CHARACTERIZATIONS OF δ-ORDER ASSOCIATED WITH KANTOROVICH TYPE OPERATOR INEQUALITIES

Jadranka Mićıć and Josip Pečarić

Received October 18, 2004; revised October 24, 2005

Abstract

In this note, we obtain more precise estimations than the constants are given in the paper by M.Fujii, E.Kamei and Y.Seo, Kantorovich type operator inequalities via grand Furuta inequality, Sci. Math., 3 (2000), 263-272. Among other, we show that the following statements are mutually equivalent for each $\delta \in(0,1]$:

$$
\begin{equation*}
K\left(m^{\frac{(p-\delta) s}{n}}, M^{\frac{(p-\delta) s}{n}}, n+1\right)^{\frac{1}{s}} A^{p} \geq B^{p} \tag{i}
\end{equation*}
$$

for any $n>0, s \geq 1, p \geq \delta$ with $(p-\delta) s \geq n \delta$.

$$
K\left(m^{\delta}, M^{\delta}, \frac{p}{\delta}\right) A^{p} \geq B^{p} \quad \text { for any } p \geq \delta
$$

For each $\delta \in(0,1]$

$$
K\left(m^{\frac{(p-\delta) s}{n}}, M^{\frac{(p-\delta) s}{n}}, n+1\right)^{\frac{1}{s}} \geq K\left(m^{\delta}, M^{\delta}, \frac{p}{\delta}\right)
$$

holds for any $n>0, s \geq 1, p \geq \delta$ such that $(p-\delta) s \geq n \delta$.
1 Introduction. Let $\mathcal{B}(H)$ be the C^{*}-algebra of all bounded linear operators on a Hilbert space H and $\mathcal{B}_{++}(H)$ be the set of all positive invertible operators of $\mathcal{B}(H)$. An operator A is said to be positive (in symbol: $A \geq 0$) if ($A x, x) \geq 0$ for any $x \in H$. We denote by $\operatorname{Sp}(A)$ the spectrum of the operator A. The order between operators $A, B \in \mathcal{B}_{++}(H)$ defined by $\log A \geq \log B$ is said to be the chaotic order $A \gg B$.

First of all, we recall the celebrated Kantorovich inequality: If a positive operator $A \in$ $\mathcal{B}_{++}(H)$ satisfies $\operatorname{Sp}(A) \subseteq[m, M]$ for some scalars $M>m>0$, then

$$
\frac{(m+M)^{2}}{4 m M}(A x, x)^{-1} \geq\left(A^{-1} x, x\right)
$$

for every unit vector $x \in H$. The number $\frac{(m+M)^{2}}{4 m M}$ is called the Kantorovich constant. Related to an extension of the Kantorovich inequality, Furuta [4] showed the following Kantorovich type operator inequality:

Theorem A If $A \geq B \geq 0$ and $\operatorname{Sp}(A) \subseteq[m, M]$ for some scalars $M>m>0$, then

$$
\left(\frac{M}{m}\right)^{p-1} A^{p} \geq K(m, M, p) A^{p} \geq B^{p} \quad \text { holds for any } p \geq 1
$$

where a generalized Kantorovich constant $K(m, M, p)[4,5]$ is defined as

$$
K(m, M, p)=\frac{m M^{p}-M m^{p}}{(p-1)(M-m)}\left(\frac{p-1}{p} \frac{M^{p}-m^{p}}{m M^{p}-M m^{p}}\right)^{p} \quad \text { for all } p \in \mathbf{R}
$$

Next, we cite the grand Furuta inequality which interpolates the Furuta inequality [3] and the Ando-Hiai inequality [1].

