A RELATION ON SUBTRACTION ALGEBRAS

SUN SHIN AHN, YOUNG HEE KIM AND KYOUNG JA LEE

Received April 1, 2005

ABSTRACT. As a generalization of a subtraction homomorphism, the notion of a relation on subtraction algebras, called an SA-relation, is introduced. Some fundamental properties to subtraction algebras are discussed.

1. INTRODUCTION

B. M. Schein([7]) considered systems of the form $(\Phi; \circ, \backslash)$, where Φ is a set of functions closed under the composition " \circ " of functions (and hence (Φ ; \circ) is a function semigroup) and the set theoretic subtraction "\" (and hence $(\Phi; \backslash)$ is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka([8]) discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. Y. H. Kim and H. S. Kim([5]) showed that a subtraction algebra is equivalent to an implicative BCK-algebra, and a subtraction semigroup is a special case of a BCI-semigroup which is a generalization of a ring. Y. B. Jun et al.([3]) introduced the notion of ideals in subtraction algebras and discussed characterization of ideals. In [2], Y. B. Jun and H. S. Kim established the ideal generated by a set and discussed related results. Y. B. Jun and K. H. Kim([4]) introduced the notion of prime and irreducible ideals of a subtraction algebra, and gave a characterization of a prime ideal. They also provided a condition for an ideal to be prime/irreducible ideal. In this paper, we introduce the notion of a relation on subtraction algebras, called an SA-relation, which is a generalization of a subtraction homomorphism, and then we discuss some fundamental properties of subtraction algebras.

2. Preliminaries

A subtraction algebra is defined as an algebra (X; -) with a binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,

- $(S1) \quad x (y x) = x;$
- (S2) x (x y) = y (y x);
- (S3) (x-y) z = (x-z) y.

The subtraction determines an order relation on $X: a \leq b \Leftrightarrow a - b = 0$, where 0 = a - a is an element that does not depend on the choice of $a \in X$. The ordered set $(X; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in

²⁰⁰⁰ Mathematics Subject Classification. 03G25, 06A06, 06F35.

 $Keywords\ and\ phrases.$ subtraction algebra, $SA\mbox{-}relation,$ subalgebra, homomorphism, kernel, zero image

which every interval [0, a] is a Boolean algebra with respect to the induced order. Here $a \wedge b = a - (a - b)$; the complement of an element $b \in [0, a]$ is a - b; and if $b, c \in [0, a]$, then

$$b \lor c = (b' \land c')' = a - ((a - b) \land (a - c))$$

= a - ((a - b) - ((a - b) - (a - c))).

In a subtraction algebra, the following are true (see [3,4]):

- (a1) (x y) y = x y.
- (a2) x 0 = x and 0 x = 0.
- (a3) (x y) x = 0.
- $(a4) \quad x (x y) \le y.$
- (a5) (x-y) (y-x) = x y.
- (a6) x (x (x y)) = x y.
- (a7) $(x-y) (z-y) \le x z$.
- (a8) $x \leq y$ if and only if x = y w for some $w \in X$.
- (a9) $x \leq y$ implies $x z \leq y z$ and $z y \leq z x$ for all $z \in X$.
- (a10) $x, y \le z$ implies $x y = x \land (z y)$.
- (a11) $(x \wedge y) (x \wedge z) \leq x \wedge (y z).$

Example 2.1. Let $X := \{0, a, b, c\}$ be a set with the following table:

-	0	a	b	с
0	0	0	0	0
\mathbf{a}	a	0	a	a
b	b	b	0	b
с	с	с	с	0

Then X is a subtraction algebra.

A non-empty subset A of a subtraction algebra X is called a *subalgebra* of X if $x - y \in X$ for all $x, y \in X$.

Definition 2.2. ([3]) A non-empty subset A of a subtraction algebra X is called an *ideal* of X if it satisfies

(I1) $0 \in A$,

(I2) $(\forall x \in X)(\forall y \in A)(x - y \in A \implies x \in A).$

Lemma 2.3. Let (X; -) be a subtraction algebra. Then (X; -) is a poset.

Proof. Since x - x = 0 for all $x \in X$, we have $x \le x$. Assume that $x \le y$ and $y \le z$ for all $x, y, z \in X$. By (a9), $y \le z$ implies $x - z \le x - y$ for all $z \in X$. If $x \le y$, then x - y = 0. Hence $x - z \le 0$, and so, $x \le z$. Therefore we have $x \le y$ and $y \le z$ imply $x \le z$. Suppose $x \le y$ and $y \le x$ for all $x, y \in X$. Then x - y = 0 and y - x = 0. Using (a2) and (S2), we have x = x - 0 = x - (x - y) = y - (y - x) = y - 0 = y. Hence $x \le y$ and $y \le x$ imply x = y. Thus (X; -) is a partially ordered set. \Box

Note that a subtraction algebra is equivalent to an implicative *BCK*-algebra and every *BCK*-algebra has a poset structure by defining $x \leq y \Leftrightarrow x * y = 0, \forall x, y \in X$.

