CHARACTERIZATIONS OF δ -ORDER ASSOCIATED WITH KANTOROVICH TYPE OPERATOR INEQUALITIES

JADRANKA MIĆIĆ AND JOSIP PEČARIĆ

Received October 18, 2004; revised October 24, 2005

ABSTRACT. In this note, we obtain more precise estimations than the constants are given in the paper by M.Fujii, E.Kamei and Y.Seo, *Kantorovich type operator inequalities via grand Furuta inequality*, Sci. Math., **3** (2000), 263–272. Among other, we show that the following statements are mutually equivalent for each $\delta \in (0, 1]$:

(i)
$$K(m^{\frac{(p-\delta)s}{n}}, M^{\frac{(p-\delta)s}{n}}, n+1)^{\frac{1}{s}}A^{p} \ge B^{p}$$
for any $n > 0, s \ge 1, p \ge \delta$ with $(p-\delta)s \ge n\delta$.

for any $n > 0, s \ge 1, p \ge \delta$ with $(p - \delta)s \ge n\delta$ $K(m^{\delta}, M^{\delta}, \frac{p}{\delta})A^{p} \ge B^{p}$ for any $p \ge \delta$.

For each $\delta \in (0, 1]$

(ii)

$$K(m^{\frac{(p-\delta)s}{n}}, M^{\frac{(p-\delta)s}{n}}, n+1)^{\frac{1}{s}} \ge K(m^{\delta}, M^{\delta}, \frac{p}{\delta})$$

holds for any n > 0, $s \ge 1$, $p \ge \delta$ such that $(p - \delta)s \ge n\delta$.

1 Introduction. Let $\mathcal{B}(H)$ be the C*-algebra of all bounded linear operators on a Hilbert space H and $\mathcal{B}_{++}(H)$ be the set of all positive invertible operators of $\mathcal{B}(H)$. An operator A is said to be positive (in symbol: $A \ge 0$) if $(Ax, x) \ge 0$ for any $x \in H$. We denote by $\mathsf{Sp}(A)$ the spectrum of the operator A. The order between operators $A, B \in \mathcal{B}_{++}(H)$ defined by $\log A \ge \log B$ is said to be the chaotic order $A \gg B$.

First of all, we recall the celebrated Kantorovich inequality: If a positive operator $A \in \mathcal{B}_{++}(H)$ satisfies $\mathsf{Sp}(A) \subseteq [m, M]$ for some scalars M > m > 0, then

$$\frac{(m+M)^2}{4mM}(Ax,x)^{-1} \ge (A^{-1}x,x)$$

for every unit vector $x \in H$. The number $\frac{(m+M)^2}{4mM}$ is called the Kantorovich constant. Related to an extension of the Kantorovich inequality, Furuta [4] showed the following Kantorovich type operator inequality:

Theorem A If $A \ge B \ge 0$ and $Sp(A) \subseteq [m, M]$ for some scalars M > m > 0, then

$$\left(\frac{M}{m}\right)^{p-1} A^p \ge K(m, M, p) A^p \ge B^p \qquad holds for any p \ge 1,$$

where a generalized Kantorovich constant K(m, M, p) [4, 5] is defined as

(*)
$$K(m, M, p) = \frac{mM^p - Mm^p}{(p-1)(M-m)} \left(\frac{p-1}{p} \frac{M^p - m^p}{mM^p - Mm^p}\right)^p \quad \text{for all } p \in \mathbf{R}.$$

Next, we cite the grand Furuta inequality which interpolates the Furuta inequality [3] and the Ando-Hiai inequality [1].

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A63.

Key words and phrases. Operator order, chaotic order, Kantorovich inequality, grand Furuta inequality.

