# A RELATION ON SUBTRACTION ALGEBRAS 

Sun Shin Ahn, Young Hee Kim and Kyoung Ja Lee

Received April 1, 2005


#### Abstract

As a generalization of a subtraction homomorphism, the notion of a relation on subtraction algebras, called an $S A$-relation, is introduced. Some fundamental properties to subtraction algebras are discussed.


## 1. Introduction

B. M. Schein $([7])$ considered systems of the form $(\Phi ; \circ, \backslash)$, where $\Phi$ is a set of functions closed under the composition " $\circ$ " of functions (and hence ( $\Phi ; \circ$ ) is a function semigroup) and the set theoretic subtraction " $\backslash$ " (and hence $(\Phi ; \backslash)$ is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka([8]) discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. Y. H. Kim and H. S. Kim([5]) showed that a subtraction algebra is equivalent to an implicative $B C K$-algebra, and a subtraction semigroup is a special case of a $B C I$-semigroup which is a generalization of a ring. Y. B. Jun et al.([3]) introduced the notion of ideals in subtraction algebras and discussed characterization of ideals. In [2], Y. B. Jun and H. S. Kim established the ideal generated by a set and discussed related results. Y. B. Jun and K. H. $\operatorname{Kim}([4])$ introduced the notion of prime and irreducible ideals of a subtraction algebra, and gave a characterization of a prime ideal. They also provided a condition for an ideal to be prime/irreducible ideal. In this paper, we introduce the notion of a relation on subtraction algebras, called an $S A$-relation, which is a generalization of a subtraction homomorphism, and then we discuss some fundamental properties of subtraction algebras.

## 2. Preliminaries

A subtraction algebra is defined as an algebra ( $X ;-$ ) with a binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,
(S1) $\quad x-(y-x)=x$;
(S2) $\quad x-(x-y)=y-(y-x)$;
(S3) $\quad(x-y)-z=(x-z)-y$.
The subtraction determines an order relation on $X: a \leq b \Leftrightarrow a-b=0$, where $0=a-a$ is an element that does not depend on the choice of $a \in X$. The ordered set $(X ; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in

[^0]which every interval $[0, a]$ is a Boolean algebra with respect to the induced order. Here $a \wedge b=a-(a-b)$; the complement of an element $b \in[0, a]$ is $a-b$; and if $b, c \in[0, a]$, then
\[

$$
\begin{aligned}
b \vee c & =\left(b^{\prime} \wedge c^{\prime}\right)^{\prime}=a-((a-b) \wedge(a-c)) \\
& =a-((a-b)-((a-b)-(a-c))) .
\end{aligned}
$$
\]

In a subtraction algebra, the following are true (see [3,4]):
(a1) $(x-y)-y=x-y$.
(a2) $\quad x-0=x$ and $0-x=0$.
(a3) $(x-y)-x=0$.
(a4) $x-(x-y) \leq y$.
(a5) $(x-y)-(y-x)=x-y$.
(a6) $x-(x-(x-y))=x-y$.
(a7) $(x-y)-(z-y) \leq x-z$.
(a8) $x \leq y$ if and only if $x=y-w$ for some $w \in X$.
(a9) $x \leq y$ implies $x-z \leq y-z$ and $z-y \leq z-x$ for all $z \in X$.
(a10) $\quad x, y \leq z$ implies $x-y=x \wedge(z-y)$.
(a11) $\quad(x \wedge y)-(x \wedge z) \leq x \wedge(y-z)$.
Example 2.1. Let $X:=\{0, a, b, c\}$ be a set with the following table:

| - | 0 | a | b | c |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| a | a | 0 | a | a |
| b | b | b | 0 | b |
| c | c | c | c | 0 |

Then $X$ is a subtraction algebra.
A non-empty subset $A$ of a subtraction algebra $X$ is called a subalgebra of $X$ if $x-y \in X$ for all $x, y \in X$.

