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Abstract. In this paper, we construct the forward rate model with both the default
risk and the jump risk to clarify the effect of the default risk through the implied
volatility. For tractability, the Vasicek-type hazard rate model is applied to the default
risk instead of the traditional point process. As well known that the model with jump
risk can express the smile or the skew, this paper is shows that the implied volatility
including the hazard rate can also illustrate smile or skew through a numerical example.
Furthermore, it is clarified that there are differences of influence caused by default risk
according to the exercise price and the time interval.

1 Introduction Consider the term structure model for forward rates with both the de-
fault and the jump risks. Duffie and Singleton [10] introduced the hazard rate model in order
to include the default risk of the underlying assets: their model was concerned with the
term structure of defaultable bond issued by the defaultable issuer and with the fractional
loss rate at the time of default. However, it accompanies the difficulties in the estimation
of parameters of the hazard rate process without enough data. Therefore the hazard rate
process is described by a stochastic differential equation with positive values (e.g. CIR
model). Since the probability described by some stochastic processes is out of range [0, 1]
occasionally, it is necessary for setting the parameters to be cautious. Davis and Mavroidis
[9] applied the Gaussian model with the deterministic drift which depends on time so as to
model the hazard rate dynamics and valuated credit defaultable swaps. On the other hand,
Aonuma and Nakagawa [2] also valuated credit defaultable swaps with the Vasicek model
in place of Gaussian type hazard rate model. Vasicek(1977)[22] dealt with a term structure
model with the property of both mean-reverting and tractability. It is pointed out that the
probability described by Vasicek type hazard rate can be also negative.

Moreover, term-structure models for interest rates have been explored to amend the
consistency with actual behaviors (cf. the classification of term structure models: Brigo
and Mercurio [6] and Chan, Karolyi, Longstaff and Sanders [7], et al). Furthermore, Brace,
Gatarek and Musiela [5] gave an interest model with forward rate measure so that there
might be no arbitrage opportunity in the interest rate market. It was formulated that the
stochastic differential equation of forward rate might be expressed as one of spot rates and
there is no arbitrage opportunity over the whole term. Moreover, it was shown that the
distribution of forward rate follows the log normal. And the proof of the invariant nature
of the equivalent martingale measure is given in terms of Krylov-Bogoliubov Theorem (cf.
[8]).

As a literature using LIBOR market model, Glasserman and Kou [12] deal the interest
rate model with the jump process for the evaluation of cap, floor, etc. In [12], for the closed
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form solution they assume that the intensity of the jump process is defined as the function
that is the multiplication of the intensity, the distribution function and the differential of
the mark, therefore it is the sub-class interest rate model because of the restriction on
the intensity. Moreover, it is shown that the conditions of the arbitrage-free are fulfilled
using Theorem 3.13 of Björk, Kabanov and Runggaldier [4]. The theorem is that under
the existence of jump risks, there is a martingale measure if and only if two conditions are
satisfied. The first condition is that the intensity under the Q-measure can be expressed as
the multiplication of the intensity under the P-measure and probability distribution. The
second condition is that there is the equivalence between the drifts of bond price and the
forward rate.

From the practical view point, the cause of using the model with the jump risk is that
it can generate the implied volatility with smile or skew which is observed in the market.
In [12], they illustrated the flexibility of Jump process by which the implied volatility had
’smile or skew’. Moreover, there are many papers which deal with the smile or skew by
Poisson density [12], [18], etc. By Constant Elasticity Variance (CEV) process, e.g. [1].

In this paper, our consideration is on the interest rate model with jump and default
risks in LIBOR rate market. And particularly, using the implied volatility we analyze the
effect of the default risk. LIBOR is the rate for the inter bank (Ranking of AA or more,
[21]) debt and is well used as a standard of the floating rate. However, as an interest rate
related to a derivative, it may be treated as default-free interest rates.

The martingale measure of the forward rate model is based on the forward measure such
as in BGM model. This forward measure based on LIBOR rate is assumed to be the default-
free, and it is used to actually price the derivative. But Schönbucher [20] ([3]) is in the thing
coping with the existence of the default risk of the LIBOR. Unlike forward measure of BGM
model, in [20], the survival forward measure under the defaultable forward rate is used. In
this paper, we construct the defaultable forward rate with jump risk. And it is considered
using defaultable forward measure (survival forward measure). Then our model is based on
[12] for adding the jump risk to BGM model using this defaultable forward measure and
as Aonuma and Nakagawa [2], the hazard rate is assumed to follow the Vasicek model in
order to consider the possibility of default risk.

The composition of this paper is as follows: In section 2: we give preliminaries and
LIBOR market model. And it is confirmed that the conditions of arbitrage-free of forward
rate model comes from Theorem 3.13 of Björk, Kabanov and Runggaldier [4]. In section 3,
we derive an approximate caplet price that the model with the default risk defined by the
hazard rate model with Vasicek type. Furthermore under some assumptions, we confirm
the boundedness of difference between the caplet price and the approximate caplet price.
In section 4, we propose the model with both the default and jump risks. A numerical
example which illustrates the influence caused by the default risk is shown in section 5 .
Finally a conclusion of this paper is summarized.

2 Preliminaries

2.1 Notation For the financial market, define the stochastic model on the filtered prob-
ability space (Ω,F ,F, P) where F = {Ft}t�0 is the natural filtration generated by a one-
dimensional Brownian Motion Wt. Let G be a filtration such that

⋂
s>t(Fs ∨ σ{τ ∧ s})

where τ is a stopping time. For jump components, µ(dt, dx) is a marked point process mea-
sure on Blackwell space (E, E ) and v(dt, dx) is the compensator of the measure. Moreover
µ′(dt, dx) and v′(dt, dx) are a marked point (one-point) process measure on (E′, E ′) and
it’s compensator for the default component. rt, B(t, T ) and f(t, T ) denote the short rate,
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the bond price and the (instantaneous) forward rate, respectively. These dynamics are as
follows:

Assumption 2.1
Let dB(t, T ) and df(t, T ) be stochastic processes of the bond price and the forward rate
without jump and default risks, respectively.

dB(t, T ) = B(t, T ){bB(t, T )dt + vB(t, T )dWt},(1)
df(t, T ) = bf(t, T )dt + vf (t, T )dWt,(2)

where Wt is a Brownian Motion in R defined on (Ω,F , {Ft}t�0, P).

Moreover when these dynamics have jump risks given by the marked point process,
assumption 2.1 is rewritten as follows1.

Assumption 2.2
Let dBj(t, T ) and df j(t, T ) be stochastic processes of the bond price and the forward rate
with jump risks and without default risk, respectively.

dBj(t, T ) = Bj(t−, T )
{

bB(t, T )dt + vB(t, T )dWt

+
∫

E

qB,j(t, x, T )µ(dt, dx)
}

,(3)

df j(t, T ) = bf(t, T )dt + vf (t, T )dWt +
∫

E

qf,j(t, x, T )µ(dt, dx).(4)

Furthermore if the dynamics of assumption 2.2 has the default risk, these dynamics are
defined as below.

Assumption 2.3
Let dBj,d(t, T ) and df j,d(t, T ) be the stochastic processes of the bond price and the forward
rate with jump and default risks, respectively.

dBj,d(t, T ) = Bj,d(t−, T )
{

bB(t, T )dt + vB(t, T )dWt

+
∫

E

qB,j(t, x, T )µ(dt, dx) +
∫

E′
qB,d(t, x, T )µ(dt, dx)

}
,(5)

df j,d(t, T ) = bf(t, T )dt + vf (t, T )dWt +
∫

E

qf,j(t, x, T )µ(dt, dx)

+
∫

E′
qf,d(t, x, T )µ′(dt, dx).(6)

Using these assumptions 2.2 and 2.3, define the spread yield or the hazard rate, equiv-
alently.