Let $X := (X; -_X, \leq)$ and $Y := (Y; -_Y, \leq')$ be subtraction algebras. A mapping f from a poset $(X; \leq)$ into a poset $(Y; \leq')$ is called a *Harris map* ([6]) if for any incomparable elements $x, y \in X$, either f(x) = f(y) or f(x) and f(y) are incomparable. We denote the fact that x and y are incomparable by x || y. A mapping $f : X \to Y$ is called a (*subtraction*) *homomorphism* if (H1) f(x - x y) = f(x) - f(y) for any $x, y \in X$,

(H2) f is a Harris map.

Note that $f(0_X) = 0_Y$, since x - x = 0. Let $Ker(f) := \{x \in X | f(x) = 0_Y\}$ be the kernel of f. If a mapping $f : X \to Y$ satisfies (H1), then it is order preserving, i.e., $x \leq y$ implies $0_Y = f(x - y) = f(x) - f(y)$, i.e., $f(x) \leq f(y)$. Define the trivial homomorphism 0 as 0(x) = 0 for all $x \in X$.

Example 2.4. In Example 2.1, if we define a map $\varphi : X \to X$ by $\varphi(0) = 0, \varphi(a) = b, \varphi(b) = a, \varphi(c) = c$, then it is easy to verify that φ is a homomorphism.

3. SA-RELATIONS

Definition 3.1. Let X and Y be subtraction algebras. A non-empty relation $\mathcal{H} \subseteq X \times Y$ is called an *SA-relation* if it satisfies:

- (R1) $(\forall x \in X) \ (\exists y \in Y)(x\mathcal{H}y),$
- (R2) $(\forall x, y \in X) \ (\forall a, b \in Y) \ (x\mathcal{H}a, y\mathcal{H}b \implies (x-y)\mathcal{H}(a-b)).$

We usually denote such relation by $\mathcal{H}: X \to Y$. It is clear from (R1) and (R2) that $0_X \mathcal{H} 0_Y$.

Example 3.2. Let $X := \{0, a, b\}$ be a set with the following table:

-	0	a	b
0	0	0	0
a	a	0	a
b	b	b	0

Then (X; -) is a subtraction algebra. Define a relation $\mathcal{H} : X \to X$ as follows: $0\mathcal{H}0, 0\mathcal{H}a, 0\mathcal{H}b, a\mathcal{H}0, a\mathcal{H}a, a\mathcal{H}b, b\mathcal{H}0$. It is easy to verify that \mathcal{H} is an SA-relation. A relation $\mathcal{D} : X \to X$ given by $0\mathcal{D}0, 0\mathcal{D}b, a\mathcal{D}0, a\mathcal{D}b, b\mathcal{D}b$ is an SA-relation.

Proposition 3.3. Every homomorphism of subtraction algebras is an SA-relation.

Proof. Suppose that $\mathcal{H}: X \to Y$ be a homomorphism of subtraction algebras. Clearly, \mathcal{H} satisfies conditions (R1) and (R2). \Box

Note that every diagonal SA-relation on a subtraction algebra (i.e., an SA-relation satisfying $x\mathcal{H}x$ for all $x \in X$ in which $x\mathcal{H}y$ is false whenever $x \neq y$) is clearly a subtraction homomorphism. But, in general, the converse of Proposition 3.3 need not be true as seen in the following example.

Example 3.4. In Example 3.2, the SA-relations \mathcal{H} and \mathcal{D} are not homomorphisms.

Let $\mathcal{H}: X \to Y$ be an SA-relation. For any $x \in X$ and any $y \in Y$,

 $\mathcal{H}[x] := \{ y \in Y : x\mathcal{H}y \}, \text{ and } \mathcal{H}^{-1}[y] := \{ x \in X : x\mathcal{H}y \}.$

Note that $\mathcal{H}[x]$ and $\mathcal{H}^{-1}[y]$ are not subalgebras of Y and X, respectively as seen in the following example.

Example 3.5. Let $X := \{0, a, b, c\}, Y := \{0, 1, 2, 3\}$ be sets with the following table, respectively:

-X	0	a	b	с	-Y	0	1	2	3
0	0	0	0	0	0	0	0	0	0
a	a	0	a	a	1	1	0	1	0
b	b	b	0	b	2	2	2	0	0
с	с	\mathbf{c}	с	0	3	3	2	1	0

Define a relation $\mathcal{H}: X \to Y$ as follows: $0\mathcal{H}0, a\mathcal{H}0, b\mathcal{H}1, c\mathcal{H}2$. It is easy to verify that \mathcal{H} is an SA-relation, but $\mathcal{H}^{-1}[2] = \{c\}$ (resp., $\mathcal{H}[c] = \{2\}$) is not a subalgebra of X (resp., Y).

