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A RELATION ON SUBTRACTION ALGEBRAS
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ABSTRACT. As a generalization of a subtraction homomorphism, the notion of a relation on
subtraction algebras, called an SA-relation, is introduced. Some fundamental properties to
subtraction algebras are discussed.

1. INTRODUCTION

B. M. Schein([7]) considered systems of the form (®;o,\), where ® is a set of functions
closed under the composition “o”of functions (and hence (®;0) is a function semigroup)
and the set theoretic subtraction “\”(and hence (®;\) is a subtraction algebra in the sense
of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup
of invertible functions. B. Zelinka([8]) discussed a problem proposed by B. M. Schein con-
cerning the structure of multiplication in a subtraction semigroup. He solved the problem
for subtraction algebras of a special type, called the atomic subtraction algebras. Y. H.
Kim and H. S. Kim([5]) showed that a subtraction algebra is equivalent to an implicative
BCK-algebra, and a subtraction semigroup is a special case of a BCI-semigroup which
is a generalization of a ring. Y. B. Jun et al.([3]) introduced the notion of ideals in sub-
traction algebras and discussed characterization of ideals. In [2], Y. B. Jun and H. S. Kim
established the ideal generated by a set and discussed related results. Y. B. Jun and K. H.
Kim([4]) introduced the notion of prime and irreducible ideals of a subtraction algebra, and
gave a characterization of a prime ideal. They also provided a condition for an ideal to be
prime/irreducible ideal. In this paper, we introduce the notion of a relation on subtraction
algebras, called an S A-relation, which is a generalization of a subtraction homomorphism,
and then we discuss some fundamental properties of subtraction algebras.

2. PRELIMINARIES

A subtraction algebra is defined as an algebra (X; —) with a binary operation “—” that
satisfies the following identities: for any z,y,z € X,

(S1) z—(y—=)=uz

(52) z—(z—y)=y—(y—2);

(S3) -y -—z=(r—2)—y

The subtraction determines an order relationon X: a <b < a—b=0, where 0 =a—a
is an element that does not depend on the choice of a € X. The ordered set (X;<) is
a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in

2000 Mathematics Subject Classification. 03G25, 06A06, 06F35.
Keywords and phrases. subtraction algebra, SA-relation, subalgebra, homomorphism, kernel, zero
image



52 S. S. AHN, Y. H. KIM AND K. J. LEE

which every interval [0,a] is a Boolean algebra with respect to the induced order. Here
aNb=a— (a—b); the complement of an element b € [0, a] is a — b; and if b, ¢ € [0, a], then

bve = (W AdY =a—((a—b)A(a—rc))
=a—((a=b)—((a=b)=(a—c))).

In a subtraction algebra, the following are true (see [3,4]):
(al) (z—y)—y=z—-y.

(a2) z—0=zand 0—z =0.

(a3) (z—y)—xz=0.

(a4) z—(z—y) <.

(a5) (z—y)—(y—2)=z—y.

(26) = (z—(z—y)=v—y.

(a7) (x—y)—(z—y)<a-=

(a8) z <y if and only if z = y — w for some w € X.
(a9) z<yimplieszr—z<y—zand z—y<z—zforall z € X.
(al0) xz,y <z impliesx —y =2 A (z —y).

(all) (zAy)—(zAz)<zA(y—2).
Example 2.1. Let X :={0,a,b, c} be a set with the following table:

o o o O
o o v OoO|o
o T O Oofw
0o o o o
S T @ o0

Then X is a subtraction algebra.

A non-empty subset A of a subtraction algebra X is called a subalgebra of X if x —y € X
for all z,y € X.

Definition 2.2. ([3]) A non-empty subset A of a subtraction algebra X is called an ideal
of X if it satisfies

(I1) 0 € A,

(12) (Ve e X)(Vye A)(z —ye A = xz € A).

Lemma 2.3. Let (X;—) be a subtraction algebra. Then (X;—) is a poset.

