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A RELATION ON SUBTRACTION ALGEBRAS
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��������� As a generalization of a subtraction homomorphism, the notion of a relation on
subtraction algebras, called an SA-relation, is introduced. Some fundamental properties to
subtraction algebras are discussed.

1. Introduction

B. M. Schein([7]) considered systems of the form (Φ; ◦, \), where Φ is a set of functions
closed under the composition “◦”of functions (and hence (Φ; ◦) is a function semigroup)
and the set theoretic subtraction “\”(and hence (Φ; \) is a subtraction algebra in the sense
of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup
of invertible functions. B. Zelinka([8]) discussed a problem proposed by B. M. Schein con-
cerning the structure of multiplication in a subtraction semigroup. He solved the problem
for subtraction algebras of a special type, called the atomic subtraction algebras. Y. H.
Kim and H. S. Kim([5]) showed that a subtraction algebra is equivalent to an implicative
BCK-algebra, and a subtraction semigroup is a special case of a BCI-semigroup which
is a generalization of a ring. Y. B. Jun et al.([3]) introduced the notion of ideals in sub-
traction algebras and discussed characterization of ideals. In [2], Y. B. Jun and H. S. Kim
established the ideal generated by a set and discussed related results. Y. B. Jun and K. H.
Kim([4]) introduced the notion of prime and irreducible ideals of a subtraction algebra, and
gave a characterization of a prime ideal. They also provided a condition for an ideal to be
prime/irreducible ideal. In this paper, we introduce the notion of a relation on subtraction
algebras, called an SA-relation, which is a generalization of a subtraction homomorphism,
and then we discuss some fundamental properties of subtraction algebras.

2. Preliminaries

A subtraction algebra is defined as an algebra (X ;−) with a binary operation “−” that
satisfies the following identities: for any x, y, z ∈ X ,

(S1) x − (y − x) = x;
(S2) x − (x − y) = y − (y − x);
(S3) (x − y) − z = (x − z) − y.
The subtraction determines an order relation on X : a ≤ b ⇔ a− b = 0, where 0 = a− a

is an element that does not depend on the choice of a ∈ X . The ordered set (X ;≤) is
a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in
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which every interval [0, a] is a Boolean algebra with respect to the induced order. Here
a∧ b = a− (a− b); the complement of an element b ∈ [0, a] is a− b; and if b, c ∈ [0, a], then

b ∨ c = (b′ ∧ c′)′ = a − ((a − b) ∧ (a − c))

= a − ((a − b) − ((a − b) − (a − c))).

In a subtraction algebra, the following are true (see [3,4]):
(a1) (x − y) − y = x − y.
(a2) x − 0 = x and 0 − x = 0.
(a3) (x − y) − x = 0.
(a4) x − (x − y) ≤ y.
(a5) (x − y) − (y − x) = x − y.
(a6) x − (x − (x − y)) = x − y.
(a7) (x − y) − (z − y) ≤ x − z.
(a8) x ≤ y if and only if x = y − w for some w ∈ X.
(a9) x ≤ y implies x − z ≤ y − z and z − y ≤ z − x for all z ∈ X.
(a10) x, y ≤ z implies x − y = x ∧ (z − y).
(a11) (x ∧ y) − (x ∧ z) ≤ x ∧ (y − z).

Example 2.1. Let X := {0, a, b, c} be a set with the following table:

- 0 a b c
0 0 0 0 0
a a 0 a a
b b b 0 b
c c c c 0

Then X is a subtraction algebra.

A non-empty subset A of a subtraction algebra X is called a subalgebra of X if x−y ∈ X
for all x, y ∈ X .

Definition 2.2. ([3]) A non-empty subset A of a subtraction algebra X is called an ideal
of X if it satisfies

(I1) 0 ∈ A,
(I2) (∀x ∈ X)(∀y ∈ A)(x − y ∈ A =⇒ x ∈ A).

Lemma 2.3. Let (X ;−) be a subtraction algebra. Then (X ;−) is a poset.