1This type is considered in Björk, Kabanov and Runggaldier [4].
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Definition 2.1
Under assumption 2.3, let the forward rate with jump risk, and one with both jump and
default risk be given by the equation (5) and (6). Then the hazard rate (or the yield spread,
the intensity) λ(t, s) is defined as

∫ T

t

f j,d(t, s)ds +
∫ T

t

λ(t, s)ds =
∫ T

t

f j(t, s)ds,(7)

or equivalently

f j,d(t, s) + λ(t, s) = f j(t, s).(8)

Furthermore define some rates and derive some connections between them. Let F (t, T ),
F j(t, T ) and F j,d(t, T ) denote the forward rate, the forward rate with jump risks, and
the forward rate with jump and default risks, respectively. Let Sj−(j,d)(t, T ) be the yield
spread between F j(t, T ) and F j,d(t, T ). As mentioned above, λf (t, T ) is the hazard rate of
the default. The application of the hazard rate is found in Duffie and Singleton [10]. As
they consider the default risk of the bond, the hazard rate is used as the term structure
for expressing the default risk. And the yield spread is defined by the spread of the rate
between the defaultable bond and the default-free bond. Here, we treat the spread of the
forward rates between the jump risk and the jump-default risks as the hazard rate. The
relations of these rates followed.

From the HJM framework [14], for a positive constant δ the forward rate at t without
jump and default risks over [T, T + δ] is given by

F (t, T ) =
1
δ

(
B(t, T )

B(t, T + δ)
− 1

)
=

1
δ

(
exp

{∫ T+δ

T

f(t, s)ds

}
− 1

)
,(9)

and the forward rate with jump and the forward rate with jump and default risks are

F j(t, T ) =
1
δ

(
Bj(t, T )

Bj(t, T + δ)
− 1

)
=

1
δ

(
exp

{∫ T+δ

T

f j(t, s)ds

}
− 1

)
,(10)

and

F j,d(t, T ) =
1
δ

(
Bj,d(t, T )

Bj,d(t, T + δ)
− 1

)

:=
1
δ

(
exp

{∫ T+δ

T

f j,d(t, s)ds

}
− exp

{
−

∫ T+δ

T

λf
sds

})
.(11)

Equation (11) is assumed to obtain the convenient form of the expected defaultable for-
ward rate and to reduce the effect of the default risk. Since the expectation of exp{− ∫ T+δ

T λf
s ds}

is the conditional survival probability, the conditional probability is close to 1 as long as
the degree of the change rate of the survival probability with respect to time is not large.
Setting exp{− ∫ T+δ

T
λf

s ds} = 1, the following lemma 2.1 is expressed as

E
[
F j,d(t, T )

∣∣Gt

]
= P(τ > T + δ|τ > T )E

[
F j(t, T )

∣∣Gt

]
+

1
δ
(P(τ > T + δ|τ > T ) − 1).

Note that (11) is equivalent to set the second term 0 and to decrease the effect of default
risk because P(τ > T + δ|τ > T ) � 1. In section 5, it will be shown that the conditional
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probability is in [0.995705, 0.996478] by numerical example. Though the difference between
1 and the conditional probability seems to be small, it has the large effect to the caplet
price because P(τ > T + δ|τ > T )E

[
F j(t, T )

∣∣Gt

]
is 0.06P(τ > T + δ|τ > T ) in the caplet

formula. Therefore the reduction of the effect of default risks is achieved by setting (11).
Equation (11) is used to obtain the explicit form of the forward rate as in lemma 2.1.

Notice that so as to obtain no-arbitrage conditions bellow, the foward rate is assumed to
be F j,d(t, T ) = 1

δ

(
exp

{∫ T+δ

T
f j,d(t, s)ds

}
− 1

)
in place of (11).

In definition 2.1, the hazard rate λ(t, s) expresses the component of the default risk.
The following definition is concerned with the relation between the default risk (the survival
probability) and the hazard rate.

Definition 2.2
Under definition 2.1, the survival probability is defined as

P{τ > T |τ > t} = E

[
exp

{
−

∫ T

t

λ(t, s)ds

}∣∣∣∣∣Gt

]
(12)

= E
[
1{τ>T}

∣∣Gt

]
,(13)

where τ is the default time and 1 is the indicator function.

Remark 2.1
In definition 2.2, the survival probability is defined by using the intensity (i.e the hazard
rate). The left hand side of (12) can be evaluated under the assumption on the dynamics
of hazard rate and in [17] they assume the hazard rate process is affine-type. Moreover in
[2], under the hazard rate in Vasicek model, the default risk is considered. In this paper,
we assume the hazard rate to be Vasicek type as in [2]. So (12) is expressed explicitly in
section 3 .

Definition 2.1 and 2.2 lead to the following relation for forward rates.

Lemma 2.1
Let instantaneous forward rates f j(t, s) and f j,d(t, s) be in assumption 2.2 and 2.3. Assume
the default risk and the instantaneous forward rate are independent. Then forward rates
with and without default risk: F j(t, T ) and F j,d(t, T ) are given as follows:

E

[
exp

{∫ T+δ

T

f j,d(t, s)ds

}∣∣∣∣∣Gt

]
= P(τ > T + δ|τ > T )E

[
exp

{∫ T+δ

T

f j(t, s)ds

}∣∣∣∣∣Gt

](14)

and

E
[
F j,d(t, T )

∣∣Gt

]
= P(τ > T + δ|τ > T )E

[
F j(t, T )

∣∣Gt

]
.(15)

Proof. By equation (7),

exp

{∫ T+δ

T

f j,d(t, s)ds +
∫ T+δ

T

λf
s ds

}
= exp

{∫ T+δ

T

f j(t, s)ds

}
,

where λf
s denotes λ(t, s) of the forward rate for convenience. And taking the expectation,

(14) holds.
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Moreover, by (11) and (7), we have

F j,d(t, T ) =
1
δ

(
exp

{
−

∫ T+δ

T

λf
sds

}
exp

{∫ T+δ

T

f jds

}
− exp

{
−

∫ T+δ

T

λf
sds

})

and taking expectation,

E
[
F j,d(t, T )

∣∣Gt

]
= P(τ > T + δ|τ > T )E

[
F j(t, T )

∣∣Gt

]
.

�

Moreover, the spread yield in definition 2.1 is satisfied under the arbitrage-free in the
markets i.e. the absence of the arbitrage opportunities between the bond and forward rate
markets. The condition is important so as to construct the forward rate models. In this
paper, we derive the conditions according to [4] [5] et al. in section 2.3.

In [20], the spread yield is defined as the difference between F (t, T ) and F d(t, T ). But
in this paper we define it as F d(t, T )/F (t, T ) i.e. exp{− ∫

λf
s ds}. The relation of the spread

yield between [20] and our definition is described as the following properties.

Proposition 2.1
Let the spread yield be defined as in lemma 2.1 and the credit spread S(T, T + δ) in [20] be

F j,d(t, T ) − F j(t, T ). Then lemma 2.1 holds under the intensity H(T, T + δ) or the credit
spread S(T, T + δ) in [20].

Proof. From the proof of lemma 2.1 and equation (10),

F j,d(t, T ) = exp

{
−

∫ T+δ

T

λf
s ds

}
1
δ

(
exp

{∫ T+δ

T

f j(t, s)ds

}
− 1

)

=
1{τ>T+δ}
1{τ>T}

1
δ

((
δF j(t, T ) + 1

)− 1
)

=
1{τ>T+δ}
1{τ>T}

F j(t, T )(16)

On the other hand, following the definition of the credit spread in [20], the credit spread
with jump risks is defined as

S(T, T + δ) := F j,d(t, T ) − F j(t, T )

and the default intensity is defined as

H(T, T + δ)

:=
1
δ

{
Bd,j(t, T )

Bd,j(t, T + δ)
Bj(t, T + δ)

Bj(t, T )
− 1

}

=
1
δ

{
exp

{∫ T+δ

T

f j,d(t, s)ds

}
exp

{
−

∫ T+δ

T

f j(t, s)ds

}
− 1

}

=
1
δ

{
1{τ>T}

1{τ>T+δ}
exp

{∫ T+δ

T

f j(t, s)ds

}
exp

{
−

∫ T+δ

T

f j(t, s)ds

}
− 1

}

=
1
δ

{
1{τ>T}

1{τ>T+δ}
− 1

}
.
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So from these equations and (16), we obtain

exp

{
−

∫ T+δ

T

λf (t, s)ds

}
=

F j,d(t, T )
F j(t, T )

=
1

δH(T, T + δ) + 1
.(17)

Furthermore, using the definition of H(T, T + δ), S(T, T + δ) in [20],

H(T, T + δ) =
S(T, T + δ)

1 + δF j(t, T )
.(18)

Therefore by (17) and (18), we have

exp

{
−

∫ T+δ

T

λf (t, s)ds

}
=

1 + δF j(t, T )
δS(T, T + δ) + δF j(t, T ) + 1

.(19)

Since the yield spread exp
{
− ∫ T+δ

T λf (t, s)ds
}

can be expressed in terms of the inten-
sity H(T, T + δ), or the credit spread S(T, T + δ), lemma 2.1 holds. �

Finally we define the hazard rate process. In Aonuma and Nakagawa [2], they assume
that the hazard rate process is the Vasicek process. Under their assumption, this paper
defines dhf (t, s) as the stochastic process of Vasicek-type.