[^0]Theorem G (The grand Furuta inequality) If $A \geq B \geq 0$ and A is invertible, then for each $t \in[0,1]$,

$$
\left\{A^{\frac{r}{2}}\left(A^{-\frac{t}{2}} A^{p} A^{-\frac{t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1}{q}} \geq\left\{A^{\frac{r}{2}}\left(A^{-\frac{t}{2}} B^{p} A^{-\frac{t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1}{q}}
$$

holds for any $s \geq 0, p \geq 0, q \geq 1$ and $r \geq t$ with $(s-1)(p-1) \geq 0$ and $(1-t+r) q \geq(p-t) s+r$.
In [2] Fujii et al. consider the class of orders $A^{\delta} \geq B^{\delta}$ for $A, B \in \mathcal{B}_{++}(H)$ and $\delta \in[0,1]$, where the case $\delta=0$ means the chaotic order. This class of orders interpolates the usual order $A \geq B$ and the chaotic order $A \gg B$ continuously. As applications of Theorem A and the grand Furuta inequality, they obtained in [2, Theorem 2] the following Kantorovich type order preserving operator inequalities by means of the generalized Kantorovich constant (\star).

Theorem B Let $A, B \in \mathcal{B}_{++}(H)$ with $\operatorname{Sp}(A) \subseteq[m, M]$ for some scalars $M>m>0$. Then the following statements are mutually equivalent for each $\delta \in(0,1]$:
(i) $\quad A^{\delta} \geq B^{\delta}$.
(ii) For each $n \in \mathbf{N}$ and $\alpha \in[0,1]$

$$
K\left(m^{\frac{(p-\delta+\alpha u) s-\alpha u}{n}}, M^{\frac{(p-\delta+\alpha u) s-\alpha u}{n}}, n+1\right) A^{(p-\delta+\alpha u) s} \geq\left(A^{\frac{\alpha u-\delta}{2}} B^{p} A^{\frac{\alpha u-\delta}{2}}\right)^{s}
$$

holds for $s \geq 1, p \geq \delta$ and $u \geq \delta$ with $(p-\delta+\alpha u) s \geq(n+\alpha) u$.
(iii) For each $n \in \mathbf{N}$

$$
K\left(m^{\frac{(p-\delta) s}{n}}, M^{\frac{(p-\delta) s}{n}}, n+1\right)^{\frac{1}{s}} A^{p} \geq B^{p}
$$

holds for $s \geq 1$ and $p \geq \delta$ with $(p-\delta) s \geq n \delta$.
(iv) $\left(\frac{M}{m}\right)^{p-\delta} A^{p} \geq B^{p}$ holds for $p \geq \delta$.

Moreover, Hashimoto and Yamazaki in [6, Theorem 4] showed the following Kantorovich type order preserving operator inequalities under the chaotic order.

Theorem C Let $A, B \in \mathcal{B}_{++}(H)$ with $\operatorname{Sp}(A) \subseteq[m, M]$ for some scalars $M>m>0$. Then the following statements are mutually equivalent:
(i) $\quad A \gg B($ i.e. $\log A \geq \log B)$.
(ii) For each $n>0$ and $\alpha \in[0,1]$

$$
K\left(m^{\frac{(p+\alpha u) s-\alpha u}{n}}, M^{\frac{(p+\alpha u) s-\alpha u}{n}}, n+1\right) A^{(p+\alpha u) s} \geq\left(A^{\frac{\alpha u}{2}} B^{p} A^{\frac{\alpha u}{2}}\right)^{s}
$$

holds for $s \geq 1, p \geq 0$ and $u \geq 0$ with $(p+\alpha u) s \geq(n+\alpha) u$.

In this note, we shall show more precise estimations than the constants (ii) and (iii) of Theorem B and the constant (ii) of Theorem C.

2 Results. In this section $K(m, M, p)$ denotes the generalized Kantorovich constant (\star) and $S(h, p)$ denotes the Specht ratio $[7,6]$ defined for all $p \in \mathbf{R}$ as

$$
S(h, p)=\frac{\left(h^{p}-1\right) h^{\frac{p}{h^{p}-1}}}{p e \log h} \quad \text { for } h>0, h \neq 1 \quad \text { and } \quad S(1, p)=1
$$

