ON ALGEBRAS ARISING FROM THE ELEMENTS OF A GALOIS GROUP FOR A GALOIS ALGEBRA

Goro Azumaya*, George Szeto** and Lianyong Xue***

Received February 20, 2002; revised September 2, 2005

ABSTRACT. Let B be a ring with 1 and C the center of B. It is shown that if B is a Galois algebra over R with a finite Galois group G, $J_g = \{b \in B \mid bx = g(x)b \text{ for all } x \in B\}$ for each $g \in G$, and e_g an idempotent in C such that $BJ_g = Be_g$, then the algebra B(g) generated by $\{J_h \mid h \in G \text{ and } e_h = e_g\}$ for an $g \in G$ is a separable algebra over Re_g and a central weakly Galois algebra with Galois group K(g) generated by $\{h \in G \mid e_h = e_g\}$. Moreover, $\{B(g) \mid g \in G\}$ and $\{K(g) \mid g \in G\}$ are in a one-to-one correspondence, and three characterizations of a Galois extension are also given.

1. INTRODUCTION

The Boolean algebra of the idempotents in a commutative Galois algebra plays an important role ([2],[9]). For a noncommutative Galois algebra B over a commutative ring R with a finite Galois group G and center C, and $J_q = \{b \in B \mid bx = g(x)b \text{ for all } x \in B\}$ for each $g \in G$, it was shown that $BJ_g = Be_g$ for some central idempotent e_g ($\in C$) for any $g \in G$ ([5]). We note that the central idempotent e_g is uniquely determined by g in G. To see this, let e be a central idempotent of B. Then the mapping $b \longmapsto be \ (b \in B)$ defines a ring epimorphism $B \longrightarrow Be$ because (b+b')e = be+b'e and (bb')e = (be)(b'e) for every $b, b' \in B$. Thus, as the image of 1, e is the identity of the subring Be. Therefore if f is another central idempotent of B such that Be = Bf, then f is also the identity of Be, and so we know that e = f. Hence, in particular, if f is a central idempotent such that $BJ_g = Bf$, i.e., $Be_g = Bf$, then it follows that $f = e_g$. Let B_a be the Boolean algebra generated by $\{0, e_q \mid g \in G\}$. Then a structure theorem for B was given by using B_a ([6]) and the subalgebra $\bigoplus \sum_{g \in K(1)} J_g$ was investigated where $K(1) = \{h \in G \mid e_h = 1\}$ ([8]). We note that B is a central Galois algebra with Galois group G if and only if K(1) = G. Let $S(g) = \{h \in G \mid e_h = e_g\}$ for each $g \in G$. Then S(1) = K(1), but S(g) is not a subgroup of G for any $e_q \neq 1$ ([7]). Denote the subgroup generated by the elements in S(g) by K(g). The purpose of the present paper is to investigate a more general class of algebras B(g) generated by $\{J_h \mid h \in S(g)\}$ for an $g \in G$. The major results are (1) $B(g) = \bigoplus \sum_{k \in K(g)} e_g J_k$, (2) B(g) is a separable algebra over Re_q , (3) B(g) is a central weakly Galois algebra with Galois group K(g) where a weakly Galois algebra is in the sense of [9], and (4) there exists a oneto-one correspondence between the set of algebras $\{B(g) \mid g \in G\}$ and the set of subgroups $\{K(g) \mid g \in G\}$. Thus $B = \sum_{g \in G} B(g)$ such that B(g) is a central weakly Galois algebra with Galois group K(g) for each $g \in G$. Three remarkable characterizations of a Galois extension in section 5 were given by the first author. This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

 $^{2000\} Mathematics\ Subject\ Classification.\ 16S35,\ 16W20.$

Key words and phrases. Separable algebras, Galois algebras, central Galois algebras, weakly Galois algebras, Azumaya Galois extensions.

2. BASIC NOTATIONS AND DEFINITIONS

Throughout this paper, B will represent a ring with 1 and G a finite automorphism group of B. We keep the definitions of a Galois extension, a Galois algebra, a central Galois algebra, a separable extension, and an Azumaya algebra as defined in ([6]).

¿From now on, let B be a Galois algebra over a commutative ring R with a finite Galois group G, C the center of B, $J_g = \{b \in B \mid bx = g(x)b \text{ for all } x \in B\}$ for each $g \in G$, e_g a central idempotent in C such that $BJ_g = Be_g$ ([5]), $S(g) = \{h \in G \mid e_h = e_g\}$ for each $g \in G$, K(g) the subgroup of G generated by $\{h \mid h \in S(g)\}$, B(g) the algebra contained in B generated by $\{J_h \mid h \in S(g)\}$ for each $g \in G$, and $J_g^{(A)} = \{a \in A \mid ax = g(x)a \text{ for all } x \in A\}$ for a subring A of B. A weakly Galois extension A with Galois group G is a finitely generated projective right module A over A^G such that $A_lG = \operatorname{Hom}_{A^G}(A,A)$ where $A_l = \{a_l$, the left multiplication map by $a \in A\}$ and $(a_lg)(x) = ag(x)$ for each $a_l \in A_l$ and $x \in A$ ([9]). We call A a weakly Galois algebra with Galois group G if A is a weakly Galois extension with Galois group G such that A^G is contained in the center of A and that A is a central weakly Galois algebra with Galois group G if A is a weakly Galois extension with Galois group G such that A^G is the center of A. An Azumaya Galois extension A with Galois group G is a Galois extension A of A^G which is a C^G -Azumaya algebra where C is the center of A ([1]). We call A an Azumaya weakly Galois extension with Galois group G if it is a weakly Galois extension of A^G which is a C^G -Azumaya algebra where C is the center of A.

3. THE SEPARABLE ALGEBRA B(g)

Let $g \in G$ and B(g) the algebra generated by $\{J_h \mid h \in S(g)\}$. Keeping the notations in section 2, we shall show that $B(g) = \bigoplus \sum_{k \in K(g)} e_g J_k$ and that B(g) is a separable algebra over Re_g . We begin with some lemmas.

Lemma 3.1.

Let $G(g) = \{h \in G \mid h(e_g) = e_g\}$. Then K(g) is a normal subgroup of G(g).

Proof. Clearly, G(g) is a subgroup of G. Next, let $k \in S(g)$. Then $e_k = e_g$; and so $k(e_g) = k(e_k) = e_{kkk^{-1}} = e_k = e_g$. Hence $k \in G(g)$. Thus $S(g) \subset G(g)$. But K(g) is the subgroup generated by the elements in S(g) by the definition of K(g), so K(g) is a subgroup of G(g). Next we show K(g) is a normal subgroup of G(g). For any $h \in G(g)$ and $k \in S(g)$, we have that $e_{hkh^{-1}} = h(e_k) = h(e_g) = e_g$, so $hkh^{-1} \in S(g)$. Clearly, $k^{-1} \in S(g)$ if $k \in S(g)$. Hence for any $k \in K(g)$, $k = k_1k_2 \cdots k_m$ for some integer m and some $k_i \in S(g)$, $i = 1, 2, \cdots, m$. Thus, for any $k \in G(g)$, $hkh^{-1} = h(k_1k_2 \cdots k_m)h^{-1} = (hk_1h^{-1})(hk_2h^{-1}) \cdots (hk_mh^{-1}) \in K(g)$. Therefore $hK(g)h^{-1} \subset K(g)$ for any $k \in G(g)$. This proves that K(g) is a normal subgroup of G(g).

Lemma 3.2.

 Be_g is a separable algebra over Re_g .

Proof. Since B is a Galois algebra over R, B is a separable algebra over R. Hence Be_g is a separable algebra over Re_g ([3], Proposition 1.11, page 46).

Lemma 3.3.

For each $h \in G(g)$, $J_h^{(Be_g)} = e_g J_h$.

Proof. See Lemma 3.3 in [6].