Proof. Since x —x =0 for all z € X, we have x < z. Assume that z < y and y < z for all
z,y,z € X. By (a9), y < zimpliesz —z <z —yforall z € X. If ¢ <y, then z —y = 0.
Hence x — 2z < 0, and so, z < z. Therefore we have x < y and y < z imply = < z. Suppose
z<yandy <z foral z,y € X. Then v —y =0 and y — z = 0. Using (a2) and (S2), we
havex =2z —-0=z—(r—y)=y— (y—2) =y—0=y. Hence z < y and y < x imply
x =y. Thus (X; —) is a partially ordered set. O

Note that a subtraction algebra is equivalent to an implicative BC' K-algebra and every
BC K-algebra has a poset structure by defining x <y < xxy=0,Va,y € X.

Let X :=(X;—x,<) and Y := (Y; —y, <) be subtraction algebras. A mapping f from
a poset (X;<) into a poset (Y;<’) is called a Harris map ([6]) if for any incomparable
elements x,y € X, either f(x) = f(y) or f(z) and f(y) are incomparable. We denote the
fact that z and y are incomparable by z||y. A mapping f: X — Y is called a (subtraction)
homomorphism if
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(H1)  f(o—xy) = f(z) =y f(y) for any 2, € X,

(H2) fis a Harris map.
Note that f(0x) = Oy, since x — x = 0. Let Ker(f) := {z € X|f(z) = 0y} be the kernel
of f. If a mapping f : X — Y satisfies (H1), then it is order preserving, i.e., x < y implies
Oy = f(z—y) = f(z) — f(y), ie, f(z) < f(y). Define the trivial homomorphism 0 as
O(x) =0 for all z € X.

Example 2.4. In Example 2.1, if we define a map ¢ : X — X by ¢(0) = 0,¢(a) =
b, o(b) = a, p(c) = ¢, then it is easy to verify that ¢ is a homomorphism.

3. SA-RELATIONS

Definition 3.1. Let X and Y be subtraction algebras. A non-empty relation H C X x Y
is called an S A-relation if it satisfies:

(R1)  (Vz e X) (Jy €Y)( 2Hy),

(R2) (Vzy,y e X) (Va,be€Y) (aHa,yHb = (x —y)H(a —b)).

We usually denote such relation by H : X — Y. It is clear from (R1) and (R2) that
O0xHOy.

Example 3.2. Let X :={0,a,b} be a set with the following table:

b

o OO
T O O

0
a
0

o o O

Then (X;—) is a subtraction algebra. Define a relation H : X — X as follows: 0H0, 0Ha,
0Hb, aHO, aHa, aHb, bHO. It is easy to verify that H is an SA-relation. A relation D : X —
X given by 0D0, 0Db, aD0, aDb, bDb is an S A-relation.

Proposition 3.3. Every homomorphism of subtraction algebras is an S A-relation.

Proof. Suppose that H : X — Y be a homomorphism of subtraction algebras. Clearly, H
satisfies conditions (R1) and (R2). O

Note that every diagonal S A-relation on a subtraction algebra(i.e., an SA-relation sat-
isfying xHx for all z € X in which zHy is false whenever z # y) is clearly a subtraction
homomorphism. But, in general, the converse of Proposition 3.3 need not be true as seen
in the following example.

Example 3.4. In Example 3.2, the SA-relations H and D are not homomorphisms.

Let H: X — Y be an SA-relation. For any z € X and any y € Y,
Hlz):={y €Y :aHy}, and H '[y]:={r € X :aHy}.

Note that H[z] and H~![y] are not subalgebras of Y and X, respectively as seen in the
following example.

Example 3.5. Let X := {0,a,b,c}, Y := {0,1,2,3} be sets with the following table,
respectively:
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—x 0 a b c -y | 0 1 2 3
0 0O 0 0 0 0 0 0 0 0
a a 0 a a 1 1 0 1 0
b b b 0 b 2 2 2 0 O
¢ c ¢ ¢ 0 3 3 2 1 0

Define a relation H : X — Y as follows: 0H0, aH0,bH1, cH2. It is easy to verify that H is
an S A-relation, but H~![2] = {c} (resp., H[c] = {2}) is not a subalgebra of X (resp., Y).

