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Abstract. Upper bounds for the difference between symmetric operator means, partic-
ularly, related to the arithmetic and the harmonic means, are discussed. The differenc
for commuting operators is also studied.

1. Introduction

A (bounded linear) operator A on a Hilbert space H is said to be positive, and denoted
by A ≥ 0, if (Ax,x) ≥ 0 for all x ∈ H. For two positive operators A and B the arithmetic
mean A∇B and the harmonic mean A!B are defined by

A∇B =
A+B

2
and A!B = 2(A : B)

respectively. Here A : B = (A−1 + B−1)−1 is the parallel sum of A and B if both A
and B are invertible. (Without invertibility assumption A : B is defined by the limit of
(A+ εI) : (B+ εI) as ε(> 0) ↓ 0, where I expresses the identity operator on H.) Concerning
the above two operator means the following inequality

A∇B ≥ A!B(1.1)

is well-known as the arithmetic-harmonic mean inequality. Related to its reverse type
inequality, recently, J. I. Fujii et al. [2], by using Mond-Pečarić method [7], have established
the following theorem, which yields a noncommutative Kantorovich type inequality (cf. [3]),
or both the ratio and the difference type reverse inequalities of (1.1), simultaneously:

Theorem 1.1. ([2, Theorem 6].) Let A and B be positive operators such that mI ≤ A,B ≤
MI for some constants 0 < m < M. Then for any α > 0

A+B ≤ α(A : B) + β(m,M,α),(1.2)

where

β(m,M,α) =

⎧⎪⎨
⎪⎩

2(m+M) − 2
√
αmM if m ≤

√
αmM
2 ,

(2 − α
2 )M if

√
αmM
2 < m,

(2 − α
2 )m if M >

√
αmM
2 .

Putting α =
(M +m)2

Mm
in (1.2), we obtain a ratio type reverse inequality

A∇B ≤ (M +m)2

4Mm
A!B,(1.3)
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and similarly, putting α = 4, we obtain a difference type reverse inequality

A∇B −A!B ≤ (
√
M −√

m)2I(1.4)

Now from the stand-point of commutativity and noncommutativity, for a simple obser-
vation, if we replace, in the above (1.3) and (1.4), A and B by mI and MI, respectively, or
equivalently, both of them by corresponding positive numbers, then

m∇M =
(m+M)2

4mM
m!M and m∇M −m!M =

(M −m)2

2(m+M)
≤ (

√
M −√

m)2

hold, so that the equality holds in (1.3) but not in (1.4) generally. The upper bound
(
√
M − √

m)2 in (1.4) seems too large. This suggests to study more about the reverse
inequality of difference type in details, which is the aim of this paper.

2. Diffrence between the arithmetic and the harmonic means

For the difference between the arithmetic and the harmonic means of positive operators,
we have the following fact, which is essentially obtaind in [1].

Theorem 2.1. (cf. [1].) For positive invertible operators A and B

A∇B −A!B =
1
2
(A −B)(A+B)−1(A−B).(2.1)

Proof . By a direct computation, or using the facts A + B = (A + B)C(A + B) and
A : B = ACB = BCA for C = (A+B)−1, we easily obtain (2.1).

¿From the above theorem we at once obtain the following

Corollary 2.2. If mI ≤ A,B ≤ MI for some constants 0 < m ≤ M, then A∇B ≥ A!B
and

0 ≤ A∇B −A!B ≤ (M −m)2

4m
I.(2.2)

Later in Section 3, we state Theorem 3.1 cited from [2], which extends the inequality
(2.2).

Remark 2.3. Concerning the differece between the arithmetic and the harmonic means,
T. Furuta [4], very recently, has presented a very simple identity: Let A1, ..., An be positive
invertible operators and let λ1, ..., λn be positive numbers with

∑n
k=1 λk = 1. Then

A−H =
n∑

k=1

λk(I −HA−1
k )Ak(I −HA−1

k )∗(≥ 0),

where A =
∑n

k=1 λkAk and H = (
∑n

k=1 λkA
−1
k )−1.