Definition 2.2. ([3]) A non-empty subset $A$ of a subtraction algebra $X$ is called an ideal of $X$ if it satisfies
(I1) $0 \in A$,
(I2) $(\forall x \in X)(\forall y \in A)(x-y \in A \Longrightarrow x \in A)$.
Lemma 2.3. Let $(X ;-)$ be a subtraction algebra. Then $(X ;-)$ is a poset.
Proof. Since $x-x=0$ for all $x \in X$, we have $x \leq x$. Assume that $x \leq y$ and $y \leq z$ for all $x, y, z \in X$. By (a9), $y \leq z$ implies $x-z \leq x-y$ for all $z \in X$. If $x \leq y$, then $x-y=0$. Hence $x-z \leq 0$, and so, $x \leq z$. Therefore we have $x \leq y$ and $y \leq z$ imply $x \leq z$. Suppose $x \leq y$ and $y \leq x$ for all $x, y \in X$. Then $x-y=0$ and $y-x=0$. Using (a2) and (S2), we have $x=x-0=x-(x-y)=y-(y-x)=y-0=y$. Hence $x \leq y$ and $y \leq x$ imply $x=y$. Thus $(X ;-)$ is a partially ordered set.

Note that a subtraction algebra is equivalent to an implicative $B C K$-algebra and every $B C K$-algebra has a poset structure by defining $x \leq y \Leftrightarrow x * y=0, \forall x, y \in X$.

Let $X:=(X ;-X, \leq)$ and $Y:=\left(Y ;-Y, \leq^{\prime}\right)$ be subtraction algebras. A mapping $f$ from a poset $(X ; \leq)$ into a poset $\left(Y ; \leq^{\prime}\right)$ is called a Harris map $([6])$ if for any incomparable elements $x, y \in X$, either $f(x)=f(y)$ or $f(x)$ and $f(y)$ are incomparable. We denote the fact that $x$ and $y$ are incomparable by $x \| y$. A mapping $f: X \rightarrow Y$ is called a (subtraction) homomorphism if
(H1) $\quad f\left(x-_{X} y\right)=f(x)-_{Y} f(y)$ for any $x, y \in X$,
(H2) $\quad f$ is a Harris map.
Note that $f\left(0_{X}\right)=0_{Y}$, since $x-x=0$. Let $\operatorname{Ker}(f):=\left\{x \in X \mid f(x)=0_{Y}\right\}$ be the kernel of $f$. If a mapping $f: X \rightarrow Y$ satisfies (H1), then it is order preserving, i.e., $x \leq y$ implies $0_{Y}=f(x-y)=f(x)-f(y)$, i.e., $f(x) \leq f(y)$. Define the trivial homomorphism 0 as $0(x)=0$ for all $x \in X$.

Example 2.4. In Example 2.1, if we define a map $\varphi: X \rightarrow X$ by $\varphi(0)=0, \varphi(a)=$ $b, \varphi(b)=a, \varphi(c)=c$, then it is easy to verify that $\varphi$ is a homomorphism.

## 3. $S A$-RELATIONS

Definition 3.1. Let $X$ and $Y$ be subtraction algebras. A non-empty relation $\mathcal{H} \subseteq X \times Y$ is called an $S A$-relation if it satisfies:
(R1) $\quad(\forall x \in X)(\exists y \in Y)(x \mathcal{H} y)$,
(R2) $\quad(\forall x, y \in X)(\forall a, b \in Y)(x \mathcal{H} a, y \mathcal{H} b \Longrightarrow(x-y) \mathcal{H}(a-b))$.
We usually denote such relation by $\mathcal{H}: X \rightarrow Y$. It is clear from (R1) and (R2) that $0_{X} \mathcal{H} 0_{Y}$.

Example 3.2. Let $X:=\{0, a, b\}$ be a set with the following table:

| - | 0 | a | b |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| a | a | 0 | a |
| b | b | b | 0 |

Then $(X ;-)$ is a subtraction algebra. Define a relation $\mathcal{H}: X \rightarrow X$ as follows: $0 \mathcal{H} 0,0 \mathcal{H} a$, $0 \mathcal{H} b, a \mathcal{H} 0, a \mathcal{H} a, a \mathcal{H} b, b \mathcal{H} 0$. It is easy to verify that $\mathcal{H}$ is an $S A$-relation. A relation $\mathcal{D}: X \rightarrow$ $X$ given by $0 \mathcal{D} 0,0 \mathcal{D} b, a \mathcal{D} 0, a \mathcal{D} b, b \mathcal{D} b$ is an $S A$-relation.