Theorem 3.4.

$$B(g) = \bigoplus \sum_{k \in K(g)} e_g J_k$$
.

Proof. Since B(g) is generated by $\{J_h \mid h \in S(g)\},\$

$$B(g) = \left\{ \sum (\Pi J_h), \text{ a finite sum of finite products of } J_h \text{ for some } h \in S(g) \right\}.$$

By Proposition 2 in [5], $J_h J_{h'} = e_h J_{hh'} = e_g J_{hh'}$ for any $h, h' \in S(g)$, so $\Pi J_h = e_g J_{\Pi h}$ for some $h \in S(g)$. Hence $B(g) = \sum_{k \in K(g)} e_g J_k$. But B is a Galois algebra over R with Galois group G, so $B = \bigoplus \sum_{g \in G} J_g$ ([5], Theorem 1). Noting that J_h is a C-module, we have that $e_g J_h \subset J_h$ for each $h \in K(g)$. Thus, the sum is direct, that is, $B(g) = \bigoplus \sum_{k \in K(g)} e_g J_k$.

Theorem 3.5.

For each $k \in K(g)$, $e_k e_g = e_g$.

Proof. We want to prove that

$$(*) e_{g_1} e_{g_2} \cdots e_{g_n} = e_{g_2} \cdots e_{g_n} e_{g_1 g_2 \cdots g_n}$$

for any integer $n \geq 2$ and any elements g_1, g_2, \dots, g_n of G. Consider now the case for n=2. We know by Proposition 2 in [5] that $J_{g_1}J_{g_2}=e_{g_2}J_{g_1g_2}$, and so $e_{g_1}e_{g_2}B=e_{g_1}BJ_{g_2}=BJ_{g_1}J_{g_2}=Be_{g_2}J_{g_1g_2}=e_{g_2}BJ_{g_1g_2}=e_{g_2}e_{g_1g_2}B$. Since $e_{g_1}e_{g_2}$ and $e_{g_2}e_{g_1g_2}$ are central idempotents, we have

(1)
$$e_{g_1}e_{g_2} = e_{g_2}e_{g_1g_2} \text{ for any } g_1, g_2 \in G.$$

Now assume that (*) is true for an $n(\geq 2)$ and any $g_1, g_2, \dots, g_n \in G$. Let g_{n+1} be any element of G. Then by applying (1) to $g_1g_2\cdots g_n$ and g_{n+1} instead of g_1 and g_2 respectively, we have

$$e_{g_1g_2...g_n}e_{g_{n+1}} = e_{g_{n+1}}e_{g_1g_2...g_ng_{n+1}}.$$

Thus we conclude

$$\begin{array}{lll} e_{g_1}e_{g_2}\cdots e_{g_n}e_{g_{n+1}} & = & (e_{g_1}e_{g_2}\cdots e_{g_n})e_{g_{n+1}} \\ & = & (e_{g_2}\cdots e_{g_n}e_{g_1g_2\cdots g_n})e_{g_{n+1}} \text{ by the assumption } (*) \\ & = & (e_{g_2}\cdots e_{g_n})(e_{g_1g_2\cdots g_n}e_{g_{n+1}}) \\ & = & (e_{g_2}\cdots e_{g_n})(e_{g_{n+1}}e_{g_1g_2\cdots g_ng_{n+1}}) \text{ by } (2) \\ & = & e_{g_2}\cdots e_{g_n}e_{g_{n+1}}e_{g_1g_2\cdots g_ng_{n+1}}. \end{array}$$

This shows by induction that (*) holds for any $n \geq 2$ and any $g_1, g_2, \dots, g_n \in G$.

Now assume that $h_1, h_2, \dots, h_n \in S(g)$ for some integer n, so $e_g = e_{h_1} = e_{h_2} = \dots = e_{h_n}$. Then $e_g = e_g e_{h_1 h_2 \dots h_n}$ by the above result (*). Let L be the set of those elements of G which are finite products of elements in S(g). Then clearly L is closed under multiplication. Since $e_h = e_{h^{-1}}$ for any $h \in G$ ([5], Proposition 2-(3)), $e_g = e_h = e_{h^{-1}}$ for any $h \in S(g)$; and so $h^{-1} \in S(g)$. It follows that if $h = h_1 h_2 \dots h_n \in L$ where $h_1, h_2, \dots, h_n \in S(g)$ for some integer n, then $h^{-1} = h_n^{-1} \dots h_1^{-1} \in L$. Thus L is a subgroup generated by the elements in S(g); that is, L = K(g). Therefore, for any element $k \in K(g)$, $k = h_1 h_2 \dots h_n$ where $h_1, h_2, \dots, h_n \in S(g)$ for some integer n, we have that $e_g = e_g e_k$. This completes the proof.

Next is the main theorem in this section.

Theorem 3.6.

B(g) is a separable algebra over Re_q .

Proof. Since B is a Galois algebra over R with Galois group G, there exists a $c \in C$ such that $\operatorname{Tr}_G(c) = 1$ by the proof of proposition 5 in [5]. Let $\{K(g)g_i \mid g_i \in G, i = 1, 2, \cdots, m\}$ for some integer m} be the set of the right cosets of K(g) in G and $d = \sum_{i=1}^{m} g_i(c)$. Then $\operatorname{Tr}_{K(g)}(d) = \sum_{k \in K(g)} k(d) = \sum_{k \in K(g)} \sum_{i=1}^{m} kg_i(c) = \operatorname{Tr}_{G}(c) = 1$. Hence $\operatorname{Tr}_{K(g)}(de_g x) = 1$ $e_g x$ for each $e_g x \in (e_g B)^{K(g)}$. Thus the map $\operatorname{Tr}_{K(g)}(d_{\underline{\hspace{0.5cm}}}): e_g B \longrightarrow (e_g B)^{K(g)}$ is a split bimodule homomorphism over $(e_g B)^{K(g)}$. This implies that $(e_g B)^{K(g)}$ is a direct summand of $e_q B$ as a bimodule over $(e_q B)^{K(q)}$. On the other hand, $e_q B$ is a Galois extension of $(e_qB)^{G(g)}$ with Galois group G(g) by Lemma 3.7 in [6], so e_qB is a Galois extension of $(e_q B)^{K(g)}$ with Galois group K(g) for K(g) is a subgroup of G(g) by Lemma 3.1. Hence $e_q B$ is a finitely generated and projective left (or right) module over $(e_q B)^{K(g)}$. Thus $(e_q B)^{K(g)}$ is a separable algebra over Re_q by the proof of Theorem 3.8 on page 55 in [3] because Be_g is a separable algebra over Re_g by Lemma 3.2. Next, we claim that $Ce_g \subset (e_g B)^{K(g)}$. In fact, for any $ce_g \in Ce_g$, $k \in K(g)$, and $x \in J_k$, we have that $(ce_g)x = x(ce_g) = k(ce_g)x$, so $(ce_g - k(ce_g))x = 0$. Hence $(ce_g - k(ce_g))J_k = \{0\}$. But $J_k J_{k^{-1}} = e_k C$ ([5], Proposition 2), so $(ce_g - k(ce_g))e_k C = \{0\}$. By Lemma 3.5, $e_g e_k = e_g$, so $(ce_g - k(ce_g))C = \{0\}$. Thus $ce_g - k(ce_g) = 0$, that is, $k(ce_g) = ce_g$. This implies that $Ce_g \subset (e_g B)^{K(g)}$. Therefore Ce_g is contained in the center of $(e_g B)^{K(g)}$ for Ce_g is contained in the center of B. Consequently $(e_q B)^{K(g)}$ is separable over Ce_q ([3], Proposition 1.12, page 46). Moreover, since Be_g is separable over Re_g , Be_g is an Azumaya algebra over Ce_g and Ce_g is separable over Re_g ([3], Theorem 3.8, page 55). Hence $V_{Be_g}((e_gB)^{K(g)})$ is separable over Ce_g by the commutator theorem for Azumaya algebras ([3], Theorem 4.3, page 57); and so it is separable over Re_g by the transitivity of separable algebras. But, by Proposition 1 in [5], $V_{Be_g}((e_gB)^{K(g)}) = \bigoplus \sum_{k \in K(g)} J_k^{(Be_g)}$, so $V_{Be_g}((e_gB)^{K(g)}) = \bigoplus \sum_{k \in K(g)} e_g J_k$ by Lemma 3.3. Therefore $B(g) \ (= \bigoplus \sum_{k \in K(g)} e_g J_k$ by Theorem 3.4) is a separable algebra over Re_q .