Theorem G (The grand Furuta inequality) If $A \ge B \ge 0$ and A is invertible, then for each $t \in [0, 1]$,

$$\{A^{\frac{r}{2}}(A^{-\frac{t}{2}}A^{p}A^{-\frac{t}{2}})^{s}A^{\frac{r}{2}}\}^{\frac{1}{q}} \ge \{A^{\frac{r}{2}}(A^{-\frac{t}{2}}B^{p}A^{-\frac{t}{2}})^{s}A^{\frac{r}{2}}\}^{\frac{1}{q}}$$

holds for any $s \ge 0$, $p \ge 0$, $q \ge 1$ and $r \ge t$ with $(s-1)(p-1) \ge 0$ and $(1-t+r)q \ge (p-t)s+r$.

In [2] Fujii et al. consider the class of orders $A^{\delta} \geq B^{\delta}$ for $A, B \in \mathcal{B}_{++}(H)$ and $\delta \in [0, 1]$, where the case $\delta = 0$ means the chaotic order. This class of orders interpolates the usual order $A \geq B$ and the chaotic order $A \gg B$ continuously. As applications of Theorem A and the grand Furuta inequality, they obtained in [2, Theorem 2] the following Kantorovich type order preserving operator inequalities by means of the generalized Kantorovich constant (\star) .

Theorem B Let $A, B \in \mathcal{B}_{++}(H)$ with $\mathsf{Sp}(A) \subseteq [m, M]$ for some scalars M > m > 0. Then the following statements are mutually equivalent for each $\delta \in (0, 1]$:

- (i) $A^{\delta} \ge B^{\delta}$.
- (ii) For each $n \in \mathbf{N}$ and $\alpha \in [0, 1]$

$$K(m^{\frac{(p-\delta+\alpha u)s-\alpha u}{n}}, M^{\frac{(p-\delta+\alpha u)s-\alpha u}{n}}, n+1)A^{(p-\delta+\alpha u)s} \ge \left(A^{\frac{\alpha u-\delta}{2}}B^p A^{\frac{\alpha u-\delta}{2}}\right)^s$$

holds for $s \ge 1$, $p \ge \delta$ and $u \ge \delta$ with $(p - \delta + \alpha u)s \ge (n + \alpha)u$.

(iii) For each $n \in \mathbf{N}$

$$K(m^{\frac{(p-\delta)s}{n}}, M^{\frac{(p-\delta)s}{n}}, n+1)^{\frac{1}{s}}A^p \geq B^p$$

holds for $s \ge 1$ and $p \ge \delta$ with $(p - \delta)s \ge n\delta$.

(iv) $(\frac{M}{m})^{p-\delta}A^p \ge B^p$ holds for $p \ge \delta$.

Moreover, Hashimoto and Yamazaki in [6, Theorem 4] showed the following Kantorovich type order preserving operator inequalities under the chaotic order.

Theorem C Let $A, B \in \mathcal{B}_{++}(H)$ with $\mathsf{Sp}(A) \subseteq [m, M]$ for some scalars M > m > 0. Then the following statements are mutually equivalent:

- (i) $A \gg B$ (*i.e.* $\log A \ge \log B$).
- (ii) For each n > 0 and $\alpha \in [0, 1]$

$$K(m^{\frac{(p+\alpha u)s-\alpha u}{n}}, M^{\frac{(p+\alpha u)s-\alpha u}{n}}, n+1)A^{(p+\alpha u)s} \geq \left(A^{\frac{\alpha u}{2}}B^{p}A^{\frac{\alpha u}{2}}\right)^{s}$$

holds for $s \ge 1$, $p \ge 0$ and $u \ge 0$ with $(p + \alpha u)s \ge (n + \alpha)u$.

In this note, we shall show more precise estimations than the constants (ii) and (iii) of Theorem B and the constant (ii) of Theorem C.

2 Results. In this section K(m, M, p) denotes the generalized Kantorovich constant (\star) and S(h, p) denotes the Specht ratio [7, 6] defined for all $p \in \mathbf{R}$ as

(**)
$$S(h,p) = \frac{(h^p - 1) h^{\frac{p}{h^p - 1}}}{p \ e \ \log h}$$
 for $h > 0, h \neq 1$ and $S(1,p) = 1$.