Assumption 2.4
Let dλ(t, s) be the hazard process in definition 2.1. We assume dλ(t, s) is the following
process.

dλ(t, s) = c(m − λ(t, s))ds + σdW̃s, λ(t, t) > 0, t � s(20)

where c, m, and σ are positive constants, λ(t, t) is the initial value at time t. W̃t is the
standard Brownian motion in R on (Ω,F ,F, P) and independent of Wt which is consistent
with the independence of the default risks and the forward rate in lemma 2.1 2.

2.2 Relation between the bond price and the forward rate In the interest rate
markets, there exist some connections between them. Brace Gatarek, and Musiela [5] give
the relation between the bond price and forward rate which corresponds to assumption 2.1
and Glasserman and Kou [12] and Björk, Kabanov and Runggaldier [4] discuss the same
problem under assumption 2.2. We need the arbitrage-free condition on assumption 2.3.
The following two propositions give the relation.

Proposition 2.2
Let the stochastic processes of rates be on assumption 2.1. If the forward rate is under
assumption 2.2, then the bond price is provided by

dB(t, T )
B(t, T )

=

⎧⎨
⎩rs −

∫ T

t

bf(t, s)ds +
1
2

(∫ T

t

vf (t, s)ds

)2
⎫⎬
⎭ dt

−
∫ T

t

vf (t, s)dsdWt.(21)

2If there exists the correlation, then by the Cholesky decomposition, we can construct the independence
of them.
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Proof. See Appendix A.1. �

If there exists the jump risk, then the bond price is given by proposition 2.2 in Björk,
Kabanov and Runggaldier [4]. With jump and default risk, as bellow.

Proposition 2.3
Let the stochastic processes of rates be on assumption 2.3. If the forward rate is under
assumption 2.3 and 2.4, then the dynamics of the bond price is expressed as follows:

dBj,d(t, T )
Bj,d(t−, T )

=
dB(t, T )
B(t, T )

+
∫

E

[
exp

{
−

∫ T

t

qf,j(t, x, s)ds

}
− 1

]
µ(dt, dx)

+
∫

E′

[
exp

{
−

∫ T

t

qf,d(t, x, s)ds

}
− 1

]
µ′(dt, dx).(22)

Proof. See Appendix A.1. �

2.3 Arbitrage-Free and Girsanov In this subsection, we describe the relationship be-
tween the arbitrage-free and the Girsanov theorem under jump and default risks. In [4],
they give the Girsanov theorem with the existence of the point process. Their contribution
leads to the extension of forward rate models. One of them, Schönbucher [20] considers the
forward rate with the default risk. They assume the marked point process as default time.
Moreover, Glasserman and Kou [12] present a simplified forward model with the jump risk.
In their model, the marked point process is defined as the jump of the forward rate. We
need to include jump and default risks in the forward rate.

Before discussing the Girsanov theorem, some assumptions in addition to assumption
2.2 3 are given as follows (cf. [4],[15]).

Assumption 2.5
The filtration is such that:

F = σ{Wt, µ([0, t] × A), B; 0 � t � T + δ, A ∈ E , B ∈ N },

where N is the collection of P null sets from F .

Assumption 2.6
There is a predictable intensity process λ(t, dx) such that:

v(dt, dx) = λ(t, dx)dt,

where v(dt, dx) is a compensator.

Thus there is a marked point process in the forward rate and it is necessary to change
the measure with marked point process. Since there exists the measure, all martingale M
can be expressed as

M = M0 + H(µ(dt, dx) − v(dt, dx)),

where H is a predictable and Stieltjes-integrable process with respect to µ(dt, dx) and
v(dt, dx). (See Jacod and Shiryaev [15])

3Under assumption 2.3, the filtration F′ is σ{Wt, µ([0, t] × A), µ′([0, t] × A′), B; 0 � t � T + δ, A ∈
E , A′ ∈ E ′, B ∈ N } and the compensator v′(dt, dx) is λ′(t, dx)dt.
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Theorem 2.1 (Girsanov)
Assume assumption 2.6. Let θt be the predictable process and Φ(s, x) be a nonnegative
predictable function such that∫ t

0

θ2
sds < ∞,

∫ t

0

∫
E

Φ(s, x)λ(s, dx)ds < ∞,

for all finite time t. Define the process Lt by

log Lt =
∫ t

0

θsdWs − 1
2

∫ t

0

θ2
sds +

∫ t

0

∫
E

log Φ(s, x)µ(ds, dx)

+
∫ t

0

∫
E

(1 − Φ(s, x))v(ds, dx),

equivalently,

dLt = Lt−θtdWt + Lt− −
∫

E

(1 − Φ(s, x))(µ(ds, dx) − v(ds, dx)),

with L0 = 1, and suppose E
P [Lt] = 1 for all finite time t.

Then, there exists a probability measure Q that is equivalent to P on F : dPt = LtdQt

such that dWt = θtdt + dW ′
t and λQ(t, dx) = Φ(t, x)λ(t, dx), where W ′ is Q-Winer process

and λQ is Q-intensity.

By using Girsanov, we obtain the arbitrage-free condition between the forward rate and
the bond price.

Theorem 2.2 (Arbitrage-free condition)
Let the stochastic process of the forward rate be (6) and the bond price be (5). Assume
the assumption 2.5, 2.6 are satisfied. And the hazard process is assumed to be a Vasicek
model. Then there exists a martingale measure if and only if for all T > 0, the following
arbitrage-free condition is satisfied

∫ T

t

bf (t, s)ds =
1
2

(∫ T

t

vf (t, s)ds

)2

− θt

∫ T

t

vf (t, s)ds

−
∫

E

[
exp

{
−

∫ T

t

qf,j(t, x, s)ds

}
− 1

]
Φ(t, x)λ(t, dx)

−
∫

E′

[
exp

{
−

∫ T

t

qf,d(t, x, s)ds

}
− 1

]
Φ′(t, x)λ′(t, dx)

or equivalently

bf(t, s) = vf (t, s)

(∫ T

t

vf (t, s)ds

)
− θtv

f (t, s)

− ∂

∂s

∫
E

[
exp

{
−

∫ T

t

qf,j(t, x, s)ds

}
− 1

]
Φ(t, x)λ(t, dx)

− ∂

∂s

∫
E′

[
exp

{
−

∫ T

t

qf,d(t, x, s)ds

}
− 1

]
Φ′(t, x)λ′(t, dx).
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Proof. See Appendix A.2. �

By the arbitrage-free condition of theorem 2.2, we obtain the bond price under the
arbitrage-free as follows:

Corollary 2.1
Let the dynamics of the bond price be given in proposition 2.3. If the arbitrage-free condition
in theorem 2.2 is satisfied, then the bond price is

Bj,d(t, T ) = exp

{{∫ T

t

(
ru − 1

2
θ2

u

)
du −

∫ T

t

θudWu

}
−

∫ T

t

∫
E

(
qf,j(u, x, s)ds

)

µ(du, dx) −
∫ T

t

∫
E′

(
qf,d(u, x, s)ds

)
µ′(du, dx)

+
∫ T

t

∫
E

(
1 − exp

{
−

∫ T

t

qf,j(u, x, s)ds

})
v(du, dx)

+
∫ T

t

∫
E′

(
1 − exp

{
−

∫ T

t

qf,d(u, x, s)ds

})
v′(du, dx)

}
,(23)

where θu =
∫ T

t vf (u, s)ds.