4. THE CENTRAL WEAKLY GALOIS ALGEBRA B(g)

We recall that an algebra A over a commutative ring R with a finite automorphism group G is called a weakly Galois extension with Galois group G if A is a finitely generated projective right A^G -module such that $A_lG = \operatorname{Hom}_{A^G}(A,A)$ where $A_l = \{a_l, \text{ the left multiplication map by } a \in A\}$. We shall show that B(g) is a central weakly Galois algebra with Galois group U(g) where U(g) = K(g)/L and $L = \{k \in K(g) \mid k(a) = a \text{ for all } a \in B(g)\}$. For each $k \in K(g)$, \overline{k} is denoted as the coset $kL \in U(g)$ and $\overline{k}(b) = k(b)$ for $b \in B(g)$.

Lemma 4.1.

 $(B(g))^{K(g)} = Z$, the center of B(g).

Proof. Let x be any element in $(B(g))^{K(g)}$ and b any element in B(g). Then $b = \sum_{k \in K(g)} e_g b_k$ where $b_k \in J_k$ for each $k \in K(g)$ by Theorem 3.4. Hence

$$bx = \sum_{k \in K(g)} e_g b_k x = \sum_{k \in K(g)} e_g k(x) b_k = \sum_{k \in K(g)} e_g x b_k = x \sum_{k \in K(g)} e_g b_k = x b.$$

Thus $x \in Z$. Therefore $(B(g))^{K(g)} \subset Z$. Conversely, for any $z \in Z$, $k \in K(g)$, and $x \in J_k$, we have that zx = xz = k(z)x, so (k(z) - z)x = 0 for any $x \in J_k$. Hence $(k(z) - z)J_k = \{0\}$. Noting that $J_kJ_{k^{-1}} = e_kC$, we have that $(k(z) - z)e_kC = \{0\}$. By

Lemma 3.5, $e_gC = e_ge_kC \subset e_kC$. Hence $(k(z) - z)e_gC = \{0\}$, so $(k(z) - z)e_g = 0$, that is, $k(ze_g) = ze_g$. But z is in the center of B(g) and $B(g) = \bigoplus \sum_{k \in K(g)} e_g J_k$, so $ze_g = z$. Thus k(z) = z for any $z \in Z$ and $k \in K(g)$; and so $Z \subset (B(g))^{K(g)}$.

Theorem 4.2.

B(g) is a central weakly Galois algebra with Galois group U(g), that is, B(g) is a weakly Galois algebra over its center Z with Galois group U(g).

Proof. By Lemma 4.1, it suffices to show that B(g) is a weakly Galois algebra with Galois group U(g). In fact, by Theorem 3.6, B(g) is separable over Re_g , so B(g) is an Azumaya algebra over Z. Hence B(g) is a finitely generated projective module over Z (= $(B(g))^{U(g)}$), and the map $f: B(g) \otimes_Z (B(g))^o \longrightarrow \operatorname{Hom}_Z(B(g), B(g))$ is an isomorphism ([3], Theorem 3.4, page 52) where $(B(g))^o$ is the opposite algebra of B(g), $f(a \otimes b)(x) = axb$ for each $a \otimes b \in B(g) \otimes_Z (B(g))^o$ and each $x \in B(g)$. By denoting the left multiplication map with $a \in B(g)$ by a_l and the right multiplication map with $b \in B(g)$ by b_r , $f(a \otimes b)(x) = axb = (a_lb_r)(x)$. Since $B(g) = \bigoplus_{k \in K(g)} e_g J_k$, $B(g) \otimes_Z (B(g))^o \cong \sum_{k \in K(g)} (B(g))_l (J_k)_r$. Observing that $(J_k)_r = (J_k)_l \overline{k}^{-1}$ where $\overline{k} = kL \in U(g) = K(g)/L$, we have that $B(g) \otimes_Z (B(g))^o \cong \sum_{k \in K(g)} (B(g))_l (J_k)_r = \sum_{k \in K(g)} (B(g))_l (J_k)_l \overline{k}^{-1} = \sum_{k \in K(g)} (B(g)J_k)_l \overline{k}^{-1}$. Moreover, since $B(g) = \bigoplus_{k \in K(g)} e_g J_k$ and $e_g e_h = e_g$ for each $h \in K(g)$, $B(g)J_k = \bigoplus_{k \in K(g)} e_g J_k J_k = \bigoplus_{k \in K(g)} e_g h_k J_{kk} = \bigoplus_{k \in K(g)} e_g J_{kk} = B(g)$ for each $k \in K(g)$. Therefore $B(g) \otimes_Z (B(g))^o \cong \sum_{k \in K(g)} (B(g)J_k)_l \overline{k}^{-1} = \sum_{k \in K(g)} (B(g))_l \overline{k}^{-1}$ is completes the proof.

Corollary 4.3.

By keeping the notations of Theorem 4.2, $B = \sum_{g \in G} B(g)$, a sum of central weakly Galois algebras.

Proof. Since B is a Galois algebra with Galois group G, $B=\oplus \sum_{g\in G} J_g$ ([5], Theorem 1). But B(g) is generated by $\{J_h \mid h\in S(g)\}$ which contains J_g , so $J_g\subset B(g)$ for each $g\in G$. Thus $B=\sum_{g\in G} B(g)$ such that B(g) is a central weakly Galois algebra by Theorem 4.2.

We recall that a Galois extension A with Galois group G is called an Azumaya Galois extension if A^G is an Azumaya algebra over C^G where C is the center of A. We define a weakly Galois extension A with Galois group G a weakly Azumaya Galois extension if A^G is an Azumaya algebra over C^G . As a consequence of Theorem 4.2, $B(g)(B(g))^{K(g)}$ can be shown to be a weakly Azumaya Galois extension with Galois group U(g).

Corollary 4.4.

 $(B(g))(e_gB)^{K(g)}$ is a weakly Azumaya Galois extension of $(e_gB)^{K(g)}$ with Galois group U(g) = K(g)/L.

Proof. By Theorem 4.2, $(B(g))_l U(g) \cong \operatorname{Hom}_Z(B(g), B(g))$, so

$$\begin{split} \big((B(g))(e_g B)^{K(g)} \big)_l U(g) & \cong & \operatorname{Hom}_Z(B(g), B(g))(e_g B)^{K(g)} \\ & \cong & \operatorname{Hom}_Z(B(g), B(g)) \otimes_Z (e_g B)^{K(g)} \\ & \cong & \operatorname{Hom}_{(e_g B)^{K(g)}}(B(g) \otimes_Z (e_g B)^{K(g)}, B(g) \otimes_Z (e_g B)^{K(g)}). \end{split}$$

Moreover, by the proof of Theorem 3.6, B(g) and $(e_g B)^{K(g)}$ are Azumaya algebras over Z, so it is easy to see that $(B(g))(e_g B)^{K(g)} \cong B(g) \otimes_Z (e_g B)^{K(g)}$ which is a finitely generated projective module over $(e_g B)^{K(g)}$. Thus $(B(g))(e_g B)^{K(g)}$ is a weakly Azumaya Galois extension of $(e_g B)^{K(g)}$ with Galois group U(g) = K(g)/L.

