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COMMON FIXED POINT STRUCTURES FOR MULTIVALUED
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Received September 5, 2005

Abstract. In this paper we introduce the notions of common fixed point structure
and common strict fixed point structure for multivalued operators and we prove some
common fixed point theorems and common strict fixed point theorems in the terms of
these structures.

1 Introduction The notion of fixed point structure for singlevalued operators was
introduced by I. A. Rus in 1986 ([5], [6]) and it generalizes notions such as “partially ordered
set with the fixed point property” or “topological space with the fixed point property”. In
[7] he presents in a unified form the results which he obtained regarding the fixed point
structure and in [9] he formulates some open problems in the fixed point theory, in terms of
the fixed point structures (problems about invariant subsets under an operator, coincidence
theory, common fixed points, involution operators or retractible mappings). The fixed point
structures with the common fixed point property are also studied by I. A. Rus in [10].

Using the fixed point structures, F. Aldea studies in [1] the surjectivity. In [15] F.
Ştefănescu introduces the notion of Goebel’s type coincidence structure and she proves
some coincidence theorems. M.-A. Şerban presents in [14] the technique of the fixed point
structure for mappings on product spaces.

I. A. Rus extended in 1993 the technique of the fixed point structure to the multivalued
operators by introducing the notions of fixed point structure for multivalued operators and
strict fixed point structure ([8]).

Also, I. A. Rus presents in [11] some open problems in the fixed point theory, in terms
of the fixed point structures both for singlevalued and for multivalued operators.

Having a preliminary character, the second section of the paper contains notions and
results which will appear in the next sections and specifies the terminology and the notations
used in the paper. In this second section we shall prove a general lemma of invariant subset
under two multivalued operators and we shall introduce two notions: (θ, ϕ)-contraction pair
of multivalued operators and θ-condensing pair of multivalued operators.

Section 3 will be dedicated to the common fixed point structures for multivalued ope-
rators. We shall introduce this notion, we shall give examples of such a structure and we
shall prove some general common fixed point theorems for multivalued operators.

In the last section we shall introduce the notion of common strict fixed point structure
and we shall prove some general common strict fixed point theorems.

2 Some notions and preliminary results Let X and Y be two nonempty sets.
We denote by P(X) the set of all subsets of X , i. e. P(X) := { A | A ⊆ X } and by P (X)
the set of all nonempty subsets of X , i. e. P (X) := { A | ∅ �= A ⊆ X }.
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Let f : X → X be a singlevalued operator. We denote by Ff the fixed points set of f , i. e.
Ff := { x ∈ X | f(x) = x }.
For a multivalued mapping T : X → P(Y ) we use the notation T : X � Y . We denote
by M

◦(X, Y ) the set of all multivalued mappings T : X � Y . We also write M
◦(X) :=

M
◦(X, X).

Let T : X → P (X) be a multivalued operator. We denote by I(T ) the set of all nonempty
invariant subsets of T , i. e. I(T ) := { A | A ∈ P (X), T (A) = ∪a∈AT (a) ⊆ A }. We denote
by FT the fixed points set of T , i. e. FT := { x ∈ X | x ∈ T (x) } and by (SF )T the strict
fixed points set of T , i. e. (SF )T := { x ∈ X | T (x) = {x} }.
Let T1, T2 : X → P (X) be two multivalued operators. We denote by (CF )T1,T2 the common
fixed points set of T1 and T2, i. e. (CF )T1,T2 := FT1 ∩FT2 and by (CSF )T1,T2 the common
strict fixed points set of T1 and T2, i. e. (CSF )T1,T2 := (SF )T1 ∩ (SF )T2 .