Employing the above identity T. Furuta gave an extremely short proof of the extended
arithmetic-harmonic mean inequality and its ratio type reverse inequality.

Comparing the upper bounds in (1.4) with that in (2.2), we see that the former is better

than the latter, because (
√
M − √

m)2 ≤ (M −m)2

4m
. Concerning this fact we notice the

following
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Example 2.4. The upper bound (
√
M − √

m)2 in (1.4) is really the best possible. For a
concrete example, let A and B be 2 × 2 matrices as follows:

A =
[
4 0
0 1

]
and B =

1
3

[
4 2

√
2

2
√

2 11

]
.(2.3)

Then the equality in (1.4) holds.
In fact, both A and B have eigenvalues 1 and 4, so that we can put m = 1 and M = 4.

By an elementary computation we have

A∇B =
1
3

[
8

√
2√

2 7

]
, A!B =

2
9

[
8

√
2√

2 7

]
(2.4)

and

D := A∇B −A!B =
1
9

[
8

√
2√

2 7

]
.

The eigenvalues of D are then 1 and 2/3, so that the least upper bound of D, that is, the
infimum of λ > 0 such that D ≤ λI is 1 = (

√
4 −√

1)2 = (
√
M −√

m)2. This implies that
the constant (

√
M −√

m)2 is the best possible.

Now for a more minute observation, let

A =
[
M 0
0 m

]
, U =

[
c −s
s c

]
and B = UAU∗.

Here c and s are positive numbers such that c2 + s2 = 1. We have to determine c (and s)
such that the equality holds in (1.4). Since U is unitary, we see that mI ≤ A,B ≤ MI. By
an elementary computation we have

D := A∇B −A!B =
1
2
(A−B)(A+B)−1(A−B) = kE,

where

k =
(1 − c2)(M −m)2

2{(M +m)2 − c2(M −m)2}
and

E =
[
(1 + c2)M + s2m sc(M −m)

sc(M −m) s2M + (1 + c2)m

]
.

Calculating the eigenvalues λ of E, we have λ = M +m± c(M−m), so that the eigenvalues
of D are k{M +m± c(M −m)}. Hence in order to realize the equality sign in (1.4) we have
to find the value c (> 0) such that the identity

k{M +m+ c(M −m)} = (
√
M −√

m)2

holds. Then we obtain c =

√
M −√

m√
M +

√
m

(
and s =

2 4
√
Mm√

M +
√
m

)
, which is the desired.

As stated in the above example, the constant (
√
M − √

m)2 is the best possible for
noncommutative operators, however, it seems too large stated before, whenever A and B
are real numbers. Under the circumstances we have the following

Theorem 2.5. Let A and B be positive operators such that mI ≤ A,B ≤ MI for some
constants 0 < m ≤M. If we assume that A and B commute, then

A∇B −A!B ≤ d0(m,M)I,(2.5)
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where d0(m,M) =
(M −m)2

2(M +m)
. The constant d0(m,M) is the best possible.

Proof . Since A and B commute, we have to cosider the function

φ(x, y) = x∇y − x!y =
(x− y)2

2(x+ y)
,(2.6)

replaced A and B with real variables x and y respectively, in the left-hand side of (2.5).
Then it suffices to see that the maximum of φ(x, y) (m ≤ x, y ≤M) is d0(m,M). First fix

y = a, m ≤ a ≤M. Then φa(x) =
(x− a)2

2(x+ a)
is decreasing on [m, a] and increasing on [a,M ]

because φ′a(x) =
(x− a)(x+ 3a)

2(x+ a)2
. Hence we have

max
m≤x≤M

φa(x) = max
{

(m− a)2

2(m+ a)
,
(M − a)2

2(M + a)

}
.

By the same reason as above, ψ(a) =
(m− a)2

2(m+ a)
(resp.

(M − a)2

2(M + a)
) takes the maximum at

a = M (resp. a = m). This implies that the maximum of φ(x, y) is
(M −m)2

2(M +m)
= d0(m,M).