Proof. Since x − x = 0 for all x ∈ X , we have x ≤ x. Assume that x ≤ y and y ≤ z for all
x, y, z ∈ X . By (a9), y ≤ z implies x − z ≤ x − y for all z ∈ X . If x ≤ y, then x − y = 0.
Hence x − z ≤ 0, and so, x ≤ z. Therefore we have x ≤ y and y ≤ z imply x ≤ z. Suppose
x ≤ y and y ≤ x for all x, y ∈ X . Then x − y = 0 and y − x = 0. Using (a2) and (S2), we
have x = x − 0 = x − (x − y) = y − (y − x) = y − 0 = y. Hence x ≤ y and y ≤ x imply
x = y. Thus (X ;−) is a partially ordered set. �

Note that a subtraction algebra is equivalent to an implicative BCK-algebra and every
BCK-algebra has a poset structure by defining x ≤ y ⇔ x ∗ y = 0, ∀x, y ∈ X .

Let X := (X ;−X ,≤) and Y := (Y ;−Y ,≤′) be subtraction algebras. A mapping f from
a poset (X ;≤) into a poset (Y ;≤′) is called a Harris map ([6]) if for any incomparable
elements x, y ∈ X , either f(x) = f(y) or f(x) and f(y) are incomparable. We denote the
fact that x and y are incomparable by x||y. A mapping f : X → Y is called a (subtraction)
homomorphism if
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(H1) f(x−X y) = f(x) −Y f(y) for any x, y ∈ X ,
(H2) f is a Harris map.

Note that f(0X) = 0Y , since x − x = 0. Let Ker(f) := {x ∈ X |f(x) = 0Y } be the kernel
of f . If a mapping f : X → Y satisfies (H1), then it is order preserving, i.e., x ≤ y implies
0Y = f(x − y) = f(x) − f(y), i.e., f(x) ≤ f(y). Define the trivial homomorphism 0 as
0(x) = 0 for all x ∈ X .

Example 2.4. In Example 2.1, if we define a map ϕ : X → X by ϕ(0) = 0, ϕ(a) =
b, ϕ(b) = a, ϕ(c) = c, then it is easy to verify that ϕ is a homomorphism.

3. SA-relations

Definition 3.1. Let X and Y be subtraction algebras. A non-empty relation H ⊆ X × Y
is called an SA-relation if it satisfies:

(R1) (∀x ∈ X) (∃y ∈ Y )( xHy),
(R2) (∀x, y ∈ X) (∀a, b ∈ Y ) (xHa, yHb =⇒ (x − y)H(a − b)).

We usually denote such relation by H : X → Y . It is clear from (R1) and (R2) that
0XH0Y .

Example 3.2. Let X := {0, a, b} be a set with the following table:

- 0 a b
0 0 0 0
a a 0 a
b b b 0

Then (X ;−) is a subtraction algebra. Define a relation H : X → X as follows: 0H0, 0Ha,
0Hb, aH0, aHa, aHb, bH0. It is easy to verify that H is an SA-relation. A relation D : X →
X given by 0D0, 0Db, aD0, aDb, bDb is an SA-relation.

Proposition 3.3. Every homomorphism of subtraction algebras is an SA-relation.

Proof. Suppose that H : X → Y be a homomorphism of subtraction algebras. Clearly, H
satisfies conditions (R1) and (R2). �

Note that every diagonal SA-relation on a subtraction algebra(i.e., an SA-relation sat-
isfying xHx for all x ∈ X in which xHy is false whenever x = y) is clearly a subtraction
homomorphism. But, in general, the converse of Proposition 3.3 need not be true as seen
in the following example.

Example 3.4. In Example 3.2, the SA-relations H and D are not homomorphisms.

Let H : X → Y be an SA-relation. For any x ∈ X and any y ∈ Y ,

H[x] := {y ∈ Y : xHy}, and H−1[y] := {x ∈ X : xHy}.

Note that H[x] and H−1[y] are not subalgebras of Y and X , respectively as seen in the
following example.

Example 3.5. Let X := {0, a, b, c}, Y := {0, 1, 2, 3} be sets with the following table,
respectively:
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−X 0 a b c
0 0 0 0 0
a a 0 a a
b b b 0 b
c c c c 0

−Y 0 1 2 3
0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 2 1 0

Define a relation H : X → Y as follows: 0H0, aH0, bH1, cH2. It is easy to verify that H is
an SA-relation, but H−1[2] = {c} (resp., H[c] = {2}) is not a subalgebra of X (resp., Y ).

Theorem 3.6. For any SA-relation H : X → Y , we have
(i) H[0X ], called the zero image of H, is a subalgebra of Y .
(ii) H−1[0Y ], called the kernel of H, and denoted by KerH, is a subalgebra of X.
(iii) KerH is an ideal of X.