Let (X, d) be a metric space.
We denote by Pcl(X) the set of all nonempty and closed subsets of X , i. e. Pcl(X) :=
{ A | A ∈ P (X), A is a closed set } and by Pb(X) the set of all nonempty and bounded
subsets of X , i. e. Pb(X) := { A | A ∈ P (X), A is a bounded set }.
We also remind the functional D : P (X)×P (X) → R+, defined by D(A,B) = inf { d(a, b) |
a ∈ A, b ∈ B }, for each A,B ∈ P (X), and the generalized functionals δ : P (X)×P (X) →
R+ ∪{+∞}, defined by δ(A,B) = sup { d(a, b) | a ∈ A, b ∈ B }, for each A,B ∈ P (X) (we
notice that δ(A) := δ(A,A), for each A ∈ P (X)), and H : P (X) × P (X) → R+ ∪ {+∞},
defined by H(A,B) = max

{
sup
a∈A

D(a,B), sup
b∈B

D(b, A)
}

, for each A,B ∈ P (X).

Definition 2.1. Let X be a nonempty set. An operator η : P(X) → P(X) is a closure
operator if

(i) A ⊆ η(A), for each A ∈ P(X);

(ii) A ⊆ B implies that η(A) ⊆ η(B), for each A,B ∈ P(X);

(iii) η(η(A)) = η(A), for each A ∈ P(X).

Lemma 2.1. Let X be a nonempty set, η : P(X) → P(X) a closure operator and Ai ∈ Fη,
i ∈ I.

Then ∩i∈IAi ∈ Fη.

Lemma 2.2. Let X be a nonempty set and T : X → P (X) a multivalued operator. If
T (X) ⊆ Y ⊆ X, then Y ∈ I(T ).

The next result extends the general lemma of invariant subset for a multivalued ope-
rator, given by I. A. Rus in [8], to a general lemma of invariant subset for two multivalued
operators.

Lemma 2.3. Let X be a nonempty set, η : P (X) → P (X) a closure operator, Y ∈ Fη,
T1, T2 : Y → P (Y ) two multivalued operators and A ∈ P (Y ).

Then there exists A0 ⊆ Y such that :

(a) A0 ⊇ A;

(b) A0 ∈ I(T1) ∩ I(T2) ∩ Fη;

(c) η(T1(A0) ∪ T2(A0) ∪ A) = A0.
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Proof. Let B := { B | A ⊆ B ⊆ Y and B ∈ I(T1) ∩ I(T2) ∩ Fη }. We observe that B �= ∅,
because Y ∈ B. We have ∩B∈BB ∈ B and we put A0 := ∩B∈BB. With this choice of A0

we have that (a) and (b) are satisfied.
We shall prove that η(T1(A0) ∪ T2(A0) ∪ A) ∈ B.

Obviously A ⊆ η(T1(A0)∪T2(A0)∪A) and η(T1(A0)∪T2(A0)∪A) ∈ Fη. For each i ∈ {1, 2}
we have

Ti(A0) ⊆ T1(A0) ∪ T2(A0) ∪ A ⊆ η(T1(A0) ∪ T2(A0) ∪ A) ⊆ η(A0) = A0.

So η(T1(A0) ∪ T2(A0) ∪ A) ∈ I(T1) ∩ I(T2). Now we are able to write that η(T1(A0) ∪
T2(A0) ∪ A) ∈ B.

It follows that η(T1(A0)∪ T2(A0)∪A) = A0, because A0 = ∩B∈BB ∈ B and η(T1(A0)∪
T2(A0) ∪ A) ⊆ A0. �
Definition 2.2 (I. A. Rus [5], [6], [7]). Let X be a nonempty set and Z ∈ P (P (X)). A
functional θ : Z → R+ has the intersection property if An ∈ Z, An+1 ⊆ An, for each n ∈ N

and lim
n→∞ θ(An) = 0 imply that A∞ := ∩n∈NAn ∈ Z and θ(A∞) = 0.

Let ϕ : R+ → R+. We consider the following conditions:

(iϕ) ϕ is nondecreasing, i. e. t1 ≤ t2 implies ϕ(t1) ≤ ϕ(t2), for each t1, t2 ∈ R+;

(iiϕ) ϕ(t) < t, for each t > 0;

(iiiϕ) ϕ(0) = 0;

(ivϕ) (ϕn(t))n∈N converges to 0, as n → ∞, for each t ≥ 0.