Later we shall show a theorem (Theorem 3.2) as an extension of Theorem 2.5.
Considering the upper bound of the ratio type reverse inequality (1.3), instead of that of

the difference type reverse inequality, with the same assumption that A and B commute,
we still obtain the same upper bound (M+m)2

4Mm (by putting A = mI and B = MI) as before
in the case without commutativity assumption.

3. Diffrence between the arithmetic (harmonic) mean and a symmetric mean

By the Kubo-Ando theory [6] a map (A,B) �→ AσB in the cone of positive operators on
H is called an operator mean if the following conditions are satisfied:

monotonicity: A ≤ C and B ≤ D imply AσB ≤ CσD,
upper semicontinuity: An ↓ A and Bn ↓ B imply AnσBn ↓ AσB,
transformer inequality: T ∗(AσB)T ≤ T ∗ATσT ∗BT for every operator T.
normalized condition: AσA = A.

A key fact in the theory is that there is a one-to-one correspondance between an operator
mean σ and a nonnegtive monotone function f = fσ defined on [0,∞) through the formula

AσB = A1/2(1σA−1/2BA−1/2)A1/2 = A1/2fσ(A−1/2BA−1/2)A1/2

for all positive invertible operators A and B. Replaced A and B by I and tI respectively,
it follows that fσ(tI) = Iσ(tI) or fσ(t) = 1σt. The function fσ is called the representing
function for σ, and it is known as a concave function. For an operator mean σ, its transpose
σ◦ is defined by Aσ◦B = BσA for all positive (invertible) operators A and B. This is an
operator mean again, and if σ = σ◦ then σ is said to be symmetric. The adjoint σ∗ of
σ is similarly defined by Aσ∗B = Aσ∗B = (A−1σB−1)−1. The representing function fσ

for a symmetric operator mean σ is characterized as one satisfying fσ(t) = tfσ(t−1). The
representing function corresponding to the adjoint σ∗ of σ is given as fσ∗(t) = fσ(t−1)−1.

It is not difficult to see that both the arithmetic mean ∇ and the harmonic mean ! are
symmetric, and that ∇∗ = ! and !∗ = ∇.
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We here have to state the geometric mean A�B, which is defined by

A�B = A1/2(A−1/2BA−1/2)1/2A1/2

for all positive invertible operators A and B. The geometric mean is a symmetric and
�∗ = �. With respect to the arithmetic, the geometric and the harmonic means the following
inequalities

A∇B ≥ A�B ≥ A!B(3.1)

are well-known as well as the inequality (1.1). From the general theory of operator means,
as an extension of (3.1), the following inequalities are known:

A∇B ≥ AσB ≥ A!B(3.2)

for any symmetric operator meam σ. Correspondingly, among their representing functions
the following inequalities hold:

1 + t

2
= f∇(t) ≥ fσ(t) ≥ f!(t) =

2t
1 + t

.(3.3)

As an extension of the noncommutative Kantorovich type inequality, or estimates of the
ratio and the difference between the arithmetic (resp. the harmonic) mean and a symmetric
mean (resp. its adjoint), the following result has been shown in [2].

Theorem 3.1. ([2, Theorem 11].) Let σ be a symmetric operator mean with the represent-
ing function f = fσ. If A and B are positive operators such that mI ≤ A,B ≤MI for some
constants 0 < m ≤M, then

A∇B ≤ m∇M
mσM

AσB.(3.4)

Aσ∗B ≤ mσ∗M
m!M

A!B.(3.5)

A∇B −AσB ≤ M

mσM
· (m∇M −mσM)I.(3.6)

and

Aσ∗B −A!B ≤ M

mσ∗M
· (mσ∗M −m!M)I(3.7)

Putting σ = ! in (3.6) (or σ∗ = ∇ in (3.7)), we obtain (2.2) of Corollary 2.2 again.

Now for the ratio type reverse inequalities (3.4) and (3.5), it is easy to see that the upper
bound of each inequality is the best possible because the equality holds if we put A = mI
and B = MI. Clearly each of the constants is the best possible even if the operators are
restricted to those that are commuting.

Unlike to the ratio type reverse inequalities, for the difference type reverse inequalities
(3.6) and (3.7) the best upper bounds seem different from those which are obtained under
the restriction that the operators are commuting. First corresponding to (3.6) we have the
following fact, which is a generalization of Theorem 2.5.

