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Abstract. Weakly positive operators was introduced by Wigner in 1968.
In this note, Wigner’s operators are illuminated by the light of the recent
knowledge: (1) Wang’s theorem which is a step to Reid’s inequality is given
a new simple proof with Wigner’s notion, (2) the Kantorovich inequality is
extended to one for weakly positive operators which is nothing but Bourin’s
recent norm inequality, (3) the Carlin-Noble definition of the square root
of a weakly positive operator is justified by showing independence of its
factorization, and (4) the Anderon-Trapp solution to the Riccati equation
is considered as a consequence of the Fujii-Fujii theorem on Kubo’s identity
on operator means.

1. Wigner [15] defined a (bounded linear) operator T on a Hilbert space
H to be weakly positive if T is similar to a positive invertible operator D by a
positive operator X, i.e.,

T = XDX−1.(1)

If T satisfies (1), then we put A = X2 and Z = X−1DX−1, and have a
factorization

T = AZ.(2)

of T by two positive invertible operators A, Z > 0. (An operator B is denoted
by B > 0 if B is positive invertible.) Clearly this identity (2) is, conversely,
equivalent to the condition for T to be a weakly positive operator. Denoting
the spectrum of T by σ(T ), we see, from (1), that

σ(T ) = σ(XDX−1) = σ(D) ⊂ R
+(= [0,∞)).

Furthermore since D > 0, there are positive scalars m and M such that
mI ≤ D ≤ MI, or σ(T ) ⊂ [m,M ].

An operator T is convexoid if the closure W̄ (T ) of its numerical range W (T )
is equal to the convex hull coσ(T ) of σ(T ). Now we have the following:

Proposition 1. If a weakly positive operator T = AZ with A, Z > 0 is
convexoid, then A and Z commute each other, and so T itself is positive.
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Proof. Since T is convexoid and σ(T ) ⊂ R
+, we see that W̄ (T ) = coσ(T ) ⊂

R
+, Hence T is positive and AZ = ZA.

We remark that in the above proposition we need not assume invertibility
of A and Z, so that we need only positivity of both operators, for then we have
σ(T ) ⊂ σ(A1/2ZA1/2)∪{0} ⊂ R

+. Let us call an operator T = AZ an extended
weakly positive operator if A and Z are simply assumed to be positive.

We here give an example of a weakly positive operator T which is non-
normaloid, i.e., ‖T‖ > r(T ) :

T :=

[
2 1
2 2

]
=

[
1 0
0 2

] [
2 1
1 1

]

is weakly positive, since T is a product of two positive matrices. By a calcu-
lation we have ‖T‖ = 3.56... > 3.41... = r(T ).

Reid’s inequality is popular by Halmos’ book [7, Problem � 82]. Wang [14]
gave another proof of the inequality; his proof depends on the following fact:

Theorem 2. If A ≥ 0 and AB ≥ 0 for an operator B with ‖B‖ ≤ 1, then
A ≥ AB.

Proof. Let Aε = A + εI (ε > 0) and put Tε = (Aε)
−1AB. Then Tε is extended

weakly positive (or weakly positive if B is invertible), so that σ(Tε) lies in R
+,

as remarked after Proposition 1. Further, since

‖Tε‖ ≤ ‖(Aε)
−1A‖‖B‖ ≤ 1,

we see that σ(Tε) ⊂ [0, 1]. Hence

σ(A−1/2
ε ABA−1/2

ε ) = σ(Tε) ⊂ [0, 1].

This implies A
−1/2
ε ABA

−1/2
ε ≤ 1, or AB ≤ AεI. Tending ε → 0, we have the

desired inequality.

2. Bourin [2] presented an interesting norm inequality for a weakly positive
operator which is a substantial generalization of the celebrated Kantorovich
inequality for a positive operator, as follows:

Theorem 3 ([2], [5]). Let T = AZ for positive invertible operatos A and Z
with mI ≤ Z ≤ MI for some positive scalars m < M. Then

‖T‖2 ≤ K(m, M)r(T )2 (r(T ) is the spectral radius of T )(3)

where K(m, M) =
(M + m)2

4Mm
is the Kantorovich constant of Z with respect

to m and M.
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We here give a simple proof of the theorem by using the Kantorovich in-
equality [2], [6]: Let x ∈ H be a unit vector and let

Φ(X) = (AXAx, x)/‖Ax‖2.

Then by the Kantorovich inequality (say, [6, Theorem 1.32]) we have

Φ(Z2) ≤ KΦ(Z)2 (K = K(m, M)),

that is,

(AZ2Ax, x)

‖Ax‖2
≤ K

(AZAx, x)2

‖Ax‖4
or (AZ2Ax, x) ≤ K

(AZAx, x)2

‖Ax‖2
.

