

Proposition 4.3. Let V be a 2-fluid variety of type τ = (ni)i∈I . Assume that V con-
tains a non-trivial projection algebra A = (A; (fA

i )i∈I). Then V is {σid, σ
′}-fluid for some

projection hypersubstitution σ′.

Not every weakly fluid variety must be n-fluid for some natural number n ≥ 1 since
P (V ) need not be finite.

Definition 4.4. Let τ be a finite type and let ℵ0 be the cardinal number of the set of
natural numbers. A weakly fluid variety of type τ is called ℵ0-fluid if it is not n-fluid for
any natural number n ≥ 1.

With this definition we have:
A variety V of type τ is weakly fluid iff it is k-fluid for some k ∈ N

∗ ∪ {ℵ0} where N
∗ :=

N \ {0}. It is well-known and easy to see ([4]) that for a finite type |Hyp(τ)| ≤ ℵ0. Then
|P (V )| ≤ ℵ0.
We will give an example of a ℵ0-fluid variety.

Proposition 4.5. Let τ = (ni)i∈I be a finite type with ni ≥ 2 for some i ∈ I. Then the
variety Alg(τ) of all algebras of type τ is ℵ0-fluid.

Proof. Since Alg(τ) is a solid variety, it is weakly fluid. In order to prove that Alg(τ)
is ℵ0-fluid, we have to check that there is no natural number n ∈ N

∗ such that Alg(τ) is
n-fluid. For k ∈ N

∗ we define a hypersubstitution σk ∈ Hyp(τ) in the following way:
Let x

(ni−1)r+1
2 be defined inductively by x

(ni−1)0+1
2 := x2, x

(ni−1)r+1
2 :=

fi(x
(ni−1)(r−1)+1
2 , x2, . . . , x2) for r ≥ 1, r ∈ N. Then σk is defined by σk(fi) :=

fi(x1, x
(ni−1)(k−1)+1
2 , x2, . . . , x2), σk(fj) := x1 for all j ∈ I \ {i}. Let V be the variety

of type τ defined by the following identities: fj(x1, . . . , xnj ) ≈ x1 for j ∈ I \ {i} and
fi(x1, . . . , fi(xr , . . . , xr+ni−1), . . . , x2ni−1) ≈ fi(x1, . . . , fi(xs, . . . , xs+ni−1), . . . , x2ni−1)
for 1 ≤ r < s ≤ ni. Let S be the free one-generated algebra with respect to V , freely
generated by the element a. Assume that Alg(τ) is n-fluid for some natural number n ≥ 1.
Then there are 1 ≤ k < l ∈ N such that σk(S) ∼= σl(S) since {σi(S) | 1 ≤ i ∈ N} ⊆ Alg(τ).
So, there is an isomorphism h : σk(S) −→ σl(S) with apm := h(a(ni−1)m+1) for 0 ≤ m < k
where a(ni−1)m+1 is defined as x(ni−1)m+1 before 0 ≤ m < k. By induction on n ∈ N we
show that for 0 ≤ m < k there holds:

h(an(ni−1)k+1+m(ni−1)) = apm+n(ni−1)lp0 .

Indeed, for n = 0 we have h(a1+m(ni−1)) = apm by definition. Suppose, the statement holds
for n = p. Then for n = p + 1 we have h(a(p+1)(ni−1)k+1+m(ni−1))
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= h(σk(fi)(ap(ni−1)k+1+m(ni−1), a, . . . , a)
= σl(fi)(h(ap(ni−1)k+1+m(ni−1)), h(a), . . . , h(a))
= σl(fi)(apm+p(ni−1)lp0 , ap0 , . . . , ap0)
= apm+p(ni−1)lp0+(ni−1)lp0

= apm+(p+1)(ni−1)lp0 .

This shows that h(S) = {apm+n(ni−1)lp0 | 0 ≤ m < k, n ∈ N}. Since h(S) = S, we have
{a1, a(ni−1)+1, . . . , al(ni−1)+1} ⊆ S. Since pm + n(ni − 1)lp0 > (ni − 1)l + 1 for all m ∈
{0, . . . , k − 1} and any n ∈ N

∗ we have {a1, a(ni−1)+1, . . . , al(ni−1)+1} ⊆ {ap0 , . . . , apk−1},
i.e. l ≤ k, a contradiction. This shows σk(S) �∼= σl(S), a contradiction.
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