Next we characterize a Galois extension B(g) with Galois group U(g).

Theorem 4.5.

The following statements are equivalent:

- (1) B(g) is a central Galois algebra with Galois group U(g).
- (2) B(g) is a Galois extension with Galois group U(g).
- (3) $J_{\overline{k}}^{(B(g))} = \bigoplus \sum_{l \in L} e_g J_{kl} \text{ for each } \overline{k} \in U(g).$

Proof. $(1) \Longrightarrow (2)$ is clear.

- $(2) \Longrightarrow (1)$ is a consequence of Lemma 4.1.
- $(1) \Longrightarrow (3) \text{ Let } B(g) \text{ be a central Galois algebra with Galois group } U(g). \text{ Then } B(g) = \bigoplus \sum_{\overline{k} \in U(g)} J_{\overline{k}}^{(B(g))} \text{ ([5], Theorem 1)}. \text{ Next it is easy to check that } \bigoplus \sum_{l \in L} e_g J_{kl} \subset J_{\overline{k}}^{(B(g))} \text{ for each } k \in K(g). \text{ But } B(g) = \bigoplus \sum_{k \in K(g)} e_g J_k \text{ by Theorem 3.4, so } \bigoplus \sum_{k \in K(g)} e_g J_k = \bigoplus \sum_{\overline{k} \in U(g)} J_{\overline{k}}^{(B(g))} \text{ (by Lemma 3.3) such that } \bigoplus \sum_{l \in L} e_g J_{kl} \subset J_{\overline{k}}^{(B(g))}. \text{ Thus } J_{\overline{k}}^{(B(g))} = \bigoplus \sum_{l \in L} e_g J_{kl} \text{ for each } \overline{k} \in U(g).$
 - (3) \Longrightarrow (1) Since $J_{\overline{k}}^{(B(g))} = \bigoplus \sum_{l \in L} e_g J_{kl}$ for each $\overline{k} \in U(g)$,

$$B(g) = \bigoplus \sum_{k \in K(g)} e_g J_k = \bigoplus \sum_{\overline{k} \in U(g)} J_{\overline{k}}^{(B(g))}.$$

Moreover, by Lemma 4.1, $(B(g))^{K(g)} = Z$, so U(g) is an Z-automorphism group of B(g). But then it is well known that $J_{\overline{k}}^{(B(g))}J_{\overline{k}^{-1}}^{(B(g))} = Z$ for each $\overline{k} \in U(g)$. Thus B(g) is a central Galois algebra with Galois group U(g) ([4], Theorem 1) for B(g) is an Azumaya algebra over Z by Theorem 3.6.

5. A ONE-TO-ONE CORRESPONDENCE

In this section we shall establish a one-to-one correspondence between the set of algebras $\{B(g) \mid g \in G\}$ and the set of subgroups $\{K(g) \mid g \in G\}$, and give three remarkable characterizations of a Galois extension due to the first author.

Lemma 5.1.

Let $\alpha: e_g \longrightarrow K(g)$. Then α is a bijection between $\{e_g \mid g \in G\}$ and $\{K(g) \mid g \in G\}$.

Proof. Assume that K(g) = K(h) for some $g, h \in G$. Since $h \in K(h)$, $h \in K(g)$. Hence $e_g = e_g e_h$ by Lemma 3.5. Similarly, $e_h = e_g e_h$. Thus $e_g = e_h$; and so α is one-to-one. Clearly, α is onto. Therefore α is a bijection.

Lemma 5.2.

Let $\beta: e_g \longrightarrow B(g)$. Then β is a bijection between $\{e_g \mid g \in G\}$ and $\{B(g) \mid g \in G\}$.

Proof. Assume that B(g)=B(h) for some $g,h\in G$. If $B(g)=B(h)=\{0\}$, then $e_g=0=e_h$. If $B(g)=B(h)\neq\{0\}$, noting that $e_g\in e_gC=e_gJ_1\subset\oplus\sum_{k\in K(g)}e_gJ_k=B(g)$

by Theorem 3.4, we have that e_g is the identity of B(g) and e_h is the identity of B(h). Hence $e_g = e_h$. Thus β is one-to-one. Clearly, β is onto. Therefore β is a bijection.

Lemma 5.1 and Lemma 5.2 imply a one-to-one correspondence between $\{B(g) \mid g \in G\}$ and $\{K(g) \mid g \in G\}$.

Theorem 5.3.

Let $\phi: K(g) \longrightarrow B(g)$. Then ϕ is a bijection between $\{K(g) | g \in G\}$ and $\{B(g) | g \in G\}$. Proof. By Lemma 5.1 and Lemma 5.2, $\phi = \beta \alpha^{-1}$ is a bijection.

We conclude the present paper with two interesting equivalent conditions for a Galois extension of a ring and a characterization of a Galois extension of a field. Let L be a ring with a finite automorphism group G, $K = L^G$, and R the endomorphism ring of the right K-module L. Then L can be regarded as a two-sided R-K-module. For each $a \in L$, denote by \overline{a} the mapping $x \longrightarrow ax$ ($x \in L$). Then \overline{a} is an endomorphism of L_K , i.e., $\overline{a} \in R$, and the mapping $a \longrightarrow \overline{a}$ an isomorphism from L into R. Let \overline{L} be the image of L by this isomorphism. Let σ be any element in G. Then σ is in R, because $(ax)^{\sigma} = a^{\sigma}x^{\sigma} = a^{\sigma}x$ for every $a \in L$ and $x \in K$. Moreover, we have $(\sigma \overline{a})b = \sigma(ab) = (ab)^{\sigma} = a^{\sigma}b^{\sigma} = (\overline{a^{\sigma}}\sigma)b$ for any $a, b \in L$, which shows that $\sigma \overline{a} = \overline{a^{\sigma}}\sigma$ for any $a \in L$ and in particular $\sigma \overline{L} = \overline{L}\sigma$. Now L is called a Galois extension of K relative to G if the right K-module L is finitely generated and projective and $R = \sum_{\sigma \in G} \oplus \sigma \overline{L}$. Thus, without using the crossed product of L and G with trivial factor set, a Galois extension is characterized.

Theorem A.

The following are equivalent:

A. L is a Galois extension of K relative to G.

B. There exist $x_1, \dots, x_n; y_1, \dots, y_n$ in L such that

$$\sum_{i=1}^{n} x_i y_i^{\sigma} = \begin{cases} 1, & \text{if } \sigma = 1 \\ 0, & \text{if } \sigma \neq 1. \end{cases}$$

Proof. First we prove that A implies B: Assume A. Then L_K is finitely generated and projective, which means the existence of finite number of $x_i \in L$ and homomorphism $\phi_i: L_K \longrightarrow K_K \ (i=1,2,\ldots,n)$ such that $\sum_{i=1}^n x_i \phi_i(x) = x$ for all $x \in L$. Since $K \subset L$, each ϕ_i is an endomorphism of L_K , i.e., $\phi_i \in R$. Then the above equality can be written as $(\sum_{i=1}^n \overline{x}_i \phi_i)x = x$ for all $x \in L$. But this means the following equality: $\sum_{i=1}^n \overline{x}_i \phi_i = 1$. Since $R = \sum_{\sigma \in G} \sigma \overline{L}$ by assumption A, each ϕ_i can be expressed as $\phi_i = \sum_{\sigma \in G} \sigma \overline{y}_{i,\sigma}$ with $y_{i,\sigma} \in L \ (1 \le i \le n, \ \sigma \in G)$. On the other hand, since $\phi_i x \in K$ for every $x \in L$, it follows that $\phi_i x = \tau(\phi_i x) = (\tau \phi_i)x$ for every $\tau \in G$ and $x \in L$ and hence $\phi_i = \tau \phi_i = \sum_{\sigma \in G} \tau \sigma \overline{y}_{i,\sigma}$ for every $\tau \in G$. Since R is a direct sum of $\sigma \overline{L} \ (\sigma \in G)$, this implies that $y_{i,\tau\sigma} = y_{i,\sigma}$ for every σ , τ in G and hence $y_{i,\sigma}$ is independent of σ and depends only on i. Therefore we can write $y_i = y_{i,\sigma}$ for every σ , so that we have $\phi_i = (\sum_{\sigma \in G} \sigma) \overline{y}_i$. It follows then $1 = \sum_{i=1}^n \overline{x}_i \phi_i = \sum_{i=1}^n \overline{x}_i (\sum_{\sigma \in G} \sigma) \overline{y}_i = \sum_{\sigma \in G} (\sum_{i=1}^n \overline{x}_i y_i^{\overline{\sigma}}) \sigma$. From this we can conclude that $1 = \sum_{i=1}^n x_i y_i$ and $0 = \sum_{i=1}^n x_i y_i^{\overline{\sigma}}$ if $\sigma \neq 1$.