Proposition 3.3. Every homomorphism of subtraction algebras is an $S A$-relation.
Proof. Suppose that $\mathcal{H}: X \rightarrow Y$ be a homomorphism of subtraction algebras. Clearly, $\mathcal{H}$ satisfies conditions (R1) and (R2).

Note that every diagonal $S A$-relation on a subtraction algebra(i.e., an $S A$-relation satisfying $x \mathcal{H} x$ for all $x \in X$ in which $x \mathcal{H} y$ is false whenever $x \neq y$ ) is clearly a subtraction homomorphism. But, in general, the converse of Proposition 3.3 need not be true as seen in the following example.

Example 3.4. In Example 3.2, the $S A$-relations $\mathcal{H}$ and $\mathcal{D}$ are not homomorphisms.
Let $\mathcal{H}: X \rightarrow Y$ be an $S A$-relation. For any $x \in X$ and any $y \in Y$,

$$
\mathcal{H}[x]:=\{y \in Y: x \mathcal{H} y\}, \quad \text { and } \quad \mathcal{H}^{-1}[y]:=\{x \in X: x \mathcal{H} y\} .
$$

Note that $\mathcal{H}[x]$ and $\mathcal{H}^{-1}[y]$ are not subalgebras of $Y$ and $X$, respectively as seen in the following example.

Example 3.5. Let $X:=\{0, a, b, c\}, Y:=\{0,1,2,3\}$ be sets with the following table, respectively:

| $-X$ | 0 | a | b | c |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| a | a | 0 | a | a |
| b | b | b | 0 | b |
| c | c | c | c | 0 |


| $-_{Y}$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 2 | 2 | 2 | 0 | 0 |
| 3 | 3 | 2 | 1 | 0 |

Define a relation $\mathcal{H}: X \rightarrow Y$ as follows: $0 \mathcal{H} 0, a \mathcal{H} 0, b \mathcal{H} 1, c \mathcal{H} 2$. It is easy to verify that $\mathcal{H}$ is an $S A$-relation, but $\mathcal{H}^{-1}[2]=\{c\}$ (resp., $\mathcal{H}[c]=\{2\}$ ) is not a subalgebra of $X$ (resp., $Y$ ).
Theorem 3.6. For any $S A$-relation $\mathcal{H}: X \rightarrow Y$, we have
(i) $\mathcal{H}\left[0_{X}\right]$, called the zero image of $\mathcal{H}$, is a subalgebra of $Y$.
(ii) $\mathcal{H}^{-1}\left[0_{Y}\right]$, called the kernel of $\mathcal{H}$, and denoted by $\operatorname{Ker\mathcal {H}}$, is a subalgebra of $X$.
(iii) $\operatorname{KerH}$ is an ideal of $X$.

Proof. (i) Since $0_{X} \mathcal{H} 0_{Y}, \mathcal{H}\left[0_{X}\right] \neq \emptyset$. Let $y_{1}, y_{2} \in \mathcal{H}\left[0_{X}\right]$. Then $0_{X} \mathcal{H} y_{1}$ and $0_{X} \mathcal{H} y_{2}$. It follows from (R2) and $x-x=0$ for all $x \in X$ that $0_{X} \mathcal{H}\left(y_{1}-y_{2}\right)$, that is, $y_{1}-y_{2} \in \mathcal{H}\left[0_{X}\right]$.
(ii) Since $0_{X} \mathcal{H} 0_{Y}, 0_{X} \in \operatorname{Ker} \mathcal{H}$. Let $x_{1}, x_{2} \in \operatorname{Ker} \mathcal{H}$. Then $x_{1} \mathcal{H} 0_{Y}$ and $x_{2} \mathcal{H} 0_{Y}$. By using
(R2) and $x-x=0$ for all $x \in X$, we obtain $\left(x_{1}-x_{2}\right) \mathcal{H} 0_{Y}$ and $x_{1}-x_{2} \in \operatorname{KerH}$.
(iii) Since $0_{X} \mathcal{H} 0_{Y}, 0_{X} \in \operatorname{Ker} \mathcal{H}$. Let $a-b, b \in \operatorname{Ker} \mathcal{H}$ for any $a \in X$. Then $(a-b) \mathcal{H} 0_{Y}$ and $b \mathcal{H} 0_{Y}$. For such an $a \in X$, there exists $\alpha \in Y$ such that $a \mathcal{H} \alpha$, since $\mathcal{H}$ is an $S A$ relation. Hence $(a-b) \mathcal{H}\left(\alpha-0_{Y}\right)$, i.e., $(a-b) \mathcal{H} \alpha$. Since $(a-b) \mathcal{H} \alpha$ and $(a-b) \mathcal{H} 0_{Y}$, we have $((a-b)-(a-b)) \mathcal{H}\left(\alpha-0_{Y}\right)$, i.e., $0_{X} \mathcal{H} \alpha$ and so $\left(a-0_{X}\right) \mathcal{H}(\alpha-\alpha)$, i.e., $a \mathcal{H} 0_{Y}$. Therefore $a \in \operatorname{Ker} \mathcal{H}$. Thus $\operatorname{Ker} \mathcal{H}$ is an ideal of $X$. This completes the proof.