Theorem 3.2. Let A and B be positive operators satisfying mI ≤ A,B ≤ MI for some
constants 0 < m < M. Assume that A and B commute. Then for any symmetric operator
mean σ

A∇B −AσB ≤ (m∇M −mσM)I
(
≤ M

mσM
(m∇M −mσM)I

)
(3.8)
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holds and the upper bound m∇M −mσM is the best possible.
In particular,

A∇B −A�B ≤ (m∇M −m�M)I

(
=

(
√
M −√

m)2

2
I

)
.(3.9)

and

A∇B −A!B ≤ (m∇M −m!M)I
(

=
(M −m)2

2(m+M)
I

)
.

Proof . Since A and B commute, we can replace them by real variables x and y, respec-
tively, with m ≤ x, y ≤M, or (x, y) ∈ [m,M ]2 = [m,M ] × [m,M ]. Put

φ = φ(x, y) = x∇y − xσy =
x+ y

2
− xfσ

(y
x

)
.(3.10)

Calculating the Hessian matrix Hφ of φ, we have

Hφ =
[
φxx φxy

φxy φyy

]
= − 1

x3
f ′′

σ

(y
x

)[
y2 −xy
−xy x2

]
.(3.11)

Since fσ is concave, or f ′′
σ ≤ 0, we then have Hφ ≥ 0, that is, φ is convex. Hence the

maximum of φ is attained at a vertex of the square [m,M ]2. Since φ(m,m) = φ(M,M) = 0,
we obtain φ(m,M)(= φ(M,m)) as the maximum of φ, which implies the desired inequality
(3.8). The best possibility of φ(m,M) is clear.

Now if we put σ = � specially, then from Theorem 3.1 (3.6), we have

A∇B −A�B ≤ M

m�M
· (m∇M −mσM)I =

1
2

√
M

m
(
√
M −√

m)2I,(3.12)

so that we obtain
1
2

√
M

m
(
√
M −√

m)2 as an upper bound of the difference A∇B − A�B.

On the other hand, for commuting operators, from Theorem 3.2, (3.9), we have a smaller

constant
(
√
M −√

m)2

2
as the best possible upper bound. Related to those upper bounds

we want to state an example by using the same matrices A and B as in Example 2.4.

Example 3.3. Let A =
[
4 0
0 1

]
and B =

1
3

[
4 2

√
2

2
√

2 11

]
. Then m = 1 ≤ A,B ≤ 4 = M

and from (2.4)

A∇B =
1
3

[
8

√
2√

2 7

]
,

By an elementary computation we have

A�B =
√

6
9

[
8

√
2√

2 7

]
.(3.13)

Hence

D1 := A∇B −A�B =
3 −√

6
9

[
8

√
2√

2 7

]
.

Since the eigenvalues of the matrix D1 are 3 − √
6 and

2
3
(3 −

√
6). we see that the least

upper bound of D1 is 3 − √
6 = 0.5505... On the other hand, the best upper bound of the

difference of the same type under the restriction of commuting operators is, from (3.9),

m∇M −m�M = (1 + 4)/2 −√
1 · 4 = 0.5,
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which is too small for an upper bound of D1.

Now corresponding to (3.7), consider the difference:

Aσ∗B −A!B(3.14)

with the assumption that A and B commute. Then we have the corresponding function

ψ = ψ(x, y) = xσ∗y − x!y = xfσ∗
( y
x

)
− 2xy
x+ y

,

similarly as φ. It is desirable to obtain the maximum of ψ on [m,M ]2. But it seems not so
easy as in case of φ to compute the value by means of the Hessian matrix of ψ.