We need the following properties [5, 7]:

(a)
$$K(m, M, 1) = \lim_{p \to 1} K(m, M, p) = 1$$
 and $S(h, 0) = \lim_{p \to +0} S(h, p) = 1$,

(b) $\lim_{r \to +0} K(m^r, M^r, \frac{p}{r} + 1) = S(h, p), \text{ where } h = \frac{M}{m},$

(c)
$$\lim_{p \to +0} S(h, p)^{\frac{1}{p}} = 1$$

and the following proposition [7, Proposition 4] proven by T.Yamazaki and M.Yanagida:

Proposition P Let K(m, M, p) be defined in (\star) . Then

$$F(p, r, m, M) = K(m^r, M^r, \frac{p}{r} + 1)$$

is an increasing function of p, r and M, and also a decreasing function of m for p > 0, r > 0 and M > m > 0. And the following inequality holds:

$$\left(\frac{M}{m}\right)^p \ge K(m^r, M^r, \frac{p}{r} + 1) \ge 1 \qquad \text{for all } p > 0, \ r > 0 \ \text{and} \ M > m > 0.$$

We begin by stating the following theorem, which gives more precise estimations than the constants (ii) of Theorems B and C.

Theorem 1 Let $A, B \in \mathcal{B}_{++}(H)$ and M, m some scalars such that M > m > 0. Then the following statements are mutually equivalent for each $\delta \in [0, 1]$:

 $\begin{array}{ll} (\mathrm{ii}) & K(m^{\frac{(p-\delta+\alpha u)s-\alpha u}{n}}, M^{\frac{(p-\delta+\alpha u)s-\alpha u}{n}}, n+1)A^{(p-\delta+\alpha u)s} \geq \left(A^{\frac{\alpha u-\delta}{2}}B^pA^{\frac{\alpha u-\delta}{2}}\right)^s\\ holds \ for \ any \ n>0, \ \alpha \in [0,1], \ s\geq 1, \ p\geq \delta \ and \ u\geq \delta \ with \ (p-\delta+\alpha u)s\geq (\alpha+n)u. \end{array}$

(ii)₀ $K(m^u, M^u, \frac{(p-\delta+\alpha u)s-\alpha u}{u}+1)A^{(p-\delta+\alpha u)s} \ge \left(A^{\frac{\alpha u-\delta}{2}}B^pA^{\frac{\alpha u-\delta}{2}}\right)^s$ holds for any $\alpha \in [0,1], s \ge 1, p \ge \delta$ and $u \ge \delta$.

For each $\delta \in [0, 1]$

$$K(m^{\frac{(p-\delta+\alpha u)s-\alpha u}{n}}, M^{\frac{(p-\delta+\alpha u)s-\alpha u}{n}}, n+1) \ge K(m^u, M^u, \frac{(p-\delta+\alpha u)s-\alpha u}{u}+1)$$

holds for any n > 0, $\alpha \in [0,1]$, $s \ge 1$, $p \ge \delta$, $u \ge \delta$ such that $(p - \delta + \alpha u)s \ge (\alpha + n)u$.

Proof. First in the case of $u \neq 0$ we prove that for each $\delta \in [0, 1]$

$$K(m^{\frac{(p-\delta+\alpha u)s-\alpha u}{n}}, M^{\frac{(p-\delta+\alpha u)s-\alpha u}{n}}, n+1) \ge K(m^u, M^u, \frac{(p-\delta+\alpha u)s-\alpha u}{u}+1) \ge 1$$