We need the following properties $[5,7]$:
(a) $\quad K(m, M, 1)=\lim _{p \rightarrow 1} K(m, M, p)=1 \quad$ and $\quad S(h, 0)=\lim _{p \rightarrow+0} S(h, p)=1$,
(b) $\lim _{r \rightarrow+0} K\left(m^{r}, M^{r}, \frac{p}{r}+1\right)=S(h, p)$, where $\quad h=\frac{M}{m}$,
(c) $\quad \lim _{p \rightarrow+0} S(h, p)^{\frac{1}{p}}=1$
and the following proposition [7, Proposition 4] proven by T.Yamazaki and M.Yanagida:
Proposition \mathbf{P} Let $K(m, M, p)$ be defined in (\star). Then

$$
F(p, r, m, M)=K\left(m^{r}, M^{r}, \frac{p}{r}+1\right)
$$

is an increasing function of p, r and M, and also a decreasing function of m for $p>0$, $r>0$ and $M>m>0$. And the following inequality holds:

$$
\left(\frac{M}{m}\right)^{p} \geq K\left(m^{r}, M^{r}, \frac{p}{r}+1\right) \geq 1 \quad \text { for all } p>0, r>0 \text { and } M>m>0
$$

We begin by stating the following theorem, which gives more precise estimations than the constants (ii) of Theorems B and C.

Theorem 1 Let $A, B \in \mathcal{B}_{++}(H)$ and M, m some scalars such that $M>m>0$. Then the following statements are mutually equivalent for each $\delta \in[0,1]$:

$$
\begin{equation*}
K\left(m^{\frac{(p-\delta+\alpha u) s-\alpha u}{n}}, M^{\frac{(p-\delta+\alpha u) s-\alpha u}{n}}, n+1\right) A^{(p-\delta+\alpha u) s} \geq\left(A^{\frac{\alpha u-\delta}{2}} B^{p} A^{\frac{\alpha u-\delta}{2}}\right)^{s} \tag{ii}
\end{equation*}
$$

holds for any $n>0, \alpha \in[0,1], s \geq 1, p \geq \delta$ and $u \geq \delta$ with $(p-\delta+\alpha u) s \geq(\alpha+n) u$.

$$
\begin{equation*}
K\left(m^{u}, M^{u}, \frac{(p-\delta+\alpha u) s-\alpha u}{u}+1\right) A^{(p-\delta+\alpha u) s} \geq\left(A^{\frac{\alpha u-\delta}{2}} B^{p} A^{\frac{\alpha u-\delta}{2}}\right)^{s} \tag{ii}
\end{equation*}
$$

holds for any $\alpha \in[0,1], s \geq 1, p \geq \delta$ and $u \geq \delta$.
For each $\delta \in[0,1]$

$$
K\left(m^{\frac{(p-\delta+\alpha u) s-\alpha u}{n}}, M^{\frac{(p-\delta+\alpha u) s-\alpha u}{n}}, n+1\right) \geq K\left(m^{u}, M^{u}, \frac{(p-\delta+\alpha u) s-\alpha u}{u}+1\right)
$$

holds for any $n>0, \alpha \in[0,1], s \geq 1, p \geq \delta, u \geq \delta$ such that $(p-\delta+\alpha u) s \geq(\alpha+n) u$.

Proof. First in the case of $u \neq 0$ we prove that for each $\delta \in[0,1]$

$$
K\left(m^{\frac{(p-\delta+\alpha u) s-\alpha u}{n}}, M^{\frac{(p-\delta+\alpha u) s-\alpha u}{n}}, n+1\right) \geq K\left(m^{u}, M^{u}, \frac{(p-\delta+\alpha u) s-\alpha u}{u}+1\right) \geq 1
$$

holds for any $n>0, \alpha \in[0,1], s \geq 1, p \geq \delta, u \geq \delta, u \neq 0$ such that $(p-\delta+\alpha u) s \geq(\alpha+n) u$. We replace r_{1} by $\frac{(p-\delta+\alpha u) s-\alpha u}{n}, r_{2}$ by u and p by $(p-\delta+\alpha u) s-\alpha u$ in Proposition P.