Proof. Substituting
∫ T

t bf(t, s)ds in theorem 2.2 into (22), (23) is derived. �

2.4 Extended forward rate model The BGM model is shown by Brace, Gatarek and
Musiela [5]. They consider the arbitrage-free interest rate over the whole term by using the
forward rate measure. And the forward rate model given by them is extended to two cases.
One of them is the model with jump risk in [12]. In order to treat the derivatives, they
assume the model with jump term. To find the closed form solution of the price of these
derivatives, they assume that

λQ(t, dx) = λg(x)dx,

where λ is a constant and g(·) is a density. Therefore the jump process is reduced to
a compound Poisson process with arrival rate λ under this assumption. By dint of this
simplification, a closed form solution is given.

In addition to this assumption, suppose that there is no jump risk in theorem 2.2, and
it implies the same condition for arbitrage-free.

On the other hand, Schönbucher [20] considers the default risk of underlying bond in
forward rate model to construct the survival measure. We describe their model briefly.
First, the defaultable time τ is defined as the point process. And the T -forward (default-
free) measure is such that

p′ =
p(t)

B(0, T )
= E

P

[
e−

�
T
0 rsdsB(T, T )
B(0, T )

X

]
= EQ[X ],

where p(t) is the price at time t that is paid the amount X at time T . So, p′is the discounted
value of p(t) at time 0. The Radon-Nikodym density process is

L(t) :=
e−

�
t
0 rsdsB(t, T )
B(0, T )

=
dQ

dP
.
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This discount factor B(0, T ) has no default risk. When the discount factor has the
default risk, P (dP ) is the T -survival measure and

p′ =
p(t)

Bd(0, T )
= E

P d

[
e−

� T
0 rsdsBd(T, T )1τ>T

Bd(0, T )
X

]
= EQd

[X ],

and

Ld(t) :=
e−

� t
0 rsdsBd(t, T )1τ>T

Bd(0, T )
=

dQd

dP d
.

In this Radon-Nikodym, e−
�

T
0 rsds1τ>T X is the discounted payment (at time T ) of the

obligor . So in theorem 2.2, if we assume no jump risk and the default risk of the marked
point process, then the forward martingale measure is same as [20].

Moreover, our consideration is the default risk of the bond or equivalently the forward
rate. For example, the object is to price the forward rate derivative settled with some
exercise rate at the maturity 4. Therefore if the default risk of the obligor is included
(e.g. some contract with the default risk at the promised time.), then we must consider the
default risk of the obligor (not bond issuer) and the correlation between the obligor and the
bond issuer.

3 Forward Rate Model with Default Risk and Vasicek-type Hazard Rate In this
section, we are concerned with the hazard rate. Particularly, for tractability, Vasicek-type
stochastic process which is given in Vasicek [22]. The process has the desirable properties:
mean-reverting, tractability. Aonuma and Nakagawa [2] use Vasicek model to estimate
the hazard rate, however it also has undesirable property: it comes into negative value.
Moreover the solution of the generalized hazard rate with the affine model is given in [17].

3.1 Vasicek-type Hazard Rate Model In [17], they give the solution of the hazard
rate with affine type model. So our concerning is Vasicek type model and we give the
solution for the estimation as [2].

Theorem 3.1
If h(t,T) is the solution of the stochastic differential equation (Vasicek model) of assumption
2.4, then the probability of the default time τ > t is given by

P(τ > t) = E

[
exp

{
−

∫ t

0

h(0, s)ds

}]

= exp
[
1
c

(
e−ct − 1

)
h(0, 0) − 1

c

(
e−ct − 1

)(
m +

σ2

4c2

(
e−ct − 3

))

−t

(
m − σ2

2c2

)]
.(24)

Proof. See Proposition 2 in [17]. �

Corollary 3.1
Let h(t,T) be same as in Theorem 3.1. The conditional probability P(τ > T + δ|τ > T ) is
represented as

P(τ > T + δ|τ > T ) = exp
[
1
c

{(
e−c(T+δ) − e−c(T )

)
h(0, 0) +

(
e−c(T+δ) − 1

)
4In [12], Pricing interest rate derivatives.
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(
m +

σ2

4c2

(
e−c(T+δ) − 3

))
− (

e−cT − 1
)(

m +
σ2

4c2

(
e−cT − 3

))}
− δ

(
m − σ2

2c2

)]
.

Proof. Using Theorem 3.1 with the definition of the conditional probability,

P(τ > T + δ|τ > T ) =
P(τ > T + δ)

P(τ > T )
=

E

[
exp

{
− ∫ T+δ

0 hsds
}]

E

[
exp

{
− ∫ T

0 hsds
}]

= exp
[
1
c

{(
e−c(T+δ) − e−c(T )

)
h(0, 0) +

(
e−c(T+δ) − 1

)
(

m +
σ2

4c2

(
e−c(T+δ) − 3

))
− (

e−cT − 1
)(

m +
σ2

4c2

(
e−cT − 3

))}

−δ

(
m − σ2

2c2

)]
.

�

3.2 Forward Rate Model with Vasicek-type Hazard Rate The forward rate model
with the default risk is given in [20] as mentioned above. The default risk is assumed to
follow the point process. By contrast, our model is that the default risk is constructed
by the hazard rate and the probability of the default is given in theorem 3.1. Using the
stochastic process of the hazard rate with Vasicek type, first we construct the forward rate
model without the jump risk. On the other hand, we consider the model with jump and
default risks in the next section.

In the case of no jump risk, the arbitrage-free condition of theorem 2.2 is modified as

bf (t, s) = vf (t, s)

(∫ T

t

vf (t, s)ds

)
− θtv

f (t, s)

− ∂

∂s

∫
E′

[
exp

{
−

∫ T

t

qf,d(t, x, s)ds

}
− 1

]
Φ′(t, x)λ′(t, dx).(25)

And the dynamics of the forward rate is provided by

dfd(t, T ) = bf (t, T )dt + vf (t, T )dWt +
∫

E′
qf,d(t, x, s)µ′(dt, dx).(26)

Assume the default risk follows the Vasicek-type hazard rate process in this subsection.
Then, we give the arbitrage-free condition (25) and (26) under the Vasicek-type hazard
rate.

Proposition 3.1
Assume the condition of theorem 2.2 is satisfied and there is no jump risk. Moreover, assume
the default risk follows the Vasicek-type hazard rate process (20). Then the arbitrage free
condition is given by∫ T

t

(bf (t, s) − c(m − λ(t, s)))ds

=
1
2

(∫ T

t

√
vf (t, s)2 + σ2ds

)2

− θt

(∫ T

t

√
vf (t, s)2 + σ2ds

)
(27)
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Proof. Denote the forward rate with default risks by F d(t, T ), i.e. F j,d(t, T ) for case
that qf,j(t, x, T ) = 0 in (2.3). Since the arbitrage-free condition can be obtained from
Appendix A.1 and A.2, we give the proof briefly. Using (11) with qf,j(t, x, T ) = 0, (20) and
vf (u, s)dWu + σdW̄u =

√
vf (u, s)2 + σ2dW ′

u,

F d(t, T ) =
1
δ

(
exp

{∫ T+δ

T

[
(f(0, s) + λ(0, s)) +

∫ t

0

(bf (u, s) + c(m − λ(u, s)))du

+
∫ t

0

√
vf (u, s)2 + σ2dW ′

u

]
ds

})
.