holds for any n > 0, $\alpha \in [0, 1]$, $s \ge 1$, $p \ge \delta$, $u \ge \delta$, $u \ne 0$ such that $(p - \delta + \alpha u)s \ge (\alpha + n)u$. We replace r_1 by $\frac{(p - \delta + \alpha u)s - \alpha u}{n}$, r_2 by u and p by $(p - \delta + \alpha u)s - \alpha u$ in Proposition P. Since $(p - \delta + \alpha u)s \ge (\alpha + n)u$ then we have $r_1 \ge r_2 > 0$ and $(p - \delta + \alpha u)s - \alpha u =$ $(p-\delta)s + \alpha u(s-1) \ge 0$ and it follows from Proposition P that

$$K(m^{r_1}, M^{r_1}, \frac{(p - \delta + \alpha u)s - \alpha u}{r_1} + 1) \ge K(m^{r_2}, M^{r_2}, \frac{(p - \delta + \alpha u)s - \alpha u}{r_2} + 1) \ge 1,$$

i.e.,

(1)

$$K(m^{\frac{(p-\delta+\alpha u)s-\alpha u}{n}}, M^{\frac{(p-\delta+\alpha u)s-\alpha u}{n}}, n+1)$$

$$= K(m^{\frac{(p-\delta+\alpha u)s-\alpha u}{n}}, M^{\frac{(p-\delta+\alpha u)s-\alpha u}{n}}, \frac{(p-\delta+\alpha u)s-\alpha u}{(p-\delta+\alpha u)s-\alpha u}+1)$$

$$\geq K(m^{u}, M^{u}, \frac{(p-\delta+\alpha u)s-\alpha u}{u}+1) \geq 1,$$

which is the desired result in the case of $u \neq 0$. Letting $u \rightarrow +0$ in (1) and using (b) and that $u \ge \delta \ge 0$ we obtain

$$K(m^{\frac{ps}{n}}, M^{\frac{ps}{n}}, n+1) \ge S(h, ps) \ge 1,$$

which is the desired result in the case $\delta = u = 0$. (ii) \Longrightarrow (ii)₀. Put $n = \frac{(p-\delta+\alpha u)s-\alpha u}{u}$ for $u \neq 0$ and $n \to +\infty$ for u = 0 in (ii). (ii)₀ \Longrightarrow (ii). Let n > 0 such that $(p - \delta + \alpha u)s \ge (\alpha + n)u$ holds. We have from (1) and $(ii)_0$ that

$$K(m^{\frac{(p-\delta+\alpha u)s-\alpha u}{n}}, M^{\frac{(p-\delta+\alpha u)s-\alpha u}{n}}, n+1)A^{(p-\delta+\alpha u)s} \ge K(m^u, M^u, \frac{(p-\delta+\alpha u)s-\alpha u}{u}+1)A^{(p-\delta+\alpha u)s} \ge \left(A^{\frac{\alpha u-\delta}{2}}B^pA^{\frac{\alpha u-\delta}{2}}\right)^s$$

holds.

So the proof of theorem is complete.

Next, we give more precise estimations than the constants (iii) of Theorem B.

Theorem 2 Let $A, B \in \mathcal{B}_{++}(H)$ and M, m some scalars such that M > m > 0. Then the following statements are mutually equivalent for each $\delta \in (0, 1]$:

 $K(m^{\frac{(p-\delta)s}{n}},M^{\frac{(p-\delta)s}{n}},n+1)^{\frac{1}{s}}A^p\geq B^p$ (iii) holds for any n > 0, $s \ge 1$ and $p \ge \delta$ with $(p - \delta)s \ge n\delta$.

 $K(m^{\delta}, M^{\delta}, \frac{p}{\delta})A^{p} \ge B^{p}$ $(iii)_0$ holds for any $p \geq \delta$.

For each $\delta \in (0, 1]$

$$K(m^{\frac{(p-\delta)s}{n}}, M^{\frac{(p-\delta)s}{n}}, n+1)^{\frac{1}{s}} \ge K(m^{\delta}, M^{\delta}, \frac{p}{\delta})$$

holds for any n > 0, $s \ge 1$, $p \ge \delta$ such that $(p - \delta)s \ge n\delta$.