Since $(p-\delta+\alpha u) s \geq(\alpha+n) u$ then we have $r_{1} \geq r_{2}>0$ and $(p-\delta+\alpha u) s-\alpha u=$ $(p-\delta) s+\alpha u(s-1) \geq 0$ and it follows from Proposition P that

$$
K\left(m^{r_{1}}, M^{r_{1}}, \frac{(p-\delta+\alpha u) s-\alpha u}{r_{1}}+1\right) \geq K\left(m^{r_{2}}, M^{r_{2}}, \frac{(p-\delta+\alpha u) s-\alpha u}{r_{2}}+1\right) \geq 1
$$

i.e.,

$$
\begin{gather*}
K\left(m^{\frac{(p-\delta+\alpha u) s-\alpha u}{n}}, M^{\frac{(p-\delta+\alpha u) s-\alpha u}{n}}, n+1\right) \\
=K\left(m^{\frac{(p-\delta+\alpha u) s-\alpha u}{n}}, M^{\frac{(p-\delta+\alpha u) s-\alpha u}{n}}, \frac{(p-\delta+\alpha u) s-\alpha u}{\frac{(p-\delta+\alpha u) s-\alpha u}{n}}+1\right) \tag{1}\\
\geq K\left(m^{u}, M^{u}, \frac{(p-\delta+\alpha u) s-\alpha u}{u}+1\right) \geq 1,
\end{gather*}
$$

which is the desired result in the case of $u \neq 0$. Letting $u \rightarrow+0$ in (1) and using (b) and that $u \geq \delta \geq 0$ we obtain

$$
K\left(m^{\frac{p s}{n}}, M^{\frac{p s}{n}}, n+1\right) \geq S(h, p s) \geq 1
$$

which is the desired result in the case $\delta=u=0$.
(ii) $\Longrightarrow(\text { ii })_{0}$. Put $n=\frac{(p-\delta+\alpha u) s-\alpha u}{u}$ for $u \neq 0$ and $n \rightarrow+\infty$ for $u=0$ in (ii).
$(\text { ii })_{0} \Longrightarrow($ ii). Let $n>0$ such that $(p-\delta+\alpha u) s \geq(\alpha+n) u$ holds. We have from (1) and (ii) ${ }_{0}$ that

$$
\begin{gathered}
K\left(m^{\frac{(p-\delta+\alpha u) s-\alpha u}{n}}, M^{\frac{(p-\delta+\alpha u) s-\alpha u}{n}}, n+1\right) A^{(p-\delta+\alpha u) s} \\
\geq K\left(m^{u}, M^{u}, \frac{(p-\delta+\alpha u) s-\alpha u}{u}+1\right) A^{(p-\delta+\alpha u) s} \geq\left(A^{\frac{\alpha u-\delta}{2}} B^{p} A^{\frac{\alpha u-\delta}{2}}\right)^{s}
\end{gathered}
$$

holds.
So the proof of theorem is complete.

Next, we give more precise estimations than the constants (iii) of Theorem B.
Theorem 2 Let $A, B \in \mathcal{B}_{++}(H)$ and M, m some scalars such that $M>m>0$. Then the following statements are mutually equivalent for each $\delta \in(0,1]$:
(iii) $\quad K\left(m^{\frac{(p-\delta) s}{n}}, M^{\frac{(p-\delta) s}{n}}, n+1\right)^{\frac{1}{s}} A^{p} \geq B^{p}$
holds for any $n>0, s \geq 1$ and $p \geq \delta$ with $(p-\delta) s \geq n \delta$.
(iii) ${ }_{0} \quad K\left(m^{\delta}, M^{\delta}, \frac{p}{\delta}\right) A^{p} \geq B^{p}$
holds for any $p \geq \delta$.
For each $\delta \in(0,1]$

$$
K\left(m^{\frac{(p-\delta) s}{n}}, M^{\frac{(p-\delta) s}{n}}, n+1\right)^{\frac{1}{s}} \geq K\left(m^{\delta}, M^{\delta}, \frac{p}{\delta}\right)
$$

holds for any $n>0, s \geq 1, p \geq \delta$ such that $(p-\delta) s \geq n \delta$.

Proof. First we prove again that for each $\delta \in(0,1]$

$$
K\left(m^{\frac{(p-\delta) s}{n}}, M^{\frac{(p-\delta) s}{n}}, n+1\right)^{\frac{1}{s}} \geq K\left(m^{\delta}, M^{\delta}, \frac{p}{\delta}\right)
$$

holds for any $n>0, s \geq 1, p \geq \delta$ such that $(p-\delta) s \geq n \delta$. As in [7] we define a function

$$
g(p, r, h):=\left(\frac{r}{p+r} \frac{h^{p+r}-1}{h^{r}-1}\right)^{\frac{1}{r}} \quad \text { where } h>1, p>0, r>0
$$