Next we assume B. Let $\phi_i = (\sum_{\sigma \in G} \sigma) \overline{y}_i$ for each i $(1 \leq i \leq n)$. Then ϕ_i is in R and satisfies $\sum_{i=1}^n \overline{x}_i \phi_i = \sum_{i=1}^n \overline{x}_i (\sum_{\sigma \in G} \sigma) \overline{y}_i = \sum_{\sigma \in G} (\sum_{i=1}^n \overline{x}_i \overline{y}_i^{\sigma}) \sigma = 1$. This implies that $\sum_{i=1}^n x_i \phi_i(x) = \sum_{i=1}^n x_i (\phi_i x) = (\sum_{i=1}^n \overline{x}_i \phi_i) x = x$ for every $x \in L$. Moreover, $\phi_i(x) = (\sum_{\sigma \in G} \sigma)(y_i x)$ for every $x \in L$ and so for any $\tau \in G$ we have $\phi_i(x)^\tau = \tau(\sum_{\sigma \in G} \sigma)(y_i x) = (\sum_{\sigma \in G} \tau \sigma)(y_i x) = (\sum_{\sigma \in G} \sigma)(y_i x)$ whence $\phi_i(x)^\tau = \phi_i(x)$ for every $x \in L$ and $\tau \in G$. Thus

we know that $\phi_i(x)$ is in $L^G = K$ for every $x \in L$, i.e., ϕ_i is a homomorphism $L_K \longrightarrow K_K$ and therefore L_K is finitely generated and projective.

Let α be any endomorphism of L_K , i.e., $\alpha \in R$. Then we have $(\sum_{i=1}^n \overline{\alpha x_i} \phi_i)x = \sum_{i=1}^n \overline{\alpha x_i} \phi_i(x) = \sum_{i=1}^n (\alpha x_i) \phi_i(x)$. But $\phi_i(x) \in K$, we have

$$\sum_{i=1}^{n} (\alpha x_i) \phi_i(x) = \sum_{i=1}^{n} \alpha(x_i \phi_i(x)) = \alpha \sum_{i=1}^{n} x_i \phi_i(x) = \alpha x.$$

Thus we have $\sum_{i=1}^n \overline{\alpha x_i} \phi_i = \alpha$. Since $\phi_i \in \sum_{\sigma \in G} \sigma \overline{L}$, this means that $\alpha \in \sum_{\sigma \in G} \sigma \overline{L}$. Therefore we know that $R = \sum_{\sigma \in G} \sigma \overline{L}$. Let $\sum_{\sigma \in G} \overline{a_\sigma} \sigma$ be any linear combination of $\sigma \in G$ with $a_\sigma \in L$. Then for each $\tau \in G$ we have $\sum_{i=1}^n (\sum_{\sigma \in G} \overline{a_\sigma} \sigma x_i) y_i^\tau = \sum_{i=1}^n (\sum_{\sigma \in G} a_\sigma x_i^\sigma) y_i^\tau = \sum_{\sigma \in G} a_\sigma \sum_{i=1}^n x_i^\sigma y_i^\tau = \sum_{\sigma \in G} a_\sigma (\sum_{i=1}^n x_i y_i^{\tau \sigma^{-1}})^\sigma = a_\tau$ because

$$\sum_{i=1}^{n} x_i y_i^{\tau \sigma^{-1}} = \begin{cases} 1, & \text{if } \sigma = \tau \\ 0, & \text{if } \sigma \neq \tau. \end{cases}$$

Therefore if $\sum_{\sigma \in G} \overline{a}_{\sigma} \sigma = 0$, then it follows $a_{\tau} = 0$ for every $\tau \in G$, which shows that R is a direct sum of $\overline{L}\sigma = \sigma \overline{L}$, i.e., $R = \sum_{\sigma \in G} \oplus \sigma \overline{L}$. Thus L is a Galois extension of K relative to G.

Next, consider L as a left K-module and let S be the endomorphism ring of ${}_KL$. Then L can be regarded as a two-sided K-S-module. For each $a \in L$, denote by \underline{a} the mapping $x \longrightarrow xa$ ($x \in L$). Then \underline{a} is an endomorphism of ${}_KL$, i.e., $\underline{a} \in S$, and the mapping $a \longrightarrow \underline{a}$ an isomorphism from L into S. Let \underline{L} be the image of L by this isomorphism, so that \underline{L} ($\cong L$) is a subring of S and $\underline{a}\sigma = \sigma \underline{a}^{\sigma}$ for each $\sigma \in G$ and $a \in L$. Now L is called a left Galois extension of K relative to G if L as a left K-module is finitely generated and projective and $S = \sum_{\sigma \in G} \oplus \sigma \underline{L}$. Then it can be shown that a left Galois extension and a Galois extension are the same.

Theorem B.

The following are equivalent:

A. L is a Galois extension of K relative to G.

 A_l . L is a left Galois extension of K relative to G.

Proof. First we prove that A_l implies A: Assume A_l . Then ${}_KL$ is finitely generated and projective, i.e., there exist finite number of $y_i \in L$ and homomorphism $\psi_i : {}_KL \longrightarrow_K K$ $(i=1,2,\ldots,n)$ such that $\sum_{i=1}^n \psi_i(x)y_i = x$ for all $x \in L$. But since $K \subset L$, each ψ_i is an endomorphism of ${}_KL$, i.e., $\psi_i \in S$. Then we have $x \sum_{i=1}^n \psi_i \underline{y}_i = \sum_{i=1}^n \psi_i(x)y_i = x$ for all $x \in L$, which shows that $\sum_{i=1}^n \psi_i \underline{y}_i = 1$. On the other hand, each ψ_i is in $S = \sum_{\sigma \in G} \sigma \underline{L}$ and therefore it is expressed as $\psi_i = \sum_{\sigma \in G} \underline{x}_{i,\sigma} \sigma$ with $x_{i,\sigma} \in L$ $(1 \le i \le n, \sigma \in G)$. Since $x\psi_i = \psi_i(x) \in K$ for every i and $x \in L$, we have that $x(\psi_i\tau) = \psi_i(x)\tau = \psi_i(x) = x\psi_i$ for every i, $\tau \in G$ and $x \in L$, and thus $\psi_i\tau = \psi_i$ for every i and $\tau \in G$. But since $\psi_i\tau = \sum_{\sigma \in G} \underline{x}_{i,\sigma} \sigma \tau$ for every $\tau \in G$ and S is a direct sum of $\sigma \underline{L}$ $(\sigma \in G)$, we know that $x_{i,\tau\sigma} = x_{i,\sigma}$ for every i and σ , τ in G and therefore $x_{i,\sigma}$ is independent of $\sigma \in G$, which means that if we put $x_i = x_{i,1}$ then $x_i = x_{i,\sigma}$ for every $\sigma \in G$. Thus we have $\psi_i = \underline{x}_i \sum_{\sigma \in G} \sigma$ and therefore

$$1 = \sum_{i=1}^n \psi_i \underline{y}_i = \sum_{i=1}^n \underline{x}_i (\sum_{\sigma \in G} \sigma) \underline{y}_i = \sum_{\sigma \in G} \sigma \sum_{i=1}^n (\underline{x}_i^{\sigma} \underline{y}_i) = \sum_{\sigma \in G} \sigma \sum_{i=1}^n x_i^{\sigma} y_i.$$