Theorem 3.6. For any SA-relation $\mathcal{H}: X \to Y$, we have

- (i) $\mathcal{H}[0_X]$, called the zero image of \mathcal{H} , is a subalgebra of Y.
- (ii) $\mathcal{H}^{-1}[0_Y]$, called the kernel of \mathcal{H} , and denoted by Ker \mathcal{H} , is a subalgebra of X.
- (iii) $Ker\mathcal{H}$ is an ideal of X.

Proof. (i) Since $0_X \mathcal{H} 0_Y$, $\mathcal{H}[0_X] \neq \emptyset$. Let $y_1, y_2 \in \mathcal{H}[0_X]$. Then $0_X \mathcal{H} y_1$ and $0_X \mathcal{H} y_2$. It follows from (R2) and x - x = 0 for all $x \in X$ that $0_X \mathcal{H}(y_1 - y_2)$, that is, $y_1 - y_2 \in \mathcal{H}[0_X]$. (ii) Since $0_X \mathcal{H} 0_Y$, $0_X \in Ker \mathcal{H}$. Let $x_1, x_2 \in Ker \mathcal{H}$. Then $x_1 \mathcal{H} 0_Y$ and $x_2 \mathcal{H} 0_Y$. By using (R2) and x - x = 0 for all $x \in X$, we obtain $(x_1 - x_2) \mathcal{H} 0_Y$ and $x_1 - x_2 \in Ker \mathcal{H}$. (iii) Since $0_X \mathcal{H} 0_Y$, $0_X \in Ker \mathcal{H}$. Let $a - b, b \in Ker \mathcal{H}$ for any $a \in X$. Then $(a - b) \mathcal{H} 0_Y$

(iii) Since $0_X h 0_Y$, $0_X \in Ker \mathcal{H}$. Let $a = b, b \in Ker \mathcal{H}$ for any $a \in X$. Then $(a = b)h 0_Y$ and $b\mathcal{H}0_Y$. For such an $a \in X$, there exists $\alpha \in Y$ such that $a\mathcal{H}\alpha$, since \mathcal{H} is an SArelation. Hence $(a - b)\mathcal{H}(\alpha - 0_Y)$, i.e., $(a - b)\mathcal{H}\alpha$. Since $(a - b)\mathcal{H}\alpha$ and $(a - b)\mathcal{H}0_Y$, we have $((a - b) - (a - b))\mathcal{H}(\alpha - 0_Y)$, i.e., $0_X\mathcal{H}\alpha$ and so $(a - 0_X)\mathcal{H}(\alpha - \alpha)$, i.e., $a\mathcal{H}0_Y$. Therefore $a \in Ker\mathcal{H}$. Thus $Ker\mathcal{H}$ is an ideal of X. This completes the proof. \Box

Proposition 3.7. Let $\mathcal{H}: X \to Y$ be an SA-relation and $a, b \in X, u, v \in Y$.

- (i) If $\mathcal{H}[a] \cap \mathcal{H}[b] \neq \emptyset$, then $a b \in Ker\mathcal{H}$.
- (ii) If $\mathcal{H}^{-1}[u] \cap \mathcal{H}^{-1}[v] \neq \emptyset$, then $u v \in \mathcal{H}[0_X]$.

Proof. (i) Let $a, b \in X$ be such that $\mathcal{H}[a] \cap \mathcal{H}[b] \neq \emptyset$. Taking $y \in \mathcal{H}[a] \cap \mathcal{H}[b]$, we have $a\mathcal{H}y$ and $b\mathcal{H}y$. It follows from (R2) and x - x = 0 for all $x \in X$ that $(a - b)\mathcal{H}(y - y) = (a - b)\mathcal{H}0_Y$ so that $a - b \in Ker\mathcal{H}$.

(ii) Let $x \in \mathcal{H}^{-1}[u] \cap \mathcal{H}^{-1}[v]$. Then $x\mathcal{H}u$ and $x\mathcal{H}v$. Using (R2) and x-x=0 for all $x \in X$, we obtain $(x-x)\mathcal{H}(u-v) = 0_X\mathcal{H}(u-v)$, i.e., $u-v \in \mathcal{H}[0_X]$. This completes the proof. \Box

Theorem 3.8. Let $\mathcal{H}: X \to Y$ be an SA-relation and let S be a subalgebra of X. Then

$$\mathcal{H}[S] := \{ y \in Y | x \mathcal{H} y \text{ for some } x \in S \}$$

is a subalgebra of Y.