Theorem 3.6. For any SA-relation H : X — Y, we have
(i) H[0x], called the zero image of H, is a subalgebra of Y.
(ii) H[0y], called the kernel of H, and denoted by KerH, is a subalgebra of X .
(ili) KerH is an ideal of X.

P?”OOf. (1) Since OxHOy, H[Ox] 75 @ Let Y1,Y2 € H[Ox]. Then OXHy1 and OXHyQ. It
follows from (R2) and z — 2z = 0 for all z € X that OxH(y1 — y2), that is, y1 — y2 € H[0x].
(ii) Since 0xHOy, Ox € KerH. Let z1,29 € KerH. Then z1H0y and x2H0y. By using
(R2) and x — 2 =0 for all z € X, we obtain (x; — z2)H0y and x; — xz2 € KerH.

(iii) Since OxHOy, Ox € KerH. Let a — b,b € KerH for any a € X. Then (a — b)HOy
and bHOy. For such an a € X, there exists a € Y such that aHa, since H is an SA-
relation. Hence (a —b)H(a—0y), i.e., (a —b)Ha. Since (a —b)Ha and (a — b)HOy, we have
((a —b) — (a —b))H(ax — 0y), i.e., 0xHo and so (a — 0x)H(a — «), i.e., aHOy. Therefore
a € KerH. Thus KerH is an ideal of X. This completes the proof. O

Proposition 3.7. Let H: X — Y be an SA-relation and a,b € X, u,v €Y.
(i) IfHla]NH[D] # 0, then a — b € KerH.
(i) IfH 'u]nH v] #0, then u — v € H[0x].

Proof. (i) Let a,b € X be such that H[a] NH[b] # 0. Taking y € H[a] N H[b], we have aHy
and bHy. It follows from (R2) and x —z = 0 for all € X that (a—b)H(y—y) = (a—b)HOy
so that a — b € KerH.

(ii) Let z € H~*[u)N'H~1[v]. Then 2Hu and 2Hv. Using (R2) and z —z = 0 for all x € X,
we obtain (z —z)H(u—v) = OxH(u—v), i.e., u —v € H[0x]. This completes the proof. O

Theorem 3.8. Let H: X — Y be an SA-relation and let S be a subalgebra of X. Then
HIS]:={y € Y|tHy for somex € S}

is a subalgebra of Y.

Proof. Clearly, H[S] # 0 since 0xHOy. Let y1,y2 € H[S]. Then z1Hy; and zoHys for some
x1,x2 € S. Using (R2), we obtain (z; — x2)H(y1 — y2) which implies that y; — yo € HI[S]
since 1 — x2 € S. Therefore H[S] is a subalgebra of H[X]. O

Corollary 3.9. Let H: X — Y be an SA-relation. Then
(i) H[X] is a subalgebra of Y.
(ili) The zero image of H is a subalgebra of H[X].
Proof. (i) and (ii) are straightforward.

(iii) Let a,b € H[0x]. Then 0xHa and 0xHb, and hence OxH(a — b), i.e., a — b € H[0x].
Therefore H is a subalgebra of H[X]. O
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Theorem 3.10. Let H: X — Y be an SA-relation and T be a subalgebra of Y. Then
HT) = {x € X|zHy for some y € T}

is a subalgebra of X .

Proof. Obviously, H™1[T] # 0 since OxHOy. Let z1,70 € H~'[T]. Then there exist
y1,y2 € T such that z1Hy; and xoHys. Note that y; — yo € T since T is a subalgebra of
Y. It follows from (R2) that (z1 — x2)H(y1 — y2) so that 1 — z2 € H~L[T]. Hence H~1[T]
is a subalgebra of X. [

Corollary 3.11. Let H: X — Y be an SA-relation. Then
(i) HL[Y] is a subalgebra of X,
(i) HUY) = Uyer MUy,
(ili)  The kernel of H is a subalgebra of H1[Y].

Proof. (i) and (ii) are straightforward.

(iii) Let =,y € KerH. Then 2HO0y and yHOy. It follows from (R2) and x — 2 = 0 for
all z € X that (¢ — y)H(0y — 0y) = (r — y)HOy so that + —y € KerH. Hence H is a
subalgebra of H~![Y]. This completes the proof. [
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