By the identity r(A1/2ZA1/2) = r(AZ) and Cauchy-Schwarz inequality, we
have

(AZAx, x) = (A1/2ZA1/2 · (A1/2x), A1/2x) ≤ ‖A1/2ZA1/2‖‖A1/2x‖2

= r(A1/2ZA1/2)(Ax, x) ≤ r(AZ)‖Ax‖.
Hence

(AZ2Ax, x) ≤ Kr(AZ)2 (for all unit vectors x ∈ H),

which implies

‖AZ‖2 = ‖AZ2A‖ ≤ Kr(AZ)2.

In (3), the constant K(m, M) of the right hand side depends only on the
factor Z of T = AZ, so that we may give a better (i.e., smaller) constant
instead if we obtain another factorization of T. Concerning this, first we show
the following:

Lemma 4. Let T = AZ be a weakly positive operator with A, Z > 0. Assume
that

sA + tZ−1 > 0, or equivalently, sI + tA−1/2Z−1A−1/2 > 0

for some real scalars s and t. Then if we put

Z1 = (sA + tZ−1)−1 and A1 = AZZ−1
1 ,

we have a new represention T = A1Z1 of two positive operators A1 and Z1.

Proof. It suffices to show that A1 is positive. From the definition of A1

A1 = AZZ−1
1 = AZ(sA + tZ−1)

= sAZA + tA = A1/2(sA1/2ZA1/2 + tI)A1/2

and

sA1/2ZA1/2 + tI = A1/2ZA1/2(sI + tA−1/2Z−1A−1/2) > 0.

Hence A1 > 0.
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Example. Let

T = AZ =

[
2 1
2 2

]
,

where

A =

[
1 0
0 2

]
and Z =

[
2 1
1 1

]
.

Then we can see that
3 −√

5

2
I ≤ Z ≤ 3 +

√
5

2
I and KZ = K((3−√

5)/2, (3+√
5)/2) = 9/4 is the Kantorovich constant to the factorization. Now to obtain

a smaller Kantorovich constant, following the lemma, let (s = 1 and)

A + tZ−1 =

[
t + 1 −t
−t 2t + 2

]
> 0.

Then t has to satisfy t > −1. Put

Z1 = (A + tZ−1)−1 =

[
t + 1 −t
−t 2t + 2

]−1

=
1

t2 + 4t + 2

[
2t + 2 t

t t + 1

]
,

A1 = TZ−1
1 =

[
2 1
2 2

] [
t + 1 −t
−t 2t + 2

]
=

[
t + 2 2

2 2t + 4

]
.

Then both A1 and Z1 are positive invertible, and T = A1Z1. Since the equation

det(Z−1
1 − λI) = det(A + tZ−1 − λI)

= λ2 − (3t + 3)λ + (t2 + 4t + 2) = 0

has solutions λ1 and λ2 (λ1 < λ2) such that λ1+λ2 = 3t+3, λ1λ2 = t2 +4t+2

and λ1I ≤ Z−1
1 ≤ λ2I, we see that

1

λ2
I ≤ Z1 ≤ 1

λ1
I, so that the Kantorovich

constant of Z1 is

KZ1 = K(1/λ2, 1/λ1) = K(λ1, λ2) =
(λ1 + λ2)

2

4λ1λ2

=
(3t + 3)2

4(t2 + 4t + 2)
.

By an elementary computation KZ1 = KZ1(t) (t ≥ −1) has its minimum at
t = 0. Hence we have KZ1 = KZ1(0) = 9/8 as a better Kantorovich constant

in such a factorization of T. (For t = 0, we have T = 2

[
1 1
1 2

]
· 1

2

[
2 0
0 1

]
).

3. Pusz and Woronowicz [12] defined the geometric operator mean of two
positive operators A and B by

A1/2(A−1/2BA−1/2)1/2A1/2.

Previous to them, Carlin and Noble [3] had already defined the geometric
mean of positive matrices A and B by using the square root of the product
A−1B, which is well-defined in virtue of the spectral property of such a matrix,
i.e., weakly positive matrix. We here give a definition of the square root of a
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weakly positive operator A−1B, by which we can justify the above definition
of the geometric operator (matrix) mean by Carlin and Noble. Let us suppose
that T = A−1B is a weakly positive operator with A, B > 0. Then T is
expressed as A−1/2(A−1/2BA−1/2)A1/2, hence it is natural to ask if we can
define the square root of T = A−1B, by

T 1/2 = A−1/2(A−1/2BA−1/2)1/2A1/2.(4)

Now we shall show that T 1/2 is well-defined by (4), so that we have

A(A−1B)1/2 = A1/2(A−1/2BA−1/2)1/2A1/2 = A�B,

the last identity of which is nothing but the geometric mean introduced by
Pusz and Woronowicz [12].