Proof. (i) Since 0XH0Y , H[0X ] = ∅. Let y1, y2 ∈ H[0X ]. Then 0XHy1 and 0XHy2. It
follows from (R2) and x− x = 0 for all x ∈ X that 0XH(y1 − y2), that is, y1 − y2 ∈ H[0X ].
(ii) Since 0XH0Y , 0X ∈ KerH. Let x1, x2 ∈ KerH. Then x1H0Y and x2H0Y . By using
(R2) and x − x = 0 for all x ∈ X , we obtain (x1 − x2)H0Y and x1 − x2 ∈ KerH.
(iii) Since 0XH0Y , 0X ∈ KerH. Let a − b, b ∈ KerH for any a ∈ X . Then (a − b)H0Y

and bH0Y . For such an a ∈ X , there exists α ∈ Y such that aHα, since H is an SA-
relation. Hence (a− b)H(α−0Y ), i.e., (a− b)Hα. Since (a− b)Hα and (a− b)H0Y , we have
((a − b) − (a − b))H(α − 0Y ), i.e., 0XHα and so (a − 0X)H(α − α), i.e., aH0Y . Therefore
a ∈ KerH. Thus KerH is an ideal of X . This completes the proof. �

Proposition 3.7. Let H : X → Y be an SA-relation and a, b ∈ X, u, v ∈ Y .
(i) If H[a] ∩H[b] = ∅, then a − b ∈ KerH.
(ii) If H−1[u] ∩H−1[v] = ∅, then u − v ∈ H[0X ].

Proof. (i) Let a, b ∈ X be such that H[a] ∩H[b] = ∅. Taking y ∈ H[a] ∩H[b], we have aHy
and bHy. It follows from (R2) and x−x = 0 for all x ∈ X that (a−b)H(y−y) = (a−b)H0Y

so that a − b ∈ KerH.
(ii) Let x ∈ H−1[u]∩H−1[v]. Then xHu and xHv. Using (R2) and x−x = 0 for all x ∈ X ,
we obtain (x−x)H(u−v) = 0XH(u−v), i.e., u−v ∈ H[0X ]. This completes the proof. �
Theorem 3.8. Let H : X → Y be an SA-relation and let S be a subalgebra of X. Then

H[S] := {y ∈ Y |xHy for some x ∈ S}

is a subalgebra of Y .

Proof. Clearly, H[S] = ∅ since 0XH0Y . Let y1, y2 ∈ H[S]. Then x1Hy1 and x2Hy2 for some
x1, x2 ∈ S. Using (R2), we obtain (x1 − x2)H(y1 − y2) which implies that y1 − y2 ∈ H[S]
since x1 − x2 ∈ S. Therefore H[S] is a subalgebra of H[X ]. �

Corollary 3.9. Let H : X → Y be an SA-relation. Then
(i) H[X ] is a subalgebra of Y .
(ii) H[X ] = ∪x∈XH[x].
(iii) The zero image of H is a subalgebra of H[X ].

Proof. (i) and (ii) are straightforward.
(iii) Let a, b ∈ H[0X ]. Then 0XHa and 0XHb, and hence 0XH(a − b), i.e., a − b ∈ H[0X ].
Therefore H is a subalgebra of H[X ]. �
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Theorem 3.10. Let H : X → Y be an SA-relation and T be a subalgebra of Y . Then

H−1[T ] := {x ∈ X |xHy for some y ∈ T }

is a subalgebra of X.

Proof. Obviously, H−1[T ] = ∅ since 0XH0Y . Let x1, x2 ∈ H−1[T ]. Then there exist
y1, y2 ∈ T such that x1Hy1 and x2Hy2. Note that y1 − y2 ∈ T since T is a subalgebra of
Y . It follows from (R2) that (x1 − x2)H(y1 − y2) so that x1 − x2 ∈ H−1[T ]. Hence H−1[T ]
is a subalgebra of X . �
Corollary 3.11. Let H : X → Y be an SA-relation. Then

(i) H−1[Y ] is a subalgebra of X,
(ii) H−1[Y ] := ∪y∈Y H−1[y],
(iii) The kernel of H is a subalgebra of H−1[Y ].

Proof. (i) and (ii) are straightforward.
(iii) Let x, y ∈ KerH. Then xH0Y and yH0Y . It follows from (R2) and x − x = 0 for
all x ∈ X that (x − y)H(0Y − 0Y ) = (x − y)H0Y so that x − y ∈ KerH. Hence H is a
subalgebra of H−1[Y ]. This completes the proof. �
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