Proposition 3.7. Let $\mathcal{H}: X \rightarrow Y$ be an $S A$-relation and $a, b \in X, u, v \in Y$.
(i) If $\mathcal{H}[a] \cap \mathcal{H}[b] \neq \emptyset$, then $a-b \in K e r \mathcal{H}$.
(ii) If $\mathcal{H}^{-1}[u] \cap \mathcal{H}^{-1}[v] \neq \emptyset$, then $u-v \in \mathcal{H}\left[0_{X}\right]$.

Proof. (i) Let $a, b \in X$ be such that $\mathcal{H}[a] \cap \mathcal{H}[b] \neq \emptyset$. Taking $y \in \mathcal{H}[a] \cap \mathcal{H}[b]$, we have $a \mathcal{H} y$ and $b \mathcal{H} y$. It follows from (R2) and $x-x=0$ for all $x \in X$ that $(a-b) \mathcal{H}(y-y)=(a-b) \mathcal{H} 0_{Y}$ so that $a-b \in \operatorname{KerH}$.
(ii) Let $x \in \mathcal{H}^{-1}[u] \cap \mathcal{H}^{-1}[v]$. Then $x \mathcal{H} u$ and $x \mathcal{H} v$. Using (R2) and $x-x=0$ for all $x \in X$, we obtain $(x-x) \mathcal{H}(u-v)=0_{X} \mathcal{H}(u-v)$, i.e., $u-v \in \mathcal{H}\left[0_{X}\right]$. This completes the proof.
Theorem 3.8. Let $\mathcal{H}: X \rightarrow Y$ be an $S A$-relation and let $S$ be a subalgebra of $X$. Then

$$
\mathcal{H}[S]:=\{y \in Y \mid x \mathcal{H} y \quad \text { for some } x \in S\}
$$

is a subalgebra of $Y$.
Proof. Clearly, $\mathcal{H}[S] \neq \emptyset$ since $0_{X} \mathcal{H} 0_{Y}$. Let $y_{1}, y_{2} \in \mathcal{H}[S]$. Then $x_{1} \mathcal{H} y_{1}$ and $x_{2} \mathcal{H} y_{2}$ for some $x_{1}, x_{2} \in S$. Using (R2), we obtain $\left(x_{1}-x_{2}\right) \mathcal{H}\left(y_{1}-y_{2}\right)$ which implies that $y_{1}-y_{2} \in \mathcal{H}[S]$ since $x_{1}-x_{2} \in S$. Therefore $\mathcal{H}[S]$ is a subalgebra of $\mathcal{H}[X]$.

Corollary 3.9. Let $\mathcal{H}: X \rightarrow Y$ be an $S A$-relation. Then
(i) $\mathcal{H}[X]$ is a subalgebra of $Y$.
(ii) $\mathcal{H}[X]=\cup_{x \in X} \mathcal{H}[x]$.
(iii) The zero image of $\mathcal{H}$ is a subalgebra of $\mathcal{H}[X]$.