Lemma 2.4. Let ϕ : R+ → R+ be a function which satisfies the conditions (iϕ) and (ivϕ).
Then (iiϕ) holds.

Lemma 2.5. Let ϕ : R+ → R+ be a function which satisfies the conditions (iϕ) and (iiϕ).
Then (iiiϕ) holds.

Definition 2.3. A function ϕ : R+ → R+ is called comparison function if satisfies the
conditions (iϕ) and (ivϕ).

Further on we give two notions.

Definition 2.4. Let X be a nonempty set, Y ∈ P (X), Z ∈ P (P (X)) and θ : Z → R+. The
multivalued operators T1, T2 : Y → P (Y ) form a (θ, ϕ)-contraction pair if ϕ : R+ → R+ is
a comparison function and

(i) A ∈ P (Y ) ∩ Z implies T1(A) ∪ T2(A) ∈ Z;

(ii) θ(T1(A) ∪ T2(A)) ≤ ϕ(θ(A)), for each A ∈ I(T1) ∩ I(T2) ∩ Z.

Definition 2.5. Let X be a nonempty set, Y ∈ P (X), Z ∈ P (P (X)) and θ : Z → R+.
The multivalued operators T1, T2 : Y → P (Y ) form a θ-condensing pair if

(i) Ai ∈ Z, i ∈ I and ∩i∈IAi �= ∅ imply ∩i∈IAi ∈ Z;

(ii) A ∈ P (Y ) ∩ Z implies T1(A) ∪ T2(A) ∈ Z;

(iii) θ(T1(A) ∪ T2(A)) < θ(A), for each A ∈ I(T1) ∩ I(T2) ∩ Z, with the property that
θ(A) �= 0.

These two notions extend the notions of (θ, ϕ)-contraction and θ-condensing given for a
multivalued operator by I. A. Rus in [8] and generalize the corresponding notions for a pair
of singlevalued operators, given by I. A. Rus in [10].
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3 Common fixed point structures for multivalued operators In this section
we shall introduce the notion of common fixed point structure for multivalued operators,
which extends the notion of fixed point structure for multivalued operators, given by I. A.
Rus in [8]. The results which we shall give here extend those presented by I. A. Rus in [8].

Definition 3.1. Let X be a nonempty set. A triplet (X, S, M◦
C) is a common fixed point

structure for multivalued operators (briefly c. f. p. s.) if

(i) S ∈ P (P (X));

(ii) M◦
C : P (X) � ∪Y ∈P (X)M

◦(Y ) × M
◦(Y ), Y |� M◦

C(Y ) ⊆ M
◦(Y ) × M

◦(Y ) is a
multivalued mapping such that if Z ∈ P (Y ), then

{ (T1|Z , T2|Z) | (T1, T2) ∈ M◦
C(Y ) and Z ∈ I(T1) ∩ I(T2) } ⊆ M◦

C(Z);

(iii) each Y ∈ S has the common fixed point property relative to M◦
C(Y ), i. e.

Y ∈ S and (T1, T2) ∈ M◦
C(Y ) imply (CF )T1,T2 �= ∅.

We illustrate this definition through some examples. An important source of such e-
xamples can be given by using the common fixed point theorems for multivalued operators.

Example 3.1. Let X be a nonempty set, S = { {x} | x ∈ X } and for each Y ∈ P (X) we
take M◦

C(Y ) the set of all pairs of multivalued operators (T1, T2), where T1, T2 : Y → P (Y ).
In this case the triplet (X, S, M◦

C) is a c. f. p. s. and it is called the trivial common fixed
point structure.

Example 3.2. Let (X, d) be a complete metric space, S = Pcl(X) and for each Y ∈
P (X) we take M◦

C(Y ) the set of all pairs of multivalued operators (T1, T2), where T1, T2 :
Y → Pcl(Y ), with the property that there exist a1, . . . , a5 ∈ R+, with a1 + a2 + a3 +
2 max {a4, a5} < 1, such that

H(T1(x), T2(y)) ≤ a1 d(x, y) + a2 D(x, T1(x)) + a3 D(y, T2(y))+

+a4 D(x, T2(y)) + a5 D(y, T1(x)),

for each x, y ∈ Y .
Then the triplet (X, S, M◦

C) is a c. f. p. s., taking into account a result given by V.
Popa in [3].