Since S is a direct sum of $\sigma \underline{L}$ ($\sigma \in G$), it follows that $\sum_{i=1}^n x_i^{\sigma} y_i = \begin{cases} 1, & \text{if } \sigma = 1 \\ 0, & \text{if } \sigma \neq 1 \end{cases}$ and therefore $\sum_{i=1}^n x_i y_i^{\sigma} = (\sum_{i=1}^n x_i^{\sigma^{-1}} y_i)^{\sigma} = \begin{cases} 1, & \text{if } \sigma = 1 \\ 0, & \text{if } \sigma \neq 1. \end{cases}$ Thus the condition B of Theorem A holds. Therefore by Theorem A we have the condition A.

Next we want to prove that A implies A_l : Assume A. Then by Theorem A, there exist $x_1, \dots, x_n; y_1, \dots, y_n$ in L such that

$$\sum_{i=1}^{n} x_i y_i^{\sigma} = \begin{cases} 1, & \text{if } \sigma = 1\\ 0, & \text{if } \sigma \neq 1. \end{cases}$$

Then we have

$$\sum_{i=1}^{n} x_i^{\sigma} y_i = (\sum_{i=1}^{n} x_i y_i^{\sigma^{-1}})^{\sigma} = \begin{cases} 1, & \text{if } \sigma = 1 \\ 0, & \text{if } \sigma \neq 1. \end{cases}$$

Let $\psi_i = \underline{x}_i \sum_{\sigma \in G} \sigma$ for each i $(1 \le i \le n)$. Then ψ_i is in S and satisfies $\sum_{i=1}^n \psi_i \underline{y}_i = \sum_{i=1}^n \underline{x}_i (\sum_{\sigma \in G} \sigma) \underline{y}_i = \sum_{\sigma \in G} \sigma \sum_{i=1}^n \underline{x}_i^{\sigma} \underline{y}_i = 1$. Therefore we have

$$\sum_{i=1}^{n} \psi_i(x) y_i = \sum_{i=1}^{n} (x \psi_i) y_i = x \sum_{i=1}^{n} \psi_i \underline{y}_i = x \text{ for every } x \in L.$$

Furthermore, $\psi_i(x)^{\tau} = (x\psi_i)^{\tau} = (x\underline{x}_i \sum_{\sigma \in G} \sigma)^{\tau} = x(\underline{x}_i \sum_{\sigma \in G} \sigma\tau) = x\underline{x}_i \sum_{\sigma \in G} \sigma = x\psi_i = \psi_i(x)$ for every $x \in L$ and $\tau \in G$ and this implies that $\psi_i(x)$ is in $L^G = K$ for every $x \in L$ and thus ψ_i is a homomorphism $KL \longrightarrow KK$. This shows that KL is finitely generated and projective.

The rest part of the proof is similar to the proof for the implication $B \Longrightarrow A$ of Theorem A. Namely, let β be any endomorphism of ${}_KL$, i.e., $\beta \in S$. Then we have $x(\sum_{i=1}^n \psi_i \underline{y_i \beta}) = \sum_{i=1}^n \psi_i(x)(y_i \beta) = (\sum_{i=1}^n \psi_i(x)y_i)\beta = x\beta$ for every $x \in L$, and thus we know that $\sum_{i=1}^n \psi_i \underline{y_i \beta} = \beta$. Since $\psi_i \in \sum_{\sigma \in G} \sigma \underline{L}$, it follows that $\beta \in \sum_{\sigma \in G} \sigma \underline{L}$, which shows that $S = \sum_{\sigma \in G} \sigma \underline{L}$. Next let $\sum_{\sigma \in G} \sigma \underline{a}_{\sigma}$ be any linear combination of $\sigma \in G$ with coefficients $\underline{a}_{\sigma} \in \underline{L}$. Then we have, for each $\tau \in G$, $\sum_{i=1}^n x_i^{\tau}(y_i(\sum_{\sigma \in G} \sigma \underline{a}_{\sigma})) = \sum_{i=1}^n x_i^{\tau} \sum_{\sigma \in G} y_i^{\sigma} a_{\sigma} = \sum_{\sigma \in G} (\sum_{i=1}^n x_i^{\tau} y_i^{\sigma}) a_{\sigma} = \sum_{\sigma \in G} (\sum_{i=1}^n x_i^{\tau \sigma^{-1}} y_i)^{\sigma} a_{\sigma} = a_{\tau}$ because $\sum_{i=1}^n x_i^{\tau \sigma^{-1}} y_i = 1$ if $\sigma = \tau$ and $\sigma = 0$ if $\sigma \neq \tau$. Therefore it follows that $\sum_{\sigma \in G} \sigma \underline{a}_{\sigma} = 0$, then $\sigma = 0$ for every $\sigma \in G$. Thus we know that $\sigma = 0$ if $\sigma \in G$. Thus we know that $\sigma = 0$ if $\sigma \in G$. Thus we know that $\sigma \in G$.

Theorem C.

Let L be a (commutative) field and G a finite group of automorphism of L and let $K = L^G$. Then K is a subfield of L and [L:K] = n, where n is the order of G, and moreover L is a Galois extension of K relative to G.

Proof. I. First we prove that [L:K]=n. Let a be any element of L and let $G(a)=\{\sigma\in G\,|\,a^{\sigma}=a\}$. Then G(a) is a subgroup of G. Let n(a)=(G:G(a)). Then n(a)|n whence $n(a)\leq n$. Let σ,τ be in G. Then $a^{\sigma}=a^{\tau}$ if and only if $a^{\sigma\tau^{-1}}=a$, i.e., $\sigma\tau^{-1}\in G(a)$, i.e., $G(a)\sigma=G(a)\tau$. Let $\sigma_1,\sigma_2,\ldots,\sigma_{n(a)}$ be in G such that $G(a)\sigma_1,G(a)\sigma_2,\ldots,G(a)\sigma_{n(a)}$ are all distinct right cosets of G mod G(a). Then for each $\sigma\in G$ $G(a)\sigma_1\sigma,G(a)\sigma_2\sigma,\ldots,G(a)\sigma_{n(a)}\sigma$ are all distinct right cosets of G mod G(a). Consider now a polynomial $f(x)=(x-a^{\sigma_1})(x-a^{\sigma_2})\cdots(x-a^{\sigma_{n(a)}})$ over G(a). Then for each G(a) we have G(a) we have G(a) and G(a). Let $G(a)\sigma_0=G(a)$, i.e., $G(a)\sigma_0=G(a)$. Therefore G(a) is a polynomial over G(a) and of degree G(a). Let $G(a)\sigma_0=G(a)$, i.e., $G(a)\sigma_0=G(a)$.