Proof. Clearly, $\mathcal{H}[S] \neq \emptyset$ since $0_X \mathcal{H} 0_Y$. Let $y_1, y_2 \in \mathcal{H}[S]$. Then $x_1 \mathcal{H} y_1$ and $x_2 \mathcal{H} y_2$ for some $x_1, x_2 \in S$. Using (R2), we obtain $(x_1 - x_2)\mathcal{H}(y_1 - y_2)$ which implies that $y_1 - y_2 \in \mathcal{H}[S]$ since $x_1 - x_2 \in S$. Therefore $\mathcal{H}[S]$ is a subalgebra of $\mathcal{H}[X]$. \Box

Corollary 3.9. Let $\mathcal{H}: X \to Y$ be an SA-relation. Then

- (i) $\mathcal{H}[X]$ is a subalgebra of Y.
- (ii) $\mathcal{H}[X] = \bigcup_{x \in X} \mathcal{H}[x].$
- (iii) The zero image of \mathcal{H} is a subalgebra of $\mathcal{H}[X]$.

Proof. (i) and (ii) are straightforward.

(iii) Let $a, b \in \mathcal{H}[0_X]$. Then $0_X \mathcal{H}a$ and $0_X \mathcal{H}b$, and hence $0_X \mathcal{H}(a-b)$, i.e., $a-b \in \mathcal{H}[0_X]$. Therefore \mathcal{H} is a subalgebra of $\mathcal{H}[X]$. \Box **Theorem 3.10.** Let $\mathcal{H}: X \to Y$ be an SA-relation and T be a subalgebra of Y. Then

$$\mathcal{H}^{-1}[T] := \{ x \in X | x \mathcal{H} y \text{ for some } y \in T \}$$

is a subalgebra of X.

Proof. Obviously, $\mathcal{H}^{-1}[T] \neq \emptyset$ since $0_X \mathcal{H} 0_Y$. Let $x_1, x_2 \in \mathcal{H}^{-1}[T]$. Then there exist $y_1, y_2 \in T$ such that $x_1 \mathcal{H} y_1$ and $x_2 \mathcal{H} y_2$. Note that $y_1 - y_2 \in T$ since T is a subalgebra of Y. It follows from (R2) that $(x_1 - x_2)\mathcal{H}(y_1 - y_2)$ so that $x_1 - x_2 \in \mathcal{H}^{-1}[T]$. Hence $\mathcal{H}^{-1}[T]$ is a subalgebra of X. \Box

Corollary 3.11. Let $\mathcal{H}: X \to Y$ be an SA-relation. Then

- (i) $\mathcal{H}^{-1}[Y]$ is a subalgebra of X,
- (ii) $\mathcal{H}^{-1}[Y] := \bigcup_{y \in Y} \mathcal{H}^{-1}[y],$
- (iii) The kernel of \mathcal{H} is a subalgebra of $\mathcal{H}^{-1}[Y]$.

Proof. (i) and (ii) are straightforward.

(iii) Let $x, y \in Ker\mathcal{H}$. Then $x\mathcal{H}0_Y$ and $y\mathcal{H}0_Y$. It follows from (R2) and x - x = 0 for all $x \in X$ that $(x - y)\mathcal{H}(0_Y - 0_Y) = (x - y)\mathcal{H}0_Y$ so that $x - y \in Ker\mathcal{H}$. Hence \mathcal{H} is a subalgebra of $\mathcal{H}^{-1}[Y]$. This completes the proof. \Box

References

- [1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston, 1969.
- [2] Y. B. Jun and H.S. Kim, On ideals in subtraction algebras, Sci. Math. Japo. (submitted).
- [3] Y. B. Jun, H. S. Kim and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Japo. Online e-2004 (2004), 397-402.
- Y. B. Jun and K. H. Kim, Prime and irreducible ideals in subtraction algebras, Internat. J. Math. & Math. Sci. (submitted).
- Y. H. Kim and H. S. Kim, Subtraction algebras and BCK-algebras, Math. Bohemica 128 (2003), 21-24.
- [6] J. Neggers and H. S. Kim, *Basic Posets*, World Sci. Pub. Co., New York, 1998.
- [7] B. M. Schein, Difference Semigroups, Comm. in Algebra 20 (1992), 2153-2169.
- [8] B. Zelinka, Subtraction Semigroups, Math. Bohemica **120** (1995), 445-447.

Sun Shin Ahn Department of Mathematics Education Dongguk University Seoul 100-715, Korea sunshine@dongguk.edu

Young Hee Kim Department of Mathematics Chungbuk National University Chongju 361-763, Korea yhkim@cbucc.chungbuk.ac.kr

Kyoung Ja Lee Department of Mathematics Kookmin University Seoul 136-702, Korea lsj1109@kookmin.ac.kr