Example 3.3. Let (X, d) be a complete metric space, S = Pcl(X) and for each Y ∈ P (X)
we put M◦

C(Y ) the set of all pairs of multivalued operators (T1, T2), where T1, T2 : Y →
Pcl(Y ), with the property that there exists a ∈ [0, 1[ such that

H(T1(x), T2(y)) ≤ a max {d(x, y),D(x, T1(x)),D(y, T2(y)),

1/2 [D(x, T2(y)) + D(y, T1(x))]},
for each x, y ∈ Y .

Then the triplet (X, S, M◦
C) is a c. f. p. s., taking into account a result given by V.

Popa in [4].
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Example 3.4. Let (X, d) be a complete metric space, S = Pcl(X) and for each Y ∈ P (X)
we take M◦

C(Y ) the set of all pairs of multivalued operators (T1, T2), where T1, T2 : Y →
Pcl(Y ), with the property that for each i, j ∈ {1, 2}, with i �= j, there exist ai1, . . . , ai5 ∈ R+,
with ai1 + ai2 + ai3 +2 ai4 < 1, such that for each x ∈ Y , any ux ∈ Ti(x) and for all y ∈ Y ,
there exists uy ∈ Tj(y) so that

d(ux, uy) ≤ ai1 d(x, y) + ai2 d(x, ux) + ai3 d(y, uy) + ai4 d(x, uy) + ai5 d(y, ux).

Then (X, S, M◦
C) is a c. f. p. s., according to the Theorem 2.2 from [13].

Example 3.5. Let (X, d) be a complete metric space, S = Pcl(X) and for each Y ∈ P (X)
we take M◦

C(Y ) the set of all pairs of multivalued operators (T1, T2), where T1, T2 : Y →
Pcl(Y ), with the property that for each i, j ∈ {1, 2}, with i �= j, there exists ai ∈ [0, 1[ such
that for each x ∈ Y , any ux ∈ Ti(x) and for all y ∈ Y , there exists uy ∈ Tj(y) so that

d(ux, uy) ≤ ai max{d(x, y), d(x, ux), d(y, uy), 1/2 [d(x, uy) + d(y, ux)]}.

Then (X, S, M◦
C) is a c. f. p. s., according to the Theorem 2.2 from [13].

Definition 3.2. Let (X, S, M◦
C) be a c. f. p. s., θ : Z → R+ and η : P (X) → P (X). The

pair (θ, η) is a compatible pair with the c. f. p. s. (X, S, M◦
C) if

(i) η is a closure operator, S ⊆ η(Z) ⊆ Z ⊆ P (X) and θ(η(A)) = θ(A), for each A ∈ Z;

(ii) Fη ∩ Zθ ⊆ S, where Zθ = { A | A ∈ Z, θ(A) = 0 }.
Theorem 3.1. Let (X, S, M◦

C) be a c. f. p. s. and (θ, η) a compatible pair with the c.
f. p. s. (X, S, M◦

C), where θ : Z → R+ and η : P (X) → P (X). Let Y ∈ η(Z) and
(T1, T2) ∈ M◦

C(Y ). We suppose that :

(i) θ|η(Z) has the intersection property;

(ii) (T1, T2) is a (θ, ϕ)-contraction pair.

Then

(a) (CF )T1,T2 �= ∅;
(b) if (CF )T1,T2 ∈ I(T1) ∩ I(T2) ∩ Z, then θ((CF )T1,T2) = 0.