Then $a^{\sigma_e} = a$. This implies that f(a) = 0. Let g(x) be a polynomial over K such that g(a) = 0. Then we have $g(a^{\sigma_1}) = g(a)^{\sigma_1} = 0$. Therefore $g(x) = (x - a^{\sigma_1})g_1(x)$ with a polynomial $g_1(x)$ over L. Next we have $(a^{\sigma_2} - a^{\sigma_1})g_1(a^{\sigma_2}) = g(a^{\sigma_2}) = g(a)^{\sigma_2} = 0$. But $a^{\sigma_1} \neq a^{\sigma_2}$, i.e., $a^{\sigma_2} - a^{\sigma_1} \neq 0$, we have that $g_1(a^{\sigma_2}) = 0$ and therefore $g_1(x) = (x - a^{\sigma_2})g_2(x)$ with a polynomial $g_2(x)$ over L. Thus we have $g(x) = (x - a^{\sigma_1})(x - a^{\sigma_2})g_2(x)$. Similarly, by considering $\sigma_2, \ldots, \sigma_{n(a)}$, we have a polynomial $g_{n(a)}(x)$ over L such that $g(x) = (x - a^{\sigma_1})(x - a^{\sigma_2}) \cdots (x - a^{\sigma_{n(a)}})g_{n(a)}(x) = f(x)g_{n(a)}(x)$. Thus f(x) is a minimal polynomial of a over k, which shows that [K(a):K] = n(a) and a is separable over K for every $a \in L$.

Now since $n(a) \leq n$ for every $a \in L$, we can choose $u \in L$ such that n(u) is maximal, i.e., $n(a) \leq n(u)$ for every $a \in L$. Let a be any element of L, and consider K(a,u). Then K(a,u) is a finite whence separable extension of K, and therefore as is well known there exists a $b \in L$ such that K(b) = K(a,u). It follows that $K(u) \subset K(b)$ whence $n(u) \leq n(b)$. But the maximality of n(u) implies that n(u) = n(b) whence K(u) = K(b). Thus we know that $a \in K(u)$ for every $a \in L$, which means that L = K(u) and so [L : K] = n(u). Let now σ be any element of G(u). Then $u^{\sigma} = u$ whence $a^{\sigma} = a$ for every $a \in L$, i.e., σ is the identity automorphism. Thus we know that n(u) = n and so [L : K] = n.

By using this we shall prove

II. L is a Galois extension of K relative to G: First L is a finite extension of K, L_K is finitely generated. Next since K is a field, every K-module and in particular L_K is projective. Let R be the endomorphism ring of L_K and we regard L as a left R-module. For each $l \in L$, we denote by \overline{l} the mapping $x \longmapsto lx \ (x \in L)$. Then \overline{l} is an endomorphism of L_K , and the mapping $l \longmapsto \overline{l}$ is a ring isomorphism of L into R. We denote by \overline{L} the image of L by this isomorphism. Similarly we denote by \overline{K} the image of the subfield K of L. Now let α be any endomorphism of L_K , i.e., $\alpha \in R$. Let a and l be any elements of K and L respectively. Then by using the commutativity of the field L we have $(\overline{a}\alpha)l = \overline{a}(\alpha l) = a(\alpha l) = (\alpha l)a = \alpha(la) = \alpha(al) = \alpha(\overline{a}l) = (\alpha \overline{a})l$, which shows that $\overline{a}\alpha = \alpha \overline{a}$, i.e., \overline{a} is whence \overline{K} is in the center of R.

Let $(l_1l_2...l_n)$ be any vector of length n with l_i (i=1,2,...,n) in L and α an endomorphism of L_K . Then we define

$$\alpha(l_1 \ l_2 \ \dots \ l_n) = (\alpha l_1 \ \alpha l_2 \ \dots \ \alpha l_n).$$

Let β be another endomorphism of L_K . Then we can see that

$$\alpha\beta(l_1 \ l_2 \ \dots \ l_n) = (\alpha\beta l_1 \ \alpha\beta l_2 \ \dots \ \alpha\beta l_n)$$

$$= \alpha(\beta l_1 \ \beta l_2 \ \dots \ \beta l_n)$$

$$= \alpha(\beta(l_1 \ l_2 \ \dots \ l_n)).$$

Let u_1, u_2, \ldots, u_n be a linearly independent basis of L_K . Let α be an endomorphism of L_K . Then for each $j, \alpha u_j$ is expressed as $\alpha u_j = \sum u_i a_{ij}$ with $a_{ij} \in K$. Then if we put A as the $n \times n$ matrix whose (i, j)-component is a_{ij} , we have $(\alpha u_1 \ \alpha u_2 \ \ldots \ \alpha u_n) = (u_1 \ u_2 \ \ldots \ u_n)A$. Since u_1, u_2, \ldots, u_n are linearly independent over K, A is uniquely determined by α . Thus by associating α with A we have a mapping φ from R into the set $[K]_n$ of all $n \times n$ matrices over K. Let conversely A be an $n \times n$ matrix over K. Let k be any element of k. Then

$$l = (u_1 \ u_2 \ \dots \ u_n) \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$
 with a unique vector $\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$ in K . Then by associating l with

$$(u_1 \ u_2 \ \dots \ u_n)A \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$
 we have an endomorphism α . Since $u_1 = (u_1 \ u_2 \ \dots \ u_n) \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$, $u_2 = (u_1 \ u_2 \ \dots \ u_n) \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}$, ..., $u_n = (u_1 \ u_2 \ \dots \ u_n) \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, we know that

$$(\alpha u_1 \ \alpha u_2 \ \dots \ \alpha u_n) = (u_1 \ u_2 \ \dots \ u_n) A \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$
$$= (u_1 \ u_2 \ \dots \ u_n) A.$$

This shows that φ is a mapping from R onto $[K]_n$. Let α , β be in R and let $\varphi(\alpha) = A$, $\varphi(\beta) = B$, i.e., $\alpha(u_1 \ u_2 \ \dots \ u_n) = (u_1 \ u_2 \ \dots \ u_n)A$, $\beta(u_1 \ u_2 \ \dots \ u_n) = (u_1 \ u_2 \ \dots \ u_n)B$. Assume $\varphi(\alpha) = \varphi(\beta)$, i.e., A = B. Then it follows that

$$\alpha(u_1 \ u_2 \ \dots \ u_n) = \beta(u_1 \ u_2 \ \dots \ u_n).$$

Since u_1, u_2, \ldots, u_n are basis of L_K , this implies that $\alpha = \beta$. Thus we know that φ is a one-to-one mapping from R onto $[K]_n$. Let again α, β be in R and let $\varphi(\alpha) = A, \varphi(\beta) = B$. Then

$$(\alpha + \beta)(u_1 \ u_2 \ \dots \ u_n) = \alpha(u_1 \ u_2 \ \dots \ u_n) + \beta(u_1 \ u_2 \ \dots \ u_n)$$

= $(u_1 \ u_2 \ \dots \ u_n)A + (u_1 \ u_2 \ \dots \ u_n)B$
= $(u_1 \ u_2 \ \dots \ u_n)(A + B).$

Thus $\varphi(\alpha + \beta) = A + B$. Furthermore,

$$(\alpha\beta)(u_1 \ u_2 \ \dots \ u_n) = \alpha(\beta(u_1 \ u_2 \ \dots \ u_n)) = \alpha((u_1 \ u_2 \ \dots \ u_n)B)$$

= $\alpha(u_1 \ u_2 \ \dots \ u_n)B = (u_1 \ u_2 \ \dots \ u_n)AB$,

which shows that $\varphi(\alpha\beta) = AB$. Therefore φ is a ring isomorphism from R onto $[K]_n$. Let a be any element of K. Then

$$\overline{a}(u_1 \ u_2 \ \dots \ u_n) = (au_1 \ au_2 \ \dots \ au_n) = (u_1a \ u_2a \ \dots \ u_na)$$

$$= (u_1 \ u_2 \ \dots \ u_n)aE$$

where E is the identity matrix, i.e., the $n \times n$ matrix whose (i, i)-components $(1 \le i \le n)$ are 1 and other components are all 0. Thus we know that $\varphi(\overline{a}) = aE$ whence $\varphi(\overline{K}) = KE$. Let for each pair (i, j) with $1 \le i, j \le n$ E_{ij} be the $n \times n$ matrix whose (i, j)-component is 1 and other components are all 0. Then each $A \in [K]_n$ whose (i, j)-component is $a_{ij} \in K$ can be expressed as $A = \sum a_{ij} E_{ij}$. This implies that E_{ij} $(1 \le i, j \le n)$ are linearly independent basis of $[K]_n$ over K. Thus the dimension of $[K]_n$ over K is n^2 . Since aA = aEA for

every $a \in K$ and $A \in [K]_n$, this implies that $[K]_n : KE = n^2$. Therefore we know that $[R : \overline{K}] = n^2$.

