KADISON'S SCHWARZ INEQUALITY AND NONCOMMUTATIVE KANTOROVICH INEQUALITY

Masatoshi Fujii and Masahiro Nakamura

Received September 20, 2005

ABSTRACT. Kadison's Schwarz inequality implies the arithmetic-harmonic (operator) mean inequality and the Ando-Mond-Pečarić reverse inequality of Kadison's Schwarz one implies the noncommutative Kantorovich inequality.

Let Φ be a unital positive linear map on B(H), the C^{*}-algebra of all bounded linear operators on a Hilbert space H. Then Kadison's Schwarz inequality asserts

(1)
$$\Phi(A^{-1})^{-1} \le \Phi(A)$$

for all positive invertible $A \in B(H)$.

If Φ is defined on $B(H) \oplus B(H)$ by

(2)
$$\Phi(A \oplus B) = \frac{1}{2}(A+B) \quad \text{for } A, B \in B(H),$$

then Φ satisfies

(3)
$$\Phi((A \oplus B)^{-1})^{-1} = A ! B, \quad \Phi(A \oplus B) = A \nabla B$$

for all positive invertible $A, B \in B(H)$, where $A \mid B$ is the harmonic operator mean and $A\nabla B$ is the arithmetic operator mean in the sense of Kubo-Ando [3], so that (1) implies

Theorem 1. Kadison's Schwarz inequality implies the arithmetic-harmonic mean inequality, i.e., $A \mid B \leq A \nabla B$.

On the other hand, the Ando-Mond-Pečarić reverse of Kadison's Schwarz inequality asserts that

(4)
$$\Phi(A) \le \frac{(M+m)^2}{4Mm} \Phi(A^{-1})^{-1}$$

if A satisfies $0 < m \le A \le M$ for some constants m < M, cf. [2, Theorem 1.32]. Thus it follows from (3) that

(5)
$$A\nabla B \le \frac{(M+m)^2}{4Mm} A! B$$

for A, B with $0 < m \leq A, B \leq M$. It is nothing but the noncommutative Kantorovich inequality introduced in [1]. That is,

²⁰⁰⁰ Mathematics Subject Classification. 47A63, 47A64 and 47B15.

Key words and phrases. Kadison's Schwarz inequality and its reverse one, operator mean, Kantorovich inequality, noncommutative Kantorovich inequality and Bochner integral.

Theorem 2. The reverse of Kadison's Schwarz inequality implies the noncommutative Kantorovich inequality (5).

In addition, Theorem 2 can be rephrased as follows:

Corollary 3. The noncommutative Kantorovich inequality is a complement of the arithmeticharmonic mean inequality.

In [1], a difference version of the noncommutative Kantorovich inequality is also introduced by

(6)
$$A\nabla B - A ! B \le (\sqrt{M} - \sqrt{m})^2$$

for all positive invertible $A, B \in B(H)$ with $0 < m \leq A, B \leq M$, cf. [1, Theorem 6], whereas it has already known in [2, Theorem 1.32] that

(7)
$$\Phi(A) - \Phi(A^{-1})^{-1} \le (\sqrt{M} - \sqrt{m})^2$$

for all positive invertible $A \in B(H)$ with $0 < m \le A \le M$. So the following is obtained:

Theorem 4. The difference noncommutative Kantorovich inequality is a consequence of the difference version of Kadison's Schwarz inequality.

At this end, we explain that the noncommutative Kantorovich inequality is reformed as follows: If F(t) is an operator-valued continuous function on a closed interval I satisfying $0 < m \leq F(t) \leq M$ for all $t \in I$, then

(8)
$$\int_{I} F(t)^{-1} d\mu(t) \leq \frac{(M+m)^{2}}{4Mm} \left(\int_{I} F(t) d\mu(t) \right)^{-1},$$

for all probability measures μ on *I*, where the integral is Bochner's sense.

References

- [1] J.I.FUJII, M.NAKAMURA, J.E.PEČARIĆ AND Y.SEO, Bounds for the ratio and difference between parallel sum and series via Mond-J.E.Pečarić method, preprint.
- [2] T.FURUTA, J.MIĆIĆ, J.E.PEČARIĆ AND Y.SEO, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
- [3] F.KUBO AND T.ANDO, Means of positive linear operators, Math. Ann., 246(1980), 205-224.

Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan.

E-mail : mfujii@cc.osaka-kyoiku.ac.jp