Proof. First we prove again that for each $\delta \in (0, 1]$

$$K(m^{\frac{(p-\delta)s}{n}}, M^{\frac{(p-\delta)s}{n}}, n+1)^{\frac{1}{s}} \geq K(m^{\delta}, M^{\delta}, \frac{p}{\delta})$$

holds for any n > 0, $s \ge 1$, $p \ge \delta$ such that $(p - \delta)s \ge n\delta$. As in [7] we define a function

$$g(p,r,h) := \left(\frac{r}{p+r} \frac{h^{p+r} - 1}{h^r - 1}\right)^{\frac{1}{r}} \quad \text{where } h > 1, \, p > 0, \, r > 0.$$

If we put $h = \frac{M}{m} > 1$, then we have (see [7, The proof of Proposition 4])

(2)
$$K(m^r, M^r, \frac{p}{r} + 1) = \left\{\frac{1}{h} \cdot g(p, r, h) \cdot g(r, p, h)\right\}^p.$$

It follows that

(3)
$$K(m^{\frac{(p-\delta)s}{n}}, M^{\frac{(p-\delta)s}{n}}, n+1)^{\frac{1}{s}} = K(m^{\frac{(p-\delta)s}{n}}, M^{\frac{(p-\delta)s}{n}}, \frac{(p-\delta)s}{\frac{(p-\delta)s}{n}} + 1)^{\frac{1}{s}}$$
$$= \left\{\frac{1}{h} \cdot g((p-\delta)s, \frac{(p-\delta)s}{n}, h) \cdot g(\frac{(p-\delta)s}{n}, (p-\delta)s, h)\right\}^{p-\delta}.$$

Since g(p, r, h) is the increasing function of p and r by [7, Lemma 8], we have that

$$g((p-\delta)s, \frac{(p-\delta)s}{n}, h) \ge g(p-\delta, \frac{p-\delta}{n}, h),$$
$$g(\frac{(p-\delta)s}{n}, (p-\delta)s, h) \ge g(\frac{p-\delta}{n}, p-\delta, h)$$

hold if $s \ge 1$. Then

(4)
$$\frac{\frac{1}{h} \cdot g((p-\delta)s, \frac{(p-\delta)s}{n}, h) \cdot g(\frac{(p-\delta)s}{n}, (p-\delta)s, h)}{\geq \frac{1}{h} \cdot g(p-\delta, \frac{p-\delta}{n}, h) \cdot g(\frac{p-\delta}{n}, p-\delta, h).}$$

Since g(p, r, h) is a bounded function by [7, Lemma 10]: $h \ge g(p, r, h) \ge \sqrt{h}$, then we have

(5)
$$h \ge \frac{1}{h} \cdot g(p, r, h) \cdot g(r, p, h) \ge 1$$

holds for h > 1, p > 0, r > 0.

Using (2), (3), (4) and (5) we obtain that

(6)

$$K(m^{\frac{(p-\delta)s}{n}}, M^{\frac{(p-\delta)s}{n}}, n+1)^{\frac{1}{s}}$$

$$= \left\{ \frac{1}{h} \cdot g((p-\delta)s, \frac{(p-\delta)s}{n}, h) \cdot g(\frac{(p-\delta)s}{n}, (p-\delta)s, h) \right\}^{p-\delta}$$

$$\geq \left\{ \frac{1}{h} \cdot g(p-\delta, \frac{p-\delta}{n}, h) \cdot g(\frac{p-\delta}{n}, p-\delta, h) \right\}^{p-\delta} = K(m^{\frac{p-\delta}{n}}, M^{\frac{p-\delta}{n}}, n+1)$$

holds for any $n > 0, s \ge 1, p \ge \delta$.