And consider the range of integration as [t, T ], by rs = fd(0, s) +
∫ T

t
(bf (u, s) − c(m −

λ(u, s)))du +
∫ T

t

√
vf (u, s)2 + σ2dW ′

u,

∫ T

t

fd(t, s)ds =
∫ T

t

fd(0, s)ds −
∫ T

t

rsds

+
∫ t

0

∫ T

t

(bf (u, s) − c(m − λ(u, s)))dsdu +
∫ t

0

∫ T

t

√
vf (u, s)2 + σ2dsdW ′

u.(28)

Applying Itô formula to Bd(t, T ) with the differential form of (28), we have

dBd(t, T )
Bd(t, T )

=

{
rt −

∫ T

t

(bf (t, s) − c(m − λ(t, s)))ds

+
1
2

(∫ T

t

√
vf (t, s)2 + σ2ds

)2
⎫⎬
⎭ dt −

∫ T

t

√
vf (t, s)2 + σ2dsdW ′

t .(29)

Thus from dB(t, T + δ) = rtB(t, T + δ)dt + dMQ and dW = θtdt + dW ′
t , the arbitrage

free condition is represented by

0 = −
∫ T

t

(bf (t, s) − c(m − λ(t, s)))ds +
1
2

(∫ T

t

√
vf (t, s)2 + σ2ds

)2

−θt

(∫ T

t

√
vf (t, s)2 + σ2ds

)
.

Thus the proof is complete. �

As bf(t, s) satisfies the arbitrage-free condition in proposition 3.1, the forward rate
dynamics is

dfd(t, s) =

{√
vf (t, s)2 + σ2

(∫ T

t

√
vf (t, s)2 + σ2ds

)

−θt

√
vf (t, s)2 + σ2

}
dt +

√
vf (t, s)2 + σ2dWt.(30)

Thus, the forward rate (not instantaneous) is expressed as

F d(t, T ) =
1
δ

[
exp

{∫ T+δ

T

fd(t, s)ds

}
− exp

{∫ T+δ

T

λf
sds

}]
.(31)



24 KEN-ICHI MITSUI AND YOSHIO TABATA

Applying Itô formula to F d(t, T )5, we obtain

dF d(t, T ) =
1
δ

exp

{∫ T+δ

T

fd(t, s)ds

}
d

{∫ T+δ

T

fd(t, s)ds

}

+
1
2δ

exp

{∫ T+δ

T

fd(t, s)ds

}[
d

{∫ T+δ

T

fd(t, s)ds

}]2

(32)

where, using (30),

d

{∫ T+δ

T

fd(t, s)ds

}
=

∫ T+δ

T

dfd(t, s)ds

=

{(∫ T+δ

T

√
vf (t, s)2 + σ2ds

)(∫ T

t

√
vf (t, s)2 + σ2ds

)

−θt

∫ T+δ

T

√
vf (t, s)2 + σ2ds

}
dt +

∫ T+δ

T

√
vf (t, s)2 + σ2dsdWt.(33)

From (31), (32) and (33),

δdF d(t, T )
1 + δF d(t, T )

=

(
A

∫ T

t

√
vf (t, s)2 + σ2ds − θA +

1
2
A2

)
dt + AdWt,(34)

where A =
∫ T

t

√
vf (t, s)2 + σ2ds.

The object is to obtain the forward rate dynamics dF d(t, T ). We assume as follows:

dF d(t, T )
F d(t, T )

:= ξtdt + ζtdW ′
t .(35)

By (34) and (35), we obtain

ξt =
1 + δF d(t, T )

δF d(t, T )

(
A

∫ T

t

√
vf (t, s)2 + σ2ds + θA +

1
2
A2

)
(36)

ζt =
1 + δF d(t, T )

δF d(t, T )
A(37)

Under MTn+1 -measure 6, (35) satisfies

dF d(t, T )
F d(t, T )

= ζtdW
MTn+1
t .(38)

Then,

F d(t, T ) = exp

{
−1

2

∫ Tn+1

Tn

ζ2
udu +

∫ Tn+1

Tn

ζudW
MTn+1
u

}
.(39)

5We assume exp
�� T+δ

T λf
s ds

�
is constant implicitly.

6ζtdW
MTn+1
t = ξtdt + ζtdW ′

t
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Let us price the caplet. Denote the price of the caplet as C(t, Tn) at time t. Then under
the risk neutral measure P ,

C(t, Tn) = δEP

[
exp

{
−

∫ Tn+1

t

rsds

}
C(Tn, Tn+1)

∣∣∣∣∣Gt

]
(40)

And under Tn+1-survival measure,

C(t, Tn) = δBd(t, Tn+1)ETn+1

[
C(Tn, Tn+1)
Bd(Tn, Tn+1)

∣∣∣∣Gt

]

= δBd(t, Tn+1)ETn+1

[(
F d(Tn, Tn+1) − K

)+∣∣∣Gt

]
.

From this equation and Black Scholes formula,

C(t, Tn) = δBd(t, Tn+1)
[
F d(t, Tn)N(d1) − KN(d2)

]
,(41)

where N denotes the cumulative normal distribution function and

d1 =
log(F d(t, Tn)/K) + 1/2ζ2

t (Tn − t)
ζt

√
Tn − t

,

d2 = d1 − ζt

√
Tn − t

ζt =
1 + δF d(t, T )

δF d(t, T )

∫ Tn

t

√
vf (t, s)2 + σ2ds.

Taking expectation in (41) and using the conditional survival probability, we obtain the
caplet price:

Et[C(t, Tn)] = δP(τ > Tn+1|τ > t)−1B(t, Tn+1) [P(τ > Tn+1|τ > Tn)
F (t, Tn)Et[N(d1)] − KEt[N(d2)]] ,(42)

where Et[·] = E[·|Gt].
We define the approximate caplet formula which is expressed by the conditional survival

probability in the cumulative normal distribution.

C(t, Tn)e := δP(τ > Tn+1|τ > t)−1B(t, Tn+1) [P(τ > Tn+1|τ > Tn)
F (t, Tn)N(d′1) − KN(d′2)] ,(43)

where B(t, T ) = exp{− ∫ T

t
f(t, u)du} and

d′1 =
log(P(τ > Tn+1|τ > Tn)F (t, Tn)/K) + 1/2ζ̂2

t (Tn − t)

ζ̂t

√
Tn − t

,

d′2 = d1 − ζ̂t

√
Tn − t

ζ̂t =
1 + δP(τ > Tn+1|τ > Tn)F (t, T )

δP(τ > Tn+1|τ > Tn)F (t, T )

∫ Tn

t

√
vf (t, s)2 + σ2ds.

Since the cumulative normal distribution function is convex or concave, the difference
between E[C(t, Tn)] and C(t, Tn)e depends on d1 and d2. We investigate the functions that
compose the approximate caplet price.

Firstly we give two propositions about the boundedness of the difference between E(N(y))
and N(E[y]) when y is positive or negative, respectively.
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Proposition 3.2
Let N: R �→ [0, 1] be the cumulative normal distribution function and x be a positive
random variable such that there exists a positive constant c satisfying x � c. Assume
c �= 0. If E[N(x)]′N(x)′ − N(E[x])′E[x]′ � 0, then the difference E[N(x)] − N(E[x]) is
bounded by ∫ x

0

− 1
2c

[N(u)′′ − N(E[u])′′] u2eu/cdu.(44)

Moreover if N(E[x])′E[x]′ − E[N(x)]′N(x)′ � 0, then the difference N(E[x]) − E[N(x)]
is bounded: ∫ x

0

− 1
2c

[N(E[u])′′ − N(u)′′] u2eu/cdu.(45)

In (44) and (45), N(a)′′ =
√

2π
−1

(−a) exp (−a2/2).

Proof. Applying Taylar expansion to E[N(x)] − N(E[x]) and by x � c,

E[N(x)] − N(E[x])

= E[N(0)] + E[N(x)]′x +
1
2
{
E[N(x)]′N(x)′2 + E[N(x)]′′N(x)′′

}
x2

+o1(x3) − N(E[0]) − N(E[x])′E[x]′x − 1
2
{
N(E[x])′′E[x]′2

+N(E[x])′E[x]′′}x2 − o2(x3)

∼= (E[N(x)]′N(x)′ − N(E[x])′E[x]′)x +
1
2

[N(x)′′ − N(E[x])′′] x2

� (E[N(x)]′N(x)′ − N(E[x])′E[x]′)c +
1
2

[N(x)′′ − N(E[x])′′] x2,(46)

since E[N(x)]′N(x)′ − N(E[x])′E[x]′ � 0.
Therefore, the following inequality holds.