Proof. (a) We put Y0 = Y . We observe that Y0 ∈ I(T1) ∩ I(T2) ∩ Fη ∩ Z.
We have that Yn+1 := η(T1(Yn) ∪ T2(Yn)) ∈ I(T1) ∩ I(T2) ∩ Fη ∩ Z, for each n ∈ N.
We also have that

θ(Yn+1) = θ(η(T1(Yn) ∪ T2(Yn))) = θ(T1(Yn) ∪ T2(Yn)) ≤

≤ ϕ(θ(Yn)) ≤ . . . ≤ ϕn+1(θ(Y )),

for each n ∈ N.
It follows that θ(Yn+1) → 0, as n → ∞, taking into account that ϕn+1(θ(Y )) → 0, as

n → ∞.
Because Yn+1 = η(T1(Yn) ∪ T2(Yn)) ⊆ η(Yn) = Yn, for each n ∈ N, and using the fact

that θ|η(Z) has the intersection property, we are able to write that

Y∞ := ∩n∈NYn ∈ Z and θ(Y∞) = 0.
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Also, from the Lemma 2.1 we have that Y∞ ∈ Fη. So Y∞ ∈ S.
We remark that Y∞ ∈ I(T1) ∩ I(T2) and hence (T1|Y∞ , T2|Y∞) ∈ M◦

C(Y∞).
It follows that (CF )T1|Y∞ ,T2|Y∞ �= ∅ and therefore (CF )T1,T2 �= ∅.
(b) We have

θ((CF )T1,T2) = θ(T1((CF )T1,T2) ∪ T2((CF )T1,T2)) ≤
≤ ϕ(θ((CF )T1,T2)) ≤ . . . ≤ ϕn(θ((CF )T1,T2)),

for each n ∈ N.
¿From here we get that θ((CF )T1,T2) = 0, because ϕn(θ((CF )T1,T2)) → 0, as n → ∞.

�
Theorem 3.2. Let (X, S, M◦

C) be a c. f. p. s. and (θ, η) a compatible pair with the
c. f. p. s. (X, S, M◦

C), where θ : Z → R+ and η : P (X) → P (X). Let Y ∈ Fη and
(T1, T2) ∈ M◦

C(Y ) such that T1(Y ) ∪ T2(Y ) ∈ Z. We suppose that :

(i) θ|η(Z) has the intersection property;

(ii) (T1, T2) is a (θ, ϕ)-contraction pair.

Then

(a) (CF )T1,T2 �= ∅;
(b) if (CF )T1,T2 ∈ I(T1) ∩ I(T2) ∩ Z, then θ((CF )T1,T2) = 0.

Proof. We notice that the multivalued operators
T1|η(T1(Y )∪T2(Y )), T2|η(T1(Y )∪T2(Y )) : η(T1(Y ) ∪ T2(Y )) → P (η(T1(Y ) ∪ T2(Y ))) satisfy the
conditions from the Theorem 3.1. �
Theorem 3.3. Let (X, S, M◦

C) be a c. f. p. s. and (θ, η) a compatible pair with the c.
f. p. s. (X, S, M◦

C), where θ : Z → R+ and η : P (X) → P (X). Let Y ∈ η(Z) and
(T1, T2) ∈ M◦

C(Y ). We suppose that :

(i) x ∈ Y , A ∈ Z imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(ii) (T1, T2) is a θ-condensing pair.

Then

(a) (CF )T1,T2 �= ∅;
(b) if (CF )T1,T2 ∈ I(T1) ∩ I(T2) ∩ Z, then θ((CF )T1,T2) = 0.

Proof. (a) Let y0 ∈ Y . ¿From the Lemma 2.3 and the conditions (i) and (ii) of the
Definition 2.5, as well as from the condition (i) of the hypothesis, we get that there exists
A0 ⊆ Y such that y0 ∈ A0, A0 ∈ I(T1)∩I(T2)∩Fη ∩Z and η(T1(A0)∪T2(A0)∪{y0}) = A0.

If we suppose that θ(A0) �= 0, then we reach the contradiction

θ(A0) = θ(η(T1(A0) ∪ T2(A0) ∪ {y0})) = θ(T1(A0) ∪ T2(A0) ∪ {y0}) =

= θ(T1(A0) ∪ T2(A0)) < θ(A0).