If we put $h=\frac{M}{m}>1$, then we have (see [7, The proof of Proposition 4])

$$
\begin{equation*}
K\left(m^{r}, M^{r}, \frac{p}{r}+1\right)=\left\{\frac{1}{h} \cdot g(p, r, h) \cdot g(r, p, h)\right\}^{p} \tag{2}
\end{equation*}
$$

It follows that

$$
\begin{gather*}
K\left(m^{\frac{(p-\delta) s}{n}}, M^{\frac{(p-\delta) s}{n}}, n+1\right)^{\frac{1}{s}}=K\left(m^{\frac{(p-\delta) s}{n}}, M^{\frac{(p-\delta) s}{n}}, \frac{(p-\delta) s}{\frac{(p-\delta) s}{n}}+1\right)^{\frac{1}{s}} \\
\quad=\left\{\frac{1}{h} \cdot g\left((p-\delta) s, \frac{(p-\delta) s}{n}, h\right) \cdot g\left(\frac{(p-\delta) s}{n},(p-\delta) s, h\right)\right\}^{p-\delta} \tag{3}
\end{gather*}
$$

Since $g(p, r, h)$ is the increasing function of p and r by [7, Lemma 8], we have that

$$
\begin{gathered}
g\left((p-\delta) s, \frac{(p-\delta) s}{n}, h\right) \geq g\left(p-\delta, \frac{p-\delta}{n}, h\right) \\
g\left(\frac{(p-\delta) s}{n},(p-\delta) s, h\right) \geq g\left(\frac{p-\delta}{n}, p-\delta, h\right)
\end{gathered}
$$

hold if $s \geq 1$. Then

$$
\begin{align*}
& \frac{1}{h} \cdot g\left((p-\delta) s, \frac{(p-\delta) s}{n}, h\right) \cdot g\left(\frac{(p-\delta) s}{n},(p-\delta) s, h\right) \\
& \geq \frac{1}{h} \cdot g\left(p-\delta, \frac{p-\delta}{n}, h\right) \cdot g\left(\frac{p-\delta}{n}, p-\delta, h\right) \tag{4}
\end{align*}
$$

Since $g(p, r, h)$ is a bounded function by [7, Lemma 10]: $h \geq g(p, r, h) \geq \sqrt{h}$, then we have

$$
\begin{equation*}
h \geq \frac{1}{h} \cdot g(p, r, h) \cdot g(r, p, h) \geq 1 \tag{5}
\end{equation*}
$$

holds for $h>1, p>0, r>0$.
Using (2), (3), (4) and (5) we obtain that

$$
\begin{gather*}
K\left(m^{\frac{(p-\delta) s}{n}}, M^{\frac{(p-\delta) s}{n}}, n+1\right)^{\frac{1}{s}} \\
=\left\{\frac{1}{h} \cdot g\left((p-\delta) s, \frac{(p-\delta) s}{n}, h\right) \cdot g\left(\frac{(p-\delta) s}{n},(p-\delta) s, h\right)\right\}^{p-\delta} \tag{6}\\
\geq\left\{\frac{1}{h} \cdot g\left(p-\delta, \frac{p-\delta}{n}, h\right) \cdot g\left(\frac{p-\delta}{n}, p-\delta, h\right)\right\}^{p-\delta}=K\left(m^{\frac{p-\delta}{n}}, M^{\frac{p-\delta}{n}}, n+1\right)
\end{gather*}
$$

holds for any $n>0, s \geq 1, p \geq \delta$.
The rest part of proof is similar to the proof of Theorem 1. For any $n>0, s \geq 1, p \geq \delta$ such that $(p-\delta) s \geq n \delta$ we replace r_{1} by $\frac{p-\delta}{n}, r_{2}$ by δ and p by $p-\delta$ in Proposition P. Since $r_{1} \geq r_{2}>0$ and $p-\delta \geq 0$, it follows from Proposition P that

$$
K\left(m^{r_{1}}, M^{r_{1}}, \frac{p-\delta}{r_{1}}+1\right) \geq K\left(m^{r_{2}}, M^{r_{2}}, \frac{p-\delta}{r_{2}}+1\right) \geq 1
$$

i.e.