The rest part of proof is similar to the proof of Theorem 1. For any n > 0, $s \ge 1$, $p \ge \delta$ such that $(p - \delta)s \ge n\delta$ we replace r_1 by $\frac{p-\delta}{n}$, r_2 by δ and p by $p - \delta$ in Proposition P. Since $r_1 \ge r_2 > 0$ and $p - \delta \ge 0$, it follows from Proposition P that

$$K(m^{r_1}, M^{r_1}, \frac{p-\delta}{r_1}+1) \ge K(m^{r_2}, M^{r_2}, \frac{p-\delta}{r_2}+1) \ge 1,$$

i.e.

(7)
$$K(m^{\frac{p-\delta}{n}}, M^{\frac{p-\delta}{n}}, n+1) \ge K(m^{\delta}, M^{\delta}, \frac{p}{\delta}) \ge 1.$$

By (6) and (7) we obtain

(8)
$$K(m^{\frac{(p-\delta)s}{n}}, M^{\frac{(p-\delta)s}{n}}, n+1)^{\frac{1}{s}} \ge K(m^{\delta}, M^{\delta}, \frac{p}{\delta}) \ge 1,$$

which is the desired result.

(iii) \implies (iii)₀. Put $n = \frac{p}{\delta} - 1$ and s = 1 in (iii).

(iii)₀ \implies (iii). Let n > 0 such that $(p - \delta)s \ge n\delta$. By (8) and (iii)₀ it follows that

$$K(m^{\frac{(p-\delta)s}{n}}, M^{\frac{(p-\delta)s}{n}}, n+1)^{\frac{1}{s}}A^p \ge K(m^{\delta}, M^{\delta}, \frac{p}{\delta})A^p \ge B^p$$

holds.

So the proof of theorem is complete.

Using Theorem B and Theorems 1 and 2 we obtain the following:

Theorem 3 Let $A, B \in \mathcal{B}_{++}(H)$ with $\mathsf{Sp}(A) \subseteq [m, M]$ for some scalars M > m > 0. Then the following statements are mutually equivalent for each $\delta \in (0, 1]$:

(i)₀
$$A^{\delta} \ge B^{\delta}$$
.

(ii)₀ For each $\alpha \in [0, 1]$

$$K(m^u, M^u, \frac{(p-\delta+\alpha u)s-\alpha u}{u}+1)A^{(p-\delta+\alpha u)s} \ge \left(A^{\frac{\alpha u-\delta}{2}}B^p A^{\frac{\alpha u-\delta}{2}}\right)^s$$

holds for any $s \ge 1$, $p \ge \delta$ and $u \ge \delta$.

- (iii)₀ $K(m^{\delta}, M^{\delta}, \frac{p}{\delta})A^{p} \ge B^{p}$ holds for any $p \ge \delta$.
- (iv)₀ $(\frac{M}{m})^{p-\delta}A^p \ge B^p$ holds for any $p \ge \delta$.

These constants (ii)₀ and (iii)₀ are more precise estimations than the constants (ii) and (iii) of Theorem B, respectively.

Remark 4 We remark that (iii)₀ in Theorem 3 follows directly from Theorem A if we replace A by A^{δ} and B by B^{δ} .

In particular, if we put $\delta = 1$ in Theorem 3, then we obtain the following Kantorovich type order preserving operator inequalities under the usual order.

Theorem 5 Let $A, B \in \mathcal{B}_{++}(H)$ with $\mathsf{Sp}(A) \subseteq [m, M]$ for some scalars M > m > 0. Then the following statements are mutually equivalent:

(i)₀ $A \ge B$.

(ii)₀ For each $\alpha \in [0, 1]$

$$K(m^{u}, M^{u}, \frac{(p-1+\alpha u)s - \alpha u}{u} + 1)A^{(p-1+\alpha u)s} \ge \left(A^{\frac{\alpha u-1}{2}}B^{p}A^{\frac{\alpha u-1}{2}}\right)^{s}$$

holds for any $s \ge 1$, $p \ge 1$ and $u \ge 1$.