So θ(A0) = 0. We got that A0 ∈ Fη ∩ Zθ and hence A0 ∈ S. Also, we have that
(T1|A0 , T2|A0) ∈ M◦

C(A0). Therefore (CF )T1|A0 , T2|A0
�= ∅ and this implies that (CF )T1,T2 �=

∅.
(b) If we suppose that θ((CF )T1,T2) �= 0, then we have

θ((CF )T1,T2) = θ(T1((CF )T1,T2) ∪ T2((CF )T1,T2)) < θ((CF )T1,T2),

which is a contradiction. So θ((CF )T1,T2) = 0. �
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Theorem 3.4. Let (X, S, M◦
C) be a c. f. p. s. and (θ, η) a compatible pair with the

c. f. p. s. (X, S, M◦
C), where θ : Z → R+ and η : P (X) → P (X). Let Y ∈ Fη and

(T1, T2) ∈ M◦
C(Y ) such that T1(Y ) ∪ T2(Y ) ∈ Z. We suppose that :

(i) x ∈ Y , A ∈ Z imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(iii) (T1, T2) is a θ-condensing pair.

Then

(a) (CF )T1,T2 �= ∅;
(b) if (CF )T1,T2 ∈ I(T1) ∩ I(T2) ∩ Z, then θ((CF )T1,T2) = 0.

Proof. We observe that the multivalued operators T1|η(T1(Y )∪T2(Y )), T2|η(T1(Y )∪T2(Y )) :
η(T1(Y ) ∪ T2(Y )) → P (η(T1(Y ) ∪ T2(Y ))) satisfy the conditions from the Theorem 3.3.
�

4 Common strict fixed point structures The notion of common strict fixed point
structure, which we shall introduce further on, extends the notion of strict fixed point
structure, given by I. A. Rus in [8]. We shall also give abstract results relative to the
common strict fixed point structure, results which extend those presented by I. A. Rus in
[8]. The proofs of these abstract results are made as the proofs of the corresponding results
from the section 3.

Definition 4.1. Let X be a nonempty set. A triplet (X, S, M◦
C) is a common strict fixed

point structure (briefly c. s. f. p. s.) if

(i) S ∈ P (P (X));

(ii) M◦
C : P (X) � ∪Y ∈P (X)M

◦(Y )×M
◦(Y ), Y |� M◦

C(Y ) ⊆ M
◦(Y )×M

◦(Y ) is a mapping
such that if Z ∈ P (Y ), then

{ (T1|Z , T2|Z) | (T1, T2) ∈ M◦
C(Y ) and Z ∈ I(T1) ∩ I(T2) } ⊆ M◦

C(Z);

(iii) each Y ∈ S has the common strict fixed point property relative to M◦
C(Y ), i. e.

Y ∈ S and (T1, T2) ∈ M◦
C(Y ) imply (CSF )T1,T2 �= ∅.

The triplet (X, S, M◦
C) from the Example 3.1 is in fact a c. s. f. p. s. .

Using the common strict fixed point theorems can be presented examples of c. s. f. p.
s., as the next example shows.

Example 4.1. Let (X, d) be a complete metric space, S = Pcl(X) and for each Y ∈ P (X)
we take M◦

C(Y ) to be the set of all pairs of multivalued operators (T1, T2), with T1, T2 : Y →
Pb(Y ) and for which there exist a, b, c ∈ R+, with a + 2b + 4c < 1, such that

δ(T1(x), T2(y)) ≤ a d(x, y) + b [δ(x, T1(x)) + δ(y, T2(y))] + c [δ(x, T2(y)) + δ(y, T1(x))],

for each x, y ∈ Y .
Then (X, S, M◦

C) is a c. s. f. p. s., according to the Theorem 2.1 given by M. Avram
in [2].
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Having a c. s. f. p. s. (X, S, M◦
C), θ : Z → R+ and η : P (X) → P (X), we say that

the pair (θ, η) is compatible with the c. s. f. p. s. (X, S, M◦
C) if the conditions (i) and (ii)

from the Definition 3.2 are satisfied.