$$
\begin{equation*}
K\left(m^{\frac{p-\delta}{n}}, M^{\frac{p-\delta}{n}}, n+1\right) \geq K\left(m^{\delta}, M^{\delta}, \frac{p}{\delta}\right) \geq 1 \tag{7}
\end{equation*}
$$

By (6) and (7) we obtain

$$
\begin{equation*}
K\left(m^{\frac{(p-\delta) s}{n}}, M^{\frac{(p-\delta) s}{n}}, n+1\right)^{\frac{1}{s}} \geq K\left(m^{\delta}, M^{\delta}, \frac{p}{\delta}\right) \geq 1 \tag{8}
\end{equation*}
$$

which is the desired result.
(iii) $\Longrightarrow(\text { iii })_{0}$. Put $n=\frac{p}{\delta}-1$ and $s=1$ in (iii).
(iii) $)_{0} \Longrightarrow$ (iii). Let $n>0$ such that $(p-\delta) s \geq n \delta$. By (8) and (iii) $)_{0}$ it follows that

$$
K\left(m^{\frac{(p-\delta) s}{n}}, M^{\frac{(p-\delta) s}{n}}, n+1\right)^{\frac{1}{s}} A^{p} \geq K\left(m^{\delta}, M^{\delta}, \frac{p}{\delta}\right) A^{p} \geq B^{p}
$$

holds.
So the proof of theorem is complete.
Using Theorem B and Theorems 1 and 2 we obtain the following:
Theorem 3 Let $A, B \in \mathcal{B}_{++}(H)$ with $\operatorname{Sp}(A) \subseteq[m, M]$ for some scalars $M>m>0$. Then the following statements are mutually equivalent for each $\delta \in(0,1]$:
(i) $0_{0} \quad A^{\delta} \geq B^{\delta}$.
(ii) $)_{0}$ For each $\alpha \in[0,1]$

$$
K\left(m^{u}, M^{u}, \frac{(p-\delta+\alpha u) s-\alpha u}{u}+1\right) A^{(p-\delta+\alpha u) s} \geq\left(A^{\frac{\alpha u-\delta}{2}} B^{p} A^{\frac{\alpha u-\delta}{2}}\right)^{s}
$$

holds for any $s \geq 1, p \geq \delta$ and $u \geq \delta$.
(iii) $)_{0} \quad K\left(m^{\delta}, M^{\delta}, \frac{p}{\delta}\right) A^{p} \geq B^{p}$ holds for any $p \geq \delta$.
(iv) $)_{0} \quad\left(\frac{M}{m}\right)^{p-\delta} A^{p} \geq B^{p}$ holds for any $p \geq \delta$.

These constants $(\mathrm{ii})_{0}$ and (iii) $)_{0}$ are more precise estimations than the constants (ii) and (iii) of Theorem B, respectively.

Remark 4 We remark that (iii) $)_{0}$ in Theorem 3 follows directly from Theorem A if we replace A by A^{δ} and B by B^{δ}.

In particular, if we put $\delta=1$ in Theorem 3 , then we obtain the following Kantorovich type order preserving operator inequalities under the usual order.

Theorem 5 Let $A, B \in \mathcal{B}_{++}(H)$ with $\operatorname{Sp}(A) \subseteq[m, M]$ for some scalars $M>m>0$. Then the following statements are mutually equivalent:
(i) ${ }_{0} \quad A \geq B$.
(ii) $)_{0}$ For each $\alpha \in[0,1]$

$$
K\left(m^{u}, M^{u}, \frac{(p-1+\alpha u) s-\alpha u}{u}+1\right) A^{(p-1+\alpha u) s} \geq\left(A^{\frac{\alpha u-1}{2}} B^{p} A^{\frac{\alpha u-1}{2}}\right)^{s}
$$

holds for any $s \geq 1, p \geq 1$ and $u \geq 1$.
(iii) ${ }_{0} \quad K(m, M, p) A^{p} \geq B^{p}$ holds for any $p \geq 1$.
(iv) $)_{0} \quad\left(\frac{M}{m}\right)^{p-1} A^{p} \geq B^{p}$ holds for any $p \geq 1$.

These constants (ii) $)_{0}$ and (iii) $)_{0}$ are more precise estimations than the constants (ii) and (iii) of [2, Theorem 3], respectively.