0 � E[N(x)]′N(x)′ − N(E[x])′E[x]′

� 1
c
(E[N(x)] − N(E[x])) − 1

2c
[N(x)′′ − N(E[x])′′] x2(47)

By Gronwall’s inequality,

E[N(x)]′N(x)′ − N(E[x])′E[x]′ � M(x, E[x])e
xc < ∞,(48)

where M(x, E[x]) = − 1
2c [N(x)′′ − N(E[x])′′] x2.

Integrating (48) from 0 to x and using the following relation,∫ x

0

E[N(s)]′N(s)′ − N(E[s])′E[s]′ds

=
∫ x

−∞
E[N(s)]′N(s)′ − N(E[s])′E[s]′ds

−
∫ 0

−∞
E[N(s)]′N(s)′ − N(E[s])′E[s]′ds

= E[N(x)] − N(E[x]) − (E[N(0)] − N(E[0]))
= E[N(x)] − N(E[x]),
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the estimate (44) is obtained. Furthermore for N(E[x])′E[x]′ − E[N(x)]′N(x)′ � 0, we can
obtain (45) by the same procedure. �

Remark 3.1
Let us consider (44) in proposition 3.2. By Lebesgue convergence theorem,

lim
c→∞

∫ x

0

− 1
2c

[N(u)′′ − N(E[u])′′] u2eu/cdu

=
∫ x

0

lim
c→∞− 1

2c
[N(u)′′ − N(E[u])′′] u2eu/cdu → 0.(49)

The difference between E[N(x)] and N(E[x]) converges to 0. This is caused by the
independence of the change of the value of the cumulative distribution function according
to the change in x for enough large x. And this means that in terms of the caplet price,
the approximate caplet price given by the conditional survival probability becomes better
approximate price for the caplet (42). The same implication is also concluded with respect
to (45), (50) and (51) in following proposition 3.3.

Proposition 3.3
Let N be same as in proposition 3.2 and x be a negative random variable such that there
exists a positive constant c satisfying x � −c. If c �= 0. If E[N(x)]′N(x)′−N(E[x])′E[x]′ � 0,
then the difference E[N(x)] − N(E[x]) is bounded:

E[N(x)] − N(E[x]) �
∫ −x

0

− 1
2c

{N(E[u])′′ − N(u)′′}u2e
u
c du.(50)

Moreover, if N(E[x])′−E[N(x)′] � 0, then the difference N(E[x])−E[N(x)] is bounded:

N(E[x]) − E[N(x)] �
∫ −x

0

− 1
2c

{N(u)′′ − N(E[u])′′}u2e
u
c du.(51)

Proof. We can obtain (50) and (51) by the same procedure as the proof of proposition
3.2. Since x is negative, we use the relation:

N(E[x]) − E[N(x)] =
∫ x

−∞
N(E[u])′E[u]′ − E[N(u)]′N(u)′du

= −
∫ s

0

N(E[u])′E[u]′ − E[N(u)]′N(u)′du

=
∫ s

0

E[N(u)]′N(u)′ − N(E[u])′E[u]′du,(52)

where we denote s = −x for s � c. For 0 � E[N(x)]′N(x)′ − N(E[x])′E[x]′, it is

0 � E[N(x)]′N(x)′ − N(E[x])′E[x]′

= N(E[s])′E[s]′ − E[N(s)]′N(s)′

� 1
c
(N(E[s]) − E[N(s)]) − 1

2c
{N(E[s])′′ − N(s)′′}s2(53)

By Gronwall’s inequality,

E[N(s)]′N(s)′ − N(E[s])′E[s]′ � M̄(s, E[s])e
sc ,(54)



28 KEN-ICHI MITSUI AND YOSHIO TABATA

where M̄(s, E[s]) = − 1
2c{N(E[s])′′ − N(s)′′}s2. Integrating from 0 to −x, we obtain (50),

i.e.:

N(E[x]) − E[N(x)] =
∫ −x

0

E[N(u)]′N(u)′ − N(E[u])′E[u]′du

�
∫ −x

0

M̄(u, E[u])e
uc du.(55)

(51) is obtained similarly. �

Remark 3.2
If the equations d1 and d2 in (41) satisfy the assumption in proposition 3.2 and 3.3, the
difference between Et[C(t, Tn)] and C(t, Tn)e is bounded by estimates given in these propo-
sition. But for the case of d1 and d2 in R, since the difference can not be bounded by their
estimates, it is necessary to notice the value of d1 and d2.

We can confirm that between Et[C(t, Tn)] and E[C(t, Tn)]e is bounded by proposition
3.2 and 3.3 under the boundedness of di and d′i. But we cannot discriminate positive and
negative of the value of the difference. The following proposition gives the condition for the
boundedness of di, i = 1, 2 in (41).

Proposition 3.4
Let di (i=1,2) be in (41) and denote di as fi(y) where y corresponds to F d. Assume the

nonnegative random variable y such that c̄′ � y � c’ > 0 and vf (·, ·)2 + σ2, y < ∞ and
Tn > t are satisfied. Then for any y ∈ [c’, c̄′], f1(y) and f2(y) exist, respectively.

Proof. It is enough to verify that each term in f1(y) exists. Since f1(y) is given by

f1(y) = (log y − log K)
(

1 − 1
1 + δy

)(√
Tn − t

∫ Tn

t

√
vf (t, s)2 + σ2ds

)−1

+
1
2

(√
Tn − t

∫ Tn

t

√
vf (t, s)2 + σ2ds

)(
1
y

+ δ

)
,

it is sufficient for the existence of f1(y) that vf (·, ·)2 + σ2, y < ∞ and Tn > t. Moreover, it
is the same for the existence of f2(y). Thus, this proposition is proved. �

Remark 3.3
The defaultable forward rate F d is a random variable that depends on the stochastic hazard

rate. Therefore if the conditional survival probability is 1, F d is a constant F > 0. And
if the conditional survival probability is 0, F d is 0. Thus F d is in [0, F]. In proposition
3.4, we assumed y ∈ [c’, c̄′]. This assumption is fulfilled except for F d = 0. When F d = 0,
f1(F d) = ∞ and f2(F d) = −∞. As mentioned in Remark 3.1, when F is enough small, i.e.
c in (49) is large, the difference between Et[C(t, Tn+1)] and C(t, Tn+1)e vanishes.

4 Defaultable Forward Rate Model with Jump Risk In subsection 3.2, with the
survival probability we have obtained the approximate caplet price. The option price is
calculated by the probability of default F d(t, T ) which is the function of the hazard rate
that the component of default in Schönbucher [20] is represented. In this section, using the
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survival probability, we drive the approximate caplet price with both jump and default risk
as following the procedure in subsection 3.2.

Firstly assume that the point process of the jump risk is a compound Poisson process to
drive the explicit formula. In [16], a Poisson process is assumed to follow the jump process.
Moreover in [12], to obtain the closed form solution, they assume the jump process as a
compound Poisson process 7.

Assumption 4.1
Let the dynamics of the instantaneous forward rate be (8). And assume the point process
of the jump risk in (8) to be a compound Poisson process.

Moreover, we give the arbitrage-free condition under the assumption that the jump risk
follows a marked point process and the default risk is presented in proposition 3.1. The proof
of the following proposition 4.1 is omitted because it can be obtained as well as proposition
3.1, Appendix A.1 and A.2.

Proposition 4.1
Assume the forward rate dynamics is given in assumption 2.3 with the Vasicek-type haz-
ard rate process for the default risk instead of the point process. Then the arbitrage-free
condition is described as

0 = −
∫ T

t

(bf (t, s) − c(m − λ(t, s)))ds +
1
2
A2

−θtA − ∂

∂s

∫
E

[
exp

{
−

∫ T

t

qf,j(t, x, s)ds

}
− 1

]
Φ(t, x)λ(dx, t),(56)

where A =
∫ T

t

√
vf (t, s)2 + σ2ds.