However, in particular, for σ(= σ∗) = �, the best upper bound of (3.14) is determined as
follows:

Theorem 3.4. Let A and B be commuting positive operators satisfying mI ≤ A,B ≤ MI
for some constants 0 < m < M. Then

A�B −A!B ≤ d(m,M)I,(3.15)

where d(m,M) is defined as follows (and is the best possible upper bound):

d(m,M) =

{
(
√
τ − 2τ

1+τ )MI, if
√

m
M ≤ 1 − τ ,

(
√

m
M − 2m/M

1+m/M )MI, if
√

m
M ≥ 1 − τ,

(3.16)

Here τ (= 0.7044...) is the (unique) positive solution ∈ (0, 1) of the cubic equation

t3 − 4t2 + 8t− 4 = 0.(3.17)

Proof . Let

ψ = x�y − x!y =
√
xy − 2xy

x+ y
.

Then we have to compute the maximum of ψ for m ≤ x, y ≤M. Without loss of generality
we may assume that M = 1. The function ψ is rewritten as follows:

ψ =
√
xy(

√
x−√

y)2

(
√
x−√

y)2 + 2
√
xy
.

Putting u =
√
x−√

y and v =
√
xy, we have

ψ = ψ(u, v) =
u2v

u2 + 2v
.(3.18)

Note that
√
x+

√
y =

√
u2 + 4v. Hence we see that

√
x =

u+
√
u2 + 4v
2

and
√
y =

−u+
√
u2 + 4v
2

.

Since m ≤ x, y ≤M = 1, we then have

2
√
m ≤ u+

√
u2 + 4v ≤ 2

and
2
√
m ≤ −u+

√
u2 + 4v ≤ 2.

Write Ω the domain in the uv−plane satisfying the above inequalities. Then Ω is a quadri-
lateral surrounded by the four straight lines

v = ±√
mu+m, and v = ±u+ 1.
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(The verteces of Ω are the four points (0,m), (1 − √
m,

√
m), (0, 1) and (−1 +

√
m,

√
m)

in the uv-plane.) We have to find the maximum of ψ = ψ(u, v) on Ω. Since ψ is an even
function in u, so that we may consider (u, v) ∈ Ω for 0 ≤ u ≤ 1 − √

m. It is easy to see
that for a fixed u = a (0 ≤ a ≤ 1 − √

m), the function ψa(v) = ψ(a, v) is increasing on
[0, b], b = −a+ 1. Hence

max
0≤v≤b

ψa(v) = ψa(b) = ψ(a,−a+ 1).(3.19)

Now define

ψ̃(t) = ψ(t,−t+ 1) =
t2 − t3

t2 − 2t+ 2
(3.20)

by replacing a with t ∈ [0,∞) in (3.19). Then by an elementary calculation we see that
ψ̃(t) is increasing on (0, τ) and decreasing on (τ,∞), where t = τ is the unique positive
solution of ψ̃′(t) = 0, or the equation (3.17). Hence the maximum ψmax of ψ on Ω is ψ̃(τ)
if τ ≤ 1−√

m, and ψmax = ψ̃(1−√
m) if τ > 1−√

m. We then have the desired inequality
(3.15) with the constant d(m,M) defined by (3.16). It is clear that d(m,M) is the best
possible upper bound.

The upper bound d(m,M) defined in Theorem 3.4 is, as stated, the best possible for
operators with the assumtion of commutativity, but is, in general, too small for operators
without the assumption. The following example shows this fact.

Example 3.5. Let A and B be the same matrices as used in Examples 2.4 and 3.3. Then
m = 1 ≤ A,B ≤ 4 = M, (from (3.13) and (2.4))

A�B =
√

6
9

[
8

√
2√

2 7

]
and A!B =

2
9

[
8

√
2√

2 7

]
.

Hence

D2 := A�B −A!B =
√

6 − 2
9

[
8

√
2√

2 7

]
.

Since the eigenvalues of D2 are
√

6 − 2 and
2
3
(
√

6 − 2). we see that the least upper bound

of D2 is
√

6 − 2 = 0.4497... , which is larger than d(m,M) =
(√

1
4 − 2·(1/4)

1+(1/4)

)
· 4 = 0.4, the

best possible upper bound obtained from (3.16).
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Publishing house ELEMENT Zagreb, 2005.



UPPER BOUNDS FOR THE DIFFERENCE BETWEEN SYMMETRIC OPERATOR MEANS 9

[6] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205-224.
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