Theorem 5. If T = A−1B = C−1D for A, B, C, D > 0. Then σ(T ) =
σ(A−1/2BA−1/2) = σ(C−1/2DC−1/2) and

A−1/2(A−1/2BA−1/2)1/2A1/2 = C−1/2(C−1/2DC−1/2)1/2C1/2.(5)

Moreover, generally

A−1/2f(A−1/2BA−1/2)A1/2 = C−1/2f(C−1/2DC−1/2)C1/2(6)

for any continuous function f defined on an interval containing σ(T ). Hence,
not only T 1/2 by (4) but also f(T ) by

f(T ) = A−1/2f(A−1/2BA−1/2)A1/2

are well-defined.

Proof. Put X = A−1/2BA−1/2 and Y = C−1/2DC−1/2, then from A−1B =
C−1D, we have

T = A−1/2XA1/2 = C−1/2Y C1/2,

so that for the spectrums we have σ(T ) = σ(X) = σ(Y ). For (5) and (6), note
that for all integers n

A−1/2XnA1/2 = C−1/2Y nC1/2.

Hence also, for all polynomials p,

A−1/2p(X)A1/2 = C−1/2p(Y )C1/2.

By the functional calculus we then have

A−1/2f(X)A1/2 = C−1/2f(Y )C1/2

for all continuous functions defined on an interval containing σ(T )(= σ(X) =
σ(Y )). In particular, for f(t) = t1/2, we have

A−1/2X1/2A1/2 = C−1/2Y 1/2C1/2.
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The Carlin-Noble definition of the square root of a weakly positive operator
gives a simple proof of the Anderson-Trapp theorem [1] which is closely related
to the Pedersen-Takesaki theorem [11].

Theorem 6. The Riccati equation XA−1X = B where A, B > 0 has a unique
positive solution X = A�B.

Proof. Put X = A(A−1B)1/2, then we have

XA−1X = A(A−1B)1/2A−1A(A−1B)1/2 = A(A−1B) = B,

hence X = A�B is a solution of the equation.

4. To conclude our note we must apologize that the Anderson-Trapp paper
[1] had been unavailable for us until we almost finished the note, so that we
did not know that C. W. Hoe gave the justification of the definition of the
square root of a weakly positive operator T = AB. Hence we do not state our
originality to the functional calculus for weakly positive operators.

It is regretable to state that in [4], J. I. Fujii and M. Fujii have presented
a theorem which essentially implies the Anderson-Trapp theorem [1] and also
gives a mean-theoretic view to the celebrated Pedersen-Takesaki theorem [11]
for their Radon-Nikodym theorem:

Theorem 7. ([4, Theorem 4]). The geometric mean is characterized by the
following Kubo identity: For any operator mean m,

(A�B)(Am∗B)−1(A�B) = AmB,(7)

where m∗ (Am∗B = (B−1mA−1)−1) is the dual of m according to the Kubo-
Ando theory on operator means.

If we put m = �r, i.e., AmB = A�rB = B and Am∗B = A�∗rB = A [8], then
we at once obtain the Ricatti equation from (7).

For a short proof of the theorem, note that there corresponds to an operator
mean σ the (unique) representing function f = fσ which is defined by fσ(t)I =
Iσ(tI). We easily see that f�(t) =

√
t. Now by the transformer identity, a

general property of the operator mean, i.e.,

C(AσB)C = CACσCBC (A, B, C > 0),

we can obtain, from (7),

(1�A−1/2BA−1/2)(1m∗A−1/2BA−1/2)−1(1�A−1/2BA−1/2) = 1mA−1/2BA−1/2,

by putting C = A−1/2, or

(1�D)(1m∗D)−1(1�D) = 1mD(8)
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by puttig further D = A−1/2BA−1/2. ¿From this identity we have
√

t(fm∗(t))−1
√

t = fm(t),(9)

which is equivalent to (7). We now show that (9) holds, and that g(t)(fm∗(t))−1g(t) =
fm(t) holds for all m only if g(t) =

√
t. From the general theory of operator

means we know that

fm∗(t) =
t

fm(t)
,(10)

which at once implies (9) and also the remaining assertion.

Added in Proof. 1. As stated after Proposition 1, if T = AZ with positive
operators A and Z, that is, T is an extended weakly positive operator, then
σ(T ) ⊂ R

+. Related to this fact, in [9], Nakamoto proved the following general
fact: If A or B is positive, then σ(AB) ⊂ W̄ (A)W̄ (B).

2. A very short proof of Theorem 2 was presented by the referee: From
AB ≥ 0, it follows (AB)∗ = B∗A. Hence (AB)2 = ABB∗A ≤ A2 since
‖B‖ ≤ 1, so that we have AB ≤ A by Löwner-Heinz inequality.

Acknowledgement. The authors express their hearty thanks to Professor T.
Furuta who gave a copy of Trapp’s introduction [13] on operator means by
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