By assumption 4.1, the forward rate dynamics dF j,d(t, T )/F j,d(t, T ) is under MTn+1 -
measure

dF j,d(t, T )
F j,d(t, T )

= ζtdW
MTn+1
t +

Nt∑
i=1

(Yi − 1) − λj
nmndt,(57)

where ζtdW
MTn+1
t = ξtdt + ζtdW ′

t and ξt, ζt are given by (36) and (37). (Y − 1) is an
impulse function with mean mn and s2

n denotes the variance of log(Yn). Moreover, Nt is a
Poisson process with the intensity λj8.

As following [12], the option price is given by

C(t, Tn)

= δBj,d(t, Tn+1)EP

⎡
⎣exp

{
− ∫ Tn+1

Tn
rsds

}
Bj,d(Tn+1, Tn+1)

Bj,d(Tn, Tn+1)
C(Tn, Tn+1)

∣∣∣∣∣∣Gt

⎤
⎦

= δBj,d(t, Tn+1)ET ′
n+1

[
(F d,j(Tn, Tn+1) − K)+

∣∣Gt

]
= δ

∞∑
i=0

e−λj
n(Tn−t) (λj

n(Tn − t))i

i!
Bj,d(t, Tn+1)

[
F d,f (t, Tn)

e−λj
n(Tn−t)(1 + mn)iN(d1) − KN(d2)

]
,(58)

7They give the forward rate process with the jump process to be the marked point process (Theorem
3.1 in [12]).

8See Glasserman and Kou [12]
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where

d1 =
log(F (t,Tn)de−λ

j
n(Tn−t)(1+mn)i

K + 1/2(ζ2
t + is2

n)√
ζ2
t + is2

n

,

d2 = d1 −
√

ζ2
t + is2

n,

ζt =
1 + δF j,d(t, Tn)

δF j,d(t, Tn)

∫ Tn

t

√
vf (t, s)2 + σ2ds.

Furthermore, taking expectation for the conditional survival probablity, we obtain the caplet
price:

Et[C(t, Tn)]

= δ

∞∑
i=0

e−λj
n(Tn−t) (λj

n(Tn − t))i

i!
P(τ > Tn+1|τ > t)Bj(t, Tn+1)

[
P(τ > Tn+1|τ > Tn)F j(t, Tn)e−λj

n(Tn−t)(1 + mn)i
Et[N(d1)] − KEt[N(d2)]

]
.(59)

And the approximate caplet price is defined as follows:

C(t, Tn)e

:= δ

∞∑
i=0

e−λj
n(Tn−t) (λj

n(Tn − t))i

i!
P(τ > Tn+1|τ > t)−1Bj(t, Tn+1)

[
P(τ > Tn+1|τ > Tn)F j(t, Tn)e−λj

n(Tn−t)(1 + mn)iN(d′1) − KN(d′2)
]
,(60)

where

d′1 =
log(P(τ > Tn+1|τ > Tn)F j(t,Tn)e−λ

j
n(Tn−t)(1+mn)i

K ) + 1/2(ζ2
t + is2

n)√
ζ2
t + is2

n

,

d′2 = d1 −
√

ζ2
t + is2

n,

ζt =
1 + δP(τ > Tn+1|τ > T )F j(t, Tn)

δP(τ > Tn+1|τ > T )F j(t, Tn)

∫ Tn

t

√
vf (t, s)2 + σ2ds

Because of the same reason in section 3.2, the difference between E[C(t, Tn)] and C(t, Tn)e

is bounded but the sign of the difference can not be determined.

5 Numerical example In this section, we calculate the implied volatility numerically
by the approximate caplet formula given in the previous section and argue the effect of the
hazard rate through this implied volatility.

We use a set of parameters for the conditional hazard rate in Corollary 3.1: h(0, 0) =
0.01, t = 0, Tn = 0.5, · · · , 1.5, c = 0.2, m = 0, σ = 0.0025. The parameters for the caplet
formula (60) are δ = 0.5, λ = 1, mn = {−0.3, 0, 0.3}, sn = 0.45, ζ2

t = 0.052(Tn − t),
F (t, Tn) = 0.06, K = 0.03, · · · , 0.09. Figure 1 shows the survival probability and the
conditional survival probability with this parameter set.

Under these parameters, we can obtain the implied volatility surface with the default
risk shown in Figure 2: The right side of upper row shows the case mn = −0.3, the left
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Figure 3: Difference between volatilities.

side mn = 0.3 and the lower mn = 0. The implied volatility surface with and without the
default risk respectively are given by

σ̂Impd
:= arg minσ(C(t, Tn)e − BS(σ))

σ̂Imp := arg minσ(C(t, Tn) − BS(σ)),

where C(t, Tn)e is represented by (60), C(t, Tn) is the caplet price with jump risk given by
[12] and BS(σ) is Black-Scholes formula of call option with same parameters except for the
volatility σ. The figure of the lower in Figure 2 gives the result with mn = 0, which can
illustrate ’smile’. When mn = 0.3, at each maturity date, the implied volatility has the up
slope shape or the exercise price in which the implied volatility that takes minimum value
is taken lowers(The left side of upper row in Figure 2). Oppositely, when mn = −0.3, the
down slope shape or the exercise price where the minimum value of implied volatility is
high (The right side of upper row in Figure 2). This is the same behavior as no default
case, that is, jump-diffusion model with default risk has the flexibility to illustrate skew or
smile.

To see the influence of the survival probability above, it is necessary to obtain the
difference between implied volatilities: with default risk and without one. The difference
between the implied volatility surfaces is shown in Figure 3: The right side of upper row is
the case mn = −0.3, the left side is mn = 0.3 and the lower is mn = 0.

Figure 3 provides several implications. Firstly, when Tn is short, it occurs that as the
exercise price rises, the difference between the implied volatilities: σ̂Impd

and σ̂Impd
is

decreasing. That is, the implied volatility σ̂Impd
is comparatively lower than σ̂Imp where

the exercise price is low (see Left: Figure 4). Therefore, including the default risk, the
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Figure 4: σ̂Impd
and σ̂Imp for m = 0, Tn = 0.5 (left), 1.5 (right)
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Figure 5: σ̂Impd
and σ̂Imp for m = 0, K = 0.03

implied volatility smile (skew) becomes gentle.
However when Tn is enough large, oppositely as the exercise price rises, the implied

volatility σ̂Impd
is close to σ̂Imp with decreasing (see Right: Figure 4). Thus, the effect of

the default risk to σ̂Impd
makes the sharp of the implied volatility whether steep or gentle

with depending on the Tn.
Secondly, when mn is low, the default risk has not good effect. It means that when

mn = −0.3, the influence of the default risk tends not to be received: in this case, the
range of the difference between implied volatilities is in [−0.01796, 0.020771] (for m = 0.3,
[−0.2195, 0.093425] and for m = 0, [−0.0204, 0.041512]). Lastly, for the low exercise price
as Tn grows, σ̂Impd

becomes larger than σ̂Imp (see Figure 5).

6 Conclusion We considered the forward rate model with both default and jump risks.
The model with the default was showed in [20] and one with the jump risk in [12], respec-
tively. Our constructed model was based on their models. Moreover so as to derive the
survival probability of the forward rate, it is the Vasicek-type hazard rate model of [17].
That is, it is assumed that the hazard rate follows the Vasicek model.

The smile or skew of the implied volatility is well known in the market. Therefore the
jump model is used to express the smile or skew. We investigated the effect of the default
risk of the underling asset through the implied volatility. The results by the sensitivity
analysis show that the default risk reduces or amplifies the implied volatility depending on
the time interval. Moreover, as the exercise price increases, the implied volatility with the
default risk becomes the one without the default risk.
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The model in this paper is based on the independence of the random variables of forward
rates and hazard rate. By dint of the independence, the approximate closed form of the
Caplet was obtained simply. As for the model with jump risks, moreover, in [13] they
simulated the LIBOR market model with the Jump risk for the case of path dependence.
Their technique of discretization scheme is based on [19]. For a somewhat more general
case, their simulation technique can be applied to our model.