Let σ be any element of G. Then σ is in R, because $(lk)^{\sigma} = l^{\sigma}k^{\sigma} = l^{\sigma}k$ for every $l \in L$ and $k \in K$. Moreover, we have $(\sigma)l' = \sigma(ll') = (ll')^{\sigma} = l^{\sigma}l'^{\sigma} = (\overline{l^{\sigma}}\sigma)l'$ for every $l, l' \in L$, which shows that $\sigma \overline{l} = \overline{l^{\sigma}}\sigma$ for any $l \in L$ and in particular $\sigma \overline{L} = \overline{L}\sigma$. Therefore $\overline{L}\sigma$ can be regarded as a two-sided \overline{L} -module $\overline{L}\overline{L}\sigma_{\overline{L}}$. Let τ be another element of G such that $\overline{L}\sigma$ and $\overline{L}\tau$ are isomorphic as two-sided \overline{L} -modules. Let μ be the isomorphism and $\mu(\sigma) = \overline{a}\tau$ with $a \in L$ ($a \neq 0$ because $\sigma \neq 0$). Then for every $l \in L$ $\mu(\sigma \overline{l}) = \overline{a}\tau \overline{l} = \overline{a}l^{\overline{\tau}}\tau$. But since $\sigma \overline{l} = \overline{l^{\sigma}}\sigma$, we also have $\mu(\sigma \overline{l}) = \overline{l^{\sigma}}\overline{a}\tau$. It follows then that $al^{\tau} = l^{\sigma}a$ whence $l^{\tau} = l^{\sigma}$ for every $l \in L$, i.e., $\sigma = \tau$.

Now, since L is a field, the left \overline{L} -module $\overline{L}\overline{L}$ is simple and therefore the two-sided \overline{L} -module $\overline{L}\overline{L}\sigma_{\overline{L}}$ is simple for every $\sigma \in G$. Let $\sigma_1, \ \sigma_2, \dots, \sigma_n$ be all distinct elements of G. Then if $i \neq j$, the corresponding $\overline{L}(\overline{L}\sigma_i)_{\overline{L}}$ and $\overline{L}(\overline{L}\sigma_j)_{\overline{L}}$ are not isomorphic. Consider now $S = \overline{L}\sigma_1 + \overline{L}\sigma_2 + \cdots + \overline{L}\sigma_n$. Then S is a two-sided \overline{L} -submodule of R. We want to show that $S = \overline{L}\sigma_1 \oplus \overline{L}\sigma_2 \oplus \cdots \oplus \overline{L}\sigma_n$. For the proof, consider first $\overline{L}\sigma_1 \cap \overline{L}\sigma_2$. If $\overline{L}\sigma_1 \cap \overline{L}\sigma_2 \neq 0$, then this is a non-zero submodule of $\overline{L}\sigma_1$ and $\overline{L}\sigma_2$. But since both $\overline{L}(\overline{L}\sigma_1)_{\overline{L}}$ and $\overline{L}(\overline{L}\sigma_2)_{\overline{L}}$ are simple, it follows that $\overline{L}\sigma_1 \cap \overline{L}\sigma_2$ is equal to $\overline{L}\sigma_1$ and to $\overline{L}\sigma_2$ whence $\overline{L}\sigma_1 = \overline{L}\sigma_2$. But this contradicts to that $\sigma_1 \neq \sigma_2$. Thus we have that $\overline{L}\sigma_1 \cap \overline{L}\sigma_2 = 0$ whence $\overline{L}\sigma_1 + \overline{L}\sigma_2 = \overline{L}\sigma_1 \oplus \overline{L}\sigma_2$. Consider next $S_r = \overline{L}\sigma_1 + \overline{L}\sigma_2 + \cdots + \overline{L}\sigma_r$ with 1 < r < n and assume that $S_r = \overline{L}\sigma_1 \oplus \overline{L}\sigma_2 \oplus \cdots \oplus \overline{L}\sigma_r$. Let P_i $(i = 1, 2, \dots, r)$ be the projection from S_r to $\overline{L}\sigma_i$. Now suppose $S_r \cap \overline{L}\sigma_{r+1} \neq 0$. Then since this is a non-zero submodule of the simple two-sided module $\overline{L}\sigma_{r+1}$, this coincides with $\overline{L}\sigma_{r+1}$, i.e., $\overline{L}\sigma_{r+1} \subset S_r$. Then there must be a P_i such that P_i maps $\overline{L}\sigma_{r+1}$ isomorphically onto $\overline{L}\sigma_i$. Then this contradicts to that $\sigma_i \neq \sigma_{r+1}$. Thus $S_r \cap \overline{L}\sigma_{r+1} = 0$ whence $S_r + \overline{L}\sigma_{r+1} = S_r \oplus \overline{L}\sigma_{r+1}$. By applying this for $r = 2, \dots, n-1$ we know that $S = \overline{L}\sigma_1 \oplus \overline{L}\sigma_2 \oplus \cdots \oplus \overline{L}\sigma_n$.

for $r=2,\ldots,n-1$ we know that $S=\overline{L}\sigma_1\oplus\overline{L}\sigma_2\oplus\cdots\oplus\overline{L}\sigma_n$. Since we have proved that [L:K]=n in I and $\overline{L}\overline{L}\sigma_i\cong\overline{L}$ for every i $(1\leq i\leq n)$, it follows that $[\overline{L}\sigma_i:\overline{K}]=n$ and therefore $[S:\overline{K}]=n^2$. But since S is a \overline{K} -submodule of R and we proved that $[R:\overline{K}]=n^2$, we can conclude that $R=S=\sum_{\sigma\in G}\overline{L}\sigma$, which shows that L is a Galois extension of K relative to G.

References

- R. Alfaro and G. Szeto, On Galois extensions of an Azumaya algebra, Comm. in Algebra, 25(6), (1997), 1873-1882.
- [2] F.R. DeMeyer, Galois theory in separable algebras over commutative rings, Illinois J. Math., 10(1966), 287-295.
- [3] F.R. DeMeyer and E. Ingraham, Separable algebras over commutative rings, Vol. 181, Springer-Verlag, Berlin, 1971.
- M. Harada, Supplementary results on Galois extension, Osaka J. Math., 2(1965), 343-350.
- [5] T. Kanzaki, On Galois algebra over a commutative ring, Osaka J. Math., 2(1965), 309-317.
- [6] G. Szeto and L. Xue, The structure of Galois algebras, Journal of Algebra, 237(1)(2001), 238-246.
- [7] G. Szeto and L. Xue, *The Boolean algebra and central Galois algebras*, International Journal of Mathematics and Mathematical Sciences, 28(4)(2001), 237-242.
- [8] G. Szeto and L. Xue, *The Galois algebras and the Azumaya Galois extensions*, International Journal of Mathematics and Mathematical Sciences, 31(1) (2002), 37-42.

- [9] O. E. Villamayor and D. Zelinsky, $Galois\ theory\ with\ infinitely\ many\ idempotents,$ Nagoya Math. J. $35(1969),\ 83-98.$
 - *Department of Mathematics, Indiana University Bloomington, IN 47405, USA
 - $^{**}\mbox{Department}$ of Mathematics, Bradley University Peoria, Illinois 61625, USA
 - $^{**}\mbox{Department}$ of Mathematics, Bradley University Peoria, Illinois 61625, USA