Using Theorem C and Theorem 1 we obtain the following:
Theorem 6 Let $A, B \in \mathcal{B}_{++}(H)$ with $\operatorname{Sp}(A) \subseteq[m, M]$ for some scalars $M>m>0$. Then the following statements are mutually equivalent:
(i) $0_{0} \quad A \gg B($ i.e. $\log A \geq \log B)$.
(ii) ${ }_{0} \quad$ For each $\alpha \in[0,1]$

$$
K\left(m^{u}, M^{u}, \frac{(p+\alpha u) s-\alpha u}{u}+1\right) A^{(p+\alpha u) s} \geq\left(A^{\frac{\alpha u}{2}} B^{p} A^{\frac{\alpha u}{2}}\right)^{s}
$$

holds for any $s \geq 1, p \geq 0$ and $u \geq 0$.
(iii) ${ }_{0} \quad S(h, p) A^{p} \geq B^{p}$ holds for any $p \geq 0$.

This constant (ii) $)_{0}$ is more precise estimation than the constant (ii) of Theorem C.
Proof.
$(\mathrm{i})_{0} \Longrightarrow(\mathrm{ii})_{0} .(\mathrm{i})_{0} \Longrightarrow[(\mathrm{ii})$ of Theorem C$] \Longrightarrow(\mathrm{ii})_{0}$ by Theorem 1.
$(\text { ii })_{0} \Longrightarrow(\text { iii })_{0}$. Let be $u>0$. If we put $\alpha=0$ and $s=1$ in (ii) $)_{0}$, then we obtain that

$$
K\left(m^{u}, M^{u}, \frac{p}{u}+1\right) A^{p} \geq B^{p}
$$

holds for any $p \geq 0$ and $u>0$. Letting $u \rightarrow+0$ and using (b) we obtain (iii) $)_{0}$. We remark that the statements (ii) for $u=0$ and (iii) $)_{0}$ are identical.
$(\text { iii })_{0} \Longrightarrow(\mathrm{i})_{0}$. It is proved in [7, Theorem 5]. Indeed, if $p>0$, we take logarithm of both sides (iii) $)_{0}$ and obtain $\log \left(S(h, p)^{\frac{1}{p}} A\right) \geq \log B$. Then letting $p \rightarrow+0$ and using (c) we obtain (i) $)_{0}$. We remark that using (a) the statements (iii) for $p=0$ and (ii) $)_{0}$ are identical.

References

[1] T.Ando and F.Hiai, Log-majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl., 197, 198 (1994), 113-131.
[2] M.Fujii, E.Kamei and Y.Seo, Kantorovich type operator inequalities via grand Furuta inequality, Sci. Math., 3 (2000), 263-272.
[3] T.Furuta, $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$, for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r$, Proc. Amer. Math. Soc., 101 (1987), 85-88.
[4] T.Furuta, Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities, J. Inequal. Appl., 2 (1998), 137-148.
[5] T.Furuta, Basic property of generalized Kantorovich constant $K(h, p)=$ $\frac{h^{p}-h}{(p-1)(h-1)}\left(\frac{p-1}{p} \frac{h^{p}-1}{h^{p}-h}\right)^{p}$ and its applications, Acta (Szeged) Math., 70 (2004), 319-337.
[6] M.Hashimoto and M.Yanagida, Further extensions of characterizations of chaotic order associated with Kantorovich type inequalities, Sci. Math., 3 (2000), 127-136.
[7] T.Yamazaki and M.Yanagida, Characterizations of chaotic order associated with Kantorovich inequality, Sci. Math., 2 (1999), 37-50.

Jadranka Mićić
Electrical Engineering Department
Polytechnic of Zagreb
Konavoska 2, 10000 Zagreb, Croatia e-mail: jmicic@vtszg.hr

Josip Pečarić
Faculty of Textile Technology
University of Zagreb
Pierottijeva 6, 10000 Zagreb, Croatia
e-mail: pecaric@hazu.hr

[^0]: 2000 Mathematics Subject Classification. Primary 47A63.
 Key words and phrases. Operator order, chaotic order, Kantorovich inequality, grand Furuta inequality.