A Appendix

A.1 Proofs of Proposition 2.2 and 2.3 We prove proposition 2.3. Assuming that
there are not jump and default risks under assumption 2.3 i.e. qf,j , qd,f = 0, it yields
proposition 2.1 from proposition 2.3. Moreover under the existence of only the jump risk,
it is proved in [4].

Let the dynamics of the bond price and the forward rate be given by assumption 2.3.
Then the relation between the forward rate and the instantaneous forward rate can be
expressed as the equation (11). And as (11) is re-written with substituting (6),

F j,d(t, T )

=
1
δ

(
exp

{∫ T+δ

T

f j,d(t, s)ds

}
− exp

{∫ T+δ

T

λf
s ds

})

=
1
δ

(
exp

{∫ T+δ

T

[
f j,d(0, s) +

∫ t

0

bf(u, s)du +
∫ t

0

vf (u, s)dWu

+
∫ t

0

∫
E

qf,j(u, x, s)µ(du, dx) +
∫ t

0

∫
E′

qf,d(u, x, s)µ′(du, dx)
]

ds

}

− exp

{∫ T+δ

t

λf
sds

})
(61)

In the parenthesis {·} let us consider
∫ T+δ

t
f j,d(t, s)ds 9. It can be manipulated by

Fubini’s theorem as follows:

∫ T+δ

t

f j,d(t, s)ds

=
∫ T+δ

t

f j,d(0, s)ds +
∫ t

0

∫ T+δ

t

bf(u, s)dsdu

+
∫ t

0

∫ T+δ

t

vf (u, s)dsdWu +
∫ t

0

∫ T+δ

t

∫
E

qf,j(u, x, s)dsµ(du, dx)

+
∫ t

0

∫ T+δ

t

∫
E′

qf,d(u, x, s)dsµ′(du, dx).

Furthermore, extending the interval [s, T ] to two parts, i.e. [u, s] and [u, T ], changing

9It has the relationship: Bj,d(t, T + δ) = exp
�
− � T+δ

t fj,d(t, s)ds
�
.
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the order of integration and by f j,d(s, s) = rs,

∫ T

t

f j,d(t, s)ds

=
∫ T

0

f j,d(0, s)ds −
∫ t

0

f j,d(0, s)ds +
∫ t

0

∫ T

u

bf (u, s)dsdu

−
∫ t

0

∫ s

u

bf(u, s)dsdu +
∫ t

0

∫ T

u

vf (u, s)dsdWu

−
∫ t

0

∫ s

u

vf (u, s)dsdWu +
∫ t

0

∫ T

u

∫
E

qf,j(u, x, s)dsµ(du, dx)

−
∫ t

0

∫ s

u

∫
E

qf,j(u, x, s)dsµ(du, dx) +
∫ t

0

∫ T

u

∫
E′

qf,d(u, x, s)dsµ′(du, dx)

−
∫ t

0

∫ s

u

∫
E′

qf,d(u, x, s)dsµ′(du, dx)

=
∫ T

0

f j,d(0, s)ds −
∫ t

0

rsds +
∫ t

0

∫ T

u

bf(u, s)dsdu

+
∫ t

0

∫ T

u

vf (u, s)dsdWu +
∫ t

0

∫ T

u

∫
E

qf,j(u, x, s)dsµ(du, dx)

+
∫ t

0

∫ T

u

∫
E′

qf,d(u, x, s)dsµ′(du, dx).

Therefore d
∫ T

t f j,d(t, s)ds with u = t is yielded as follows:

d

∫ T

t

f j,d(t, s)ds

=

{
−rt +

∫ T

t

bf (t, s)ds

}
dt +

∫ T

t

vf (t, s)dsdWt

+
∫ T

t

∫
E

qf,j(t, x, s)dsµ(dt, dx) +
∫ T

t

∫
E′

qf,d(t, x, s)dsµ′(dt, dx)(62)

Thus, applying itô formula to Bj,d(t, T ) = exp
{
− ∫ T

t
f j,d(t, s)ds

}
10,

dBj,d(t, T )
Bj,d(t−, T )

= −d

{∫ T

t

f j,d(t, s)ds

}
+

1
2
d

{∫ T

t

f j,d(t, s)ds

}2

+
∫

E

[
exp

{
−

∫ T

t

qf,j(t, x, s)ds

}
− 1

]
µ(dt, dx)

+
∫

E′

[
exp

{
−

∫ T

t

qf,d(t, x, s)ds

}
− 1

]
µ′(dt, dx)

10cf. Elliott [11], to apply itô formula with the jump process.
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Assume assumption 2.4 and using (41), then

dBj,d(t, T )
Bj,d(t−, T )

=

⎧⎨
⎩rt −

∫ T

t

bf (t, s)ds +
1
2

(∫ T

t

vf (t, s)ds

)2
⎫⎬
⎭ dt −

∫ T

t

vf (t, s)dsdWt

+
∫

E

[
exp

{
−

∫ T

t

qf,j(t, x, s)ds

}
− 1

]
µ(du, dx)

+
∫

E′

[
exp

{
−

∫ T

t

qf,d(t, x, s)ds

}
− 1

]
µ′(du, dx).

The proof of proposition 2.3 is complete. Moreover if there are not the jump and default
risks, then proposition 2.2 is obtained. �

Remark A.1
This proof is based on the procedure in Björk, Kabanov and Runggaldier [4]. When there
is no default risk, proposition 2.2 in [4] is established.

A.2 Proof of Theorem 2.2 Following to theorem 3.13 in [4], to prove theorem 2.2 we
construct the equivalence of drift terms between the stochastic process of the bond price
under Q-martingale measure and one of forward rate with same measure.

First, let the bond price and forward rate dynamics be as assumption 2.3. Then the
bond price dynamics with Q-measure is

dB(t, T ) = rtB(t, T )dt + dMQ.(63)

Substituting dWt = θtdt+dW ′
t , λQ(t, dx) = Φ(t, x)λ(t, dx) and λ′

Q(t, dx) = Φ′(t, x)λ′(t, dx)
into (21) of proposition 2.3, we have

dB(t, T )
B(t−, T )

=

⎧⎨
⎩rt −

∫ T

t

bf (t, s)ds +
1
2

(∫ T

t

vf (t, s)ds

)2

− θt

∫ T

t

vf (t, s)ds

+
∫

E

[
exp

{
−

∫ T

t

qf,j(t, x, s)ds

}
− 1

]
Φ(t, x)λ(t, dx)

+
∫

E′

[
exp

{
−

∫ T

t

qf,d(t, x, s)ds

}
− 1

]
Φ′(t, x)λ′(t, dx)

}
dt

−θt

∫ T

t

vf (t, s)dsdW ′
t +

∫
E

[
exp

{
−

∫ T

t

qf,j(t, x, s)ds

}
− 1

]

(µ(dt, dx) − v(dt, dx)) +
∫

E′

[
exp

{
−

∫ T

t

qf,d(t, x, s)ds

}
− 1

]

(µ′(dt, dx) − v′(dt, dx)).(64)
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If (63) and (64) are equivalent, it must be established:

0 = −
∫ T

t

bf (t, s)ds +
1
2

(∫ T

t

vf (t, s)ds

)2

− θt

∫ T

t

vf (t, s)ds

+
∫

E

[
exp

{
−

∫ T

t

qf,j(t, x, s)ds

}
− 1

]
Φ(t, x)λ(t, dx)

+
∫

E′

[
exp

{
−

∫ T

t

qf,d(t, x, s)ds

}
− 1

]
Φ′(t, x)λ′(t, dx),(65)

or equivalently

0 = −bf(t, s) + vf (t, s)

(∫ T

t

vf (t, s)ds

)
− θtv

f (t, s)

+
∂

∂s

∫
E

[
exp

{
−

∫ T

t

qf,j(t, x, s)ds

}
− 1

]
Φ(t, x)λ(t, dx)

+
∂

∂s

∫
E′

[
exp

{
−

∫ T

t

qf,d(t, x, s)ds

}
− 1

]
Φ′(t, x)λ′(t, dx).

�
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