Proof. (i) and (ii) are straightforward.
(iii) Let $a, b \in \mathcal{H}\left[0_{X}\right]$. Then $0_{X} \mathcal{H} a$ and $0_{X} \mathcal{H} b$, and hence $0_{X} \mathcal{H}(a-b)$, i.e., $a-b \in \mathcal{H}\left[0_{X}\right]$. Therefore $\mathcal{H}$ is a subalgebra of $\mathcal{H}[X]$.

Theorem 3.10. Let $\mathcal{H}: X \rightarrow Y$ be an $S A$-relation and $T$ be a subalgebra of $Y$. Then

$$
\mathcal{H}^{-1}[T]:=\{x \in X \mid x \mathcal{H} y \text { for some } y \in T\}
$$

is a subalgebra of $X$.
Proof. Obviously, $\mathcal{H}^{-1}[T] \neq \emptyset$ since $0_{X} \mathcal{H} 0_{Y}$. Let $x_{1}, x_{2} \in \mathcal{H}^{-1}[T]$. Then there exist $y_{1}, y_{2} \in T$ such that $x_{1} \mathcal{H} y_{1}$ and $x_{2} \mathcal{H} y_{2}$. Note that $y_{1}-y_{2} \in T$ since $T$ is a subalgebra of $Y$. It follows from (R2) that $\left(x_{1}-x_{2}\right) \mathcal{H}\left(y_{1}-y_{2}\right)$ so that $x_{1}-x_{2} \in \mathcal{H}^{-1}[T]$. Hence $\mathcal{H}^{-1}[T]$ is a subalgebra of $X$.

Corollary 3.11. Let $\mathcal{H}: X \rightarrow Y$ be an $S A$-relation. Then
(i) $\mathcal{H}^{-1}[Y]$ is a subalgebra of $X$,
(ii) $\mathcal{H}^{-1}[Y]:=\cup_{y \in Y} \mathcal{H}^{-1}[y]$,
(iii) The kernel of $\mathcal{H}$ is a subalgebra of $\mathcal{H}^{-1}[Y]$.

Proof. (i) and (ii) are straightforward.
(iii) Let $x, y \in \operatorname{Ker\mathcal {H}}$. Then $x \mathcal{H} 0_{Y}$ and $y \mathcal{H} 0_{Y}$. It follows from (R2) and $x-x=0$ for all $x \in X$ that $(x-y) \mathcal{H}\left(0_{Y}-0_{Y}\right)=(x-y) \mathcal{H} 0_{Y}$ so that $x-y \in K e r \mathcal{H}$. Hence $\mathcal{H}$ is a subalgebra of $\mathcal{H}^{-1}[Y]$. This completes the proof.

## References

[1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston, 1969.
[2] Y. B. Jun and H.S. Kim, On ideals in subtraction algebras, Sci. Math. Japo. (submitted).
[3] Y. B. Jun, H. S. Kim and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Japo. Online e-2004 (2004), 397-402.
[4] Y. B. Jun and K. H. Kim, Prime and irreducible ideals in subtraction algebras, Internat. J. Math. \& Math. Sci. (submitted).
[5] Y. H. Kim and H. S. Kim, Subtraction algebras and BCK-algebras, Math. Bohemica 128 (2003), 21-24.
[6] J. Neggers an d H. S. Kim, Basic Posets, World Sci. Pub. Co., New York, 1998.
[7] B. M. Schein, Difference Semigroups, Comm. in Algebra 20 (1992), 2153-2169.
[8] B. Zelinka, Subtraction Semigroups, Math. Bohemica 120 (1995), 445-447.

## Sun Shin Ahn

Department of Mathematics Education
Dongguk University
Seoul 100-715, Korea
sunshine@dongguk.edu
Young Hee Kim
Department of Mathematics
Chungbuk National University
Chongju 361-763, Korea
yhkim@cbucc.chungbuk.ac.kr
Kyoung Ja Lee
Department of Mathematics
Kookmin University
Seoul 136-702, Korea
lsj1109@kookmin.ac.kr


[^0]:    2000 Mathematics Subject Classification. 03G25, 06A06, 06F35.
    Keywords and phrases. subtraction algebra, $S A$-relation, subalgebra, homomorphism, kernel, zero image