- (iii)₀ $K(m, M, p)A^p \ge B^p$ holds for any $p \ge 1$.
- $(iv)_0$ $(\frac{M}{m})^{p-1}A^p \ge B^p$ holds for any $p \ge 1$.

These constants (ii)₀ and (iii)₀ are more precise estimations than the constants (ii) and (iii) of [2, Theorem 3], respectively.

Using Theorem C and Theorem 1 we obtain the following:

Theorem 6 Let $A, B \in \mathcal{B}_{++}(H)$ with $\mathsf{Sp}(A) \subseteq [m, M]$ for some scalars M > m > 0. Then the following statements are mutually equivalent:

(i)₀ $A \gg B$ (*i.e.* $\log A \ge \log B$).

(ii)₀ For each $\alpha \in [0, 1]$

$$K(m^u, M^u, \frac{(p+\alpha u)s - \alpha u}{u} + 1)A^{(p+\alpha u)s} \ge \left(A^{\frac{\alpha u}{2}}B^p A^{\frac{\alpha u}{2}}\right)^s$$

holds for any $s \ge 1$, $p \ge 0$ and $u \ge 0$.

(iii)₀ $S(h, p)A^p \ge B^p$ holds for any $p \ge 0$.

This constant (ii)₀ is more precise estimation than the constant (ii) of Theorem C.

 $(i)_0 \Longrightarrow (ii)_0$. $(i)_0 \Longrightarrow [(ii) \text{ of Theorem C}] \Longrightarrow (ii)_0$ by Theorem 1.

 $(ii)_0 \implies (iii)_0$. Let be u > 0. If we put $\alpha = 0$ and s = 1 in $(ii)_0$, then we obtain that

$$K(m^u, M^u, \frac{p}{u} + 1)A^p \ge B^p$$

holds for any $p \ge 0$ and u > 0. Letting $u \to +0$ and using (b) we obtain (iii)₀. We remark that the statements (ii)₀ for u = 0 and (iii)₀ are identical.

(iii)₀ \implies (i)₀. It is proved in [7, Theorem 5]. Indeed, if p > 0, we take logarithm of both sides (iii)₀ and obtain $\log(S(h, p)^{\frac{1}{p}}A) \ge \log B$. Then letting $p \to +0$ and using (c) we obtain (i)₀. We remark that using (a) the statements (iii)₀ for p = 0 and (ii)₀ are identical.

References

- T.Ando and F.Hiai, Log-majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl., 197, 198 (1994), 113–131.
- [2] M.Fujii, E.Kamei and Y.Seo, Kantorovich type operator inequalities via grand Furuta inequality, Sci. Math., 3 (2000), 263–272.
- [3] T.Furuta, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{1/q} \ge B^{(p+2r)/q}$, for $r \ge 0$, $p \ge 0$, $q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc., **101** (1987), 85–88.
- [4] T.Furuta, Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities, J. Inequal. Appl., 2 (1998), 137–148.
- [5] T.Furuta, Basic property of generalized Kantorovich constant $K(h,p) = \frac{h^p h}{(p-1)(h-1)} \left(\frac{p-1}{p} \frac{h^p-1}{h^p-h}\right)^p$ and its applications, Acta (Szeged) Math., **70** (2004), 319–337.
- [6] M.Hashimoto and M.Yanagida, Further extensions of characterizations of chaotic order associated with Kantorovich type inequalities, Sci. Math., 3 (2000), 127–136.
- T.Yamazaki and M.Yanagida, Characterizations of chaotic order associated with Kantorovich inequality, Sci. Math., 2 (1999), 37–50.

Jadranka Mićić	Josip Pečarić
Electrical Engineering Department	Faculty of Textile Technology
Polytechnic of Zagreb	University of Zagreb
Konavoska 2, 10000 Zagreb, Croatia	Pierottijeva 6, 10000 Zagreb, Croatia
e-mail: jmicic@vtszg.hr	e-mail: pecaric@hazu.hr