Theorem 4.1. Let (X, S, M◦
C) be a c. s. f. p. s. and (θ, η) a compatible pair with the

c. s. f. p. s. (X, S, M◦
C), where θ : Z → R+ and η : P (X) → P (X). Let Y ∈ η(Z) and

(T1, T2) ∈ M◦
C(Y ). We suppose that :

(i) θ|η(Z) has the intersection property;

(ii) (T1, T2) is a (θ, ϕ)-contraction pair.

Then

(a) (CSF )T1,T2 �= ∅;
(b) if (CSF )T1,T2 ∈ Z, then θ((CSF )T1,T2) = 0.

Theorem 4.2. Let (X, S, M◦
C) be a c. s. f. p. s. and (θ, η) a compatible pair with the

c. s. f. p. s. (X, S, M◦
C), where θ : Z → R+ and η : P (X) → P (X). Let Y ∈ Fη and

(T1, T2) ∈ M◦
C(Y ) such that T1(Y ) ∪ T2(Y ) ∈ Z. We suppose that :

(i) θ|η(Z) has the intersection property;

(ii) (T1, T2) is a (θ, ϕ)-contraction pair.

Then

(a) (CSF )T1,T2 �= ∅;
(b) if (CSF )T1,T2 ∈ Z, then θ((CSF )T1,T2) = 0.

The next result is a consequence of the Theorem 4.1 (or of the Theorem 4.2).

Theorem 4.3. Let (X, d) be a complete and bounded metric space and T1, T2 : X → P (X)
two multivalued operators which form a (δ, ϕ)-contraction pair (δ : P (X) → R+ and ϕ :
R+ → R+).

Then (CF )T1,T2 = (CSF )T1,T2 = {x∗}.
Proof. We take S = { {x} | x ∈ X } and M◦

C(Y ) the set of all pairs of multivalued operators
(T̃1, T̃2), where T̃1, T̃2 : Y → P (Y ), for each Y ∈ P (X).

Also, we choose Z = P (X), θ = δ and η : P (X) → P (X) defined by η(A) = A, for each
A ∈ P (X).

¿From the Theorem 4.1 (or the Theorem 4.2) it follows that δ((CSF )T1,T2) = 0, taking
into account that (X, S, M◦

C) is a c. s. f. p. s.. So (CSF )T1,T2 = {x∗}.
We put X0 = X and let Xn+1 = T1(Xn) ∪ T2(Xn), for each n ∈ N. We observe that

(CF )T1,T2 ⊆ X∞ := ∩n∈NXn. Because {x∗} = (CSF )T1,T2 ⊆ (CF )T1,T2 and δ(X∞) = 0,
we get that (CF )T1,T2 = (CSF )T1,T2 = {x∗}. �

Theorem 4.4. Let (X, S, M◦
C) be a c. s. f. p. s. and (θ, η) a compatible pair with the

c. s. f. p. s. (X, S, M◦
C), where θ : Z → R+ and η : P (X) → P (X). Let Y ∈ η(Z) and

(T1, T2) ∈ M◦
C(Y ). We suppose that :

(i) x ∈ Y , A ∈ Z imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);
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(ii) (T1, T2) is a θ-condensing pair.

Then

(a) (CSF )T1,T2 �= ∅;
(b) if (CSF )T1,T2 ∈ Z, then θ((CSF )T1,T2) = 0.

Theorem 4.5. Let (X, S, M◦
C) be a c. s. f. p. s. and (θ, η) a compatible pair with the

c. s. f. p. s. (X, S, M◦
C), where θ : Z → R+ and η : P (X) → P (X). Let Y ∈ Fη and

(T1, T2) ∈ M◦
C(Y ) such that T1(Y ) ∪ T2(Y ) ∈ Z. We suppose that :

(i) x ∈ Y , A ∈ Z imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(iii) (T1, T2) is a θ-condensing pair.

Then

(a) (CSF )T1,T2 �= ∅;
(b) if (CSF )T1,T2 ∈ Z, then θ((CSF )T1,T2) = 0.
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