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Abstract. Let C[a, b] be the space of all real-valued continuous functions on a com-
pact interval [a, b] and suppose that C[a, b] is endowed with the supremum norm. If
we consider a finite dimensional Chebyshev space G as an approximating space, then a
series of important results of best approximation from G are well known as the Cheby-
shev theory. In this paper, we introduce two other best approximation problems and
show that Chebyshev type theory holds in the problems.

1. Introduction

We shall study relations among results of three best approximation problems. Before
stating precisely the purpose of this paper, we have to explain some definitions, notations,
and best approximation problems.

Let F [a, b] be the space of all real-valued functions on a compact nondegenerate interval
[a, b] of R. A finite subset {u1, . . . , un} of F [a, b] is called a system if u1, . . . , un are
linearly independent. We denote by Span{u1, . . . , un} the space spanned by {u1, . . . , un}.
A system {u1, . . . , un} of F [a, b] is called a Chebyshev system if for any n distinct points
x1, . . . , xn ∈ [a, b], the n-th order determinant∣∣∣∣∣∣∣∣∣

u1(x1) u2(x1) · · · un(x1)
u1(x2) u2(x2) · · · un(x2)

...
...

...
u1(xn) u2(xn) · · · un(xn)

∣∣∣∣∣∣∣∣∣
�= 0.

In other words, a Chebyshev system {u1, . . . , un} is a system such that any nontrivial linear
combination possesses at most n − 1 zeros in [a, b]. If a system {u1, . . . , un} satisfies that
each system {u1, . . . , uk}, k = 1, . . . , n is a Chebyshev system, then {u1, . . . , un} is called a
complete Chebyshev system. Furthermore, we call a space spanned by a Chebyshev system
(resp. complete Chebyshev system) a Chebyshev space (resp. complete Chebyshev space).
It is well known that Chebyshev systems are of much use to study best approximation,
interpolation, and quadrature formulas in approximation theory. One can see a lot of good
properties and important applications of Chebyshev systems in the books [5, 12] and a
survey in [11].

Let C[a, b] be the subspace of F [a, b] which consists of continuous functions. C[a, b] is
endowed with the following two norms: For f ∈ C[a, b],

‖f‖∞ = sup
x∈[a,b]

|f(x)|,

‖f‖v1 = |f(a)| + sup
a�α<β�b

|f(β) − f(α)|.
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For a system {u1, . . . , un} of C[a, b], we consider the following problems on best appoxima-
tion from G = Span{u1, . . . , un}: For any f ∈ C[a, b],

(P.1) find pf ∈ G with ‖f − pf‖∞ = infp∈G ‖f − p‖∞
and

(P.2) find qf ∈ G with ‖f − qf‖v1 = infq∈G ‖f − q‖v1.

Now we turn to the third best approximation problem. Let L1[a, b] be the space of all
real-valued Lebesgue integrable functions on [a, b] and let S be the set of all nongenerate
closed subintervals of [a, b]. For I, J ∈ S, if I ∩ J has no interior points and x � y for all
x ∈ I and y ∈ J , then it is denoted by I < J for this relation. A system {v1, . . . , vn} of
L1[a, b] is called a quasi Chebyshev system if for any n closed subintervals I1, . . . , In ∈ S
with I1 < · · · < In, the n-th order determinant∣∣∣∣∣∣∣∣∣

∫
I1

v1 dx
∫

I1
v2 dx · · · ∫

I1
vn dx∫

I2
v1 dx

∫
I2

v2 dx · · · ∫
I2

vn dx
...

...
...∫

In
v1 dx

∫
In

v2 dx · · · ∫
In

vn dx

∣∣∣∣∣∣∣∣∣
�= 0.

And, we call a space spanned by a quasi Chebyshev system a quasi Chebyshev space. The
definition of a quasi Chebyshev system is introduced by Shi[10] (cf.see integral Tchebysheff
systems in [6] and HI systems in [7]). L1[a, b] is endowed with a norm ‖ · ‖I such that
‖f‖I = supI∈S

∣∣∫
I f(x) dx

∣∣. For a system {u1, . . . , un} of L1[a, b], we consider the following
problem on best appoximation from G = Span{u1, . . . , un}: For any f ∈ L1[a, b],

(P.3) find rf ∈ G with ‖f − rf‖I = infr∈G ‖f − r‖I .

Throughout this paper, pf , qf , and rf denote one of best approximations to a function f in
the problems (P.1), (P.2), and (P.3), respectively.

The following classical results of best approximation by Chebyshev systems are well
known as the Chebyshev theory.

Theorem 1. (see Cheney[2; Chap. 3]) Let {1, u1, . . . , un} be a system of (C[a, b], ‖ · ‖∞)
and G = Span{1, u1, . . . , un}. Then, the following statements hold:

(1) If every f ∈ C[a, b] has a unique best approximation pf from G, then G is a Chebyshev
space.

Furthermore, suppose that {1, u1, . . . , un} is a Chebyshev system.

(2) For any f ∈ C[a, b], pf ∈ G is a best approximation to f from G if and only if there
exist n + 2 distinct points x1, . . . , xn+2 (a � x1 < · · · < xn+2 � b) such that

(i) |f(xi) − pf (xi)| = ‖f − pf‖∞, i = 1, 2, . . . , n + 2,

(ii) f(xi) − pf (xi) = −(f(xi+1) − pf (xi+1)), i = 1, 2, . . . , n + 1.

(3) Every f ∈ C[a, b] has a unique best approximation pf from G. Furthermore, there
exisits a positive number γ depending on f such that

‖f − p‖∞ � ‖f − pf‖∞ + γ‖p − pf‖∞ for all p ∈ G.

(4) For any f ∈ C[a, b], the second Remez algorithm is a method for obtaining a sequence
of G which converges to the unique best approximation to f from G.
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Now we already know several kinds of Chebyshev type theory. Generalized versions of the
Chebyshev theory are treated in [1, 3, 4]. Modified versions are given in [9, 10]. Among
them, Shi[10] has proven a Chebyshev type theory in (C[a, b], ‖·‖I), that is to say, analogous
results to Theorem 1. In this paper, we show that (P.2) and (P.3) are closely related with
(P.1) and hence, Chebyshev type theory hold in (P.2) and (P.3). In particular, Chebyshev
type theory in (P.3) is an extension of Shi’s results[10]. We study (P.2) in section 2 and
(P.3) is considered in section 3.

2. Best Approximation in C[a, b]

For f ∈ C[a, b], we use notations m(f) = minx∈[a,b] f(x), M(f) = maxx∈[a,b] f(x) and
v1(f) = supa�α<β�b |f(β)− f(α)|. First we show relations between best approximations in
(P.1) and (P.2).

Proposition 2. Let {1, u1, . . . , un} be a system of C[a, b] and put G = Span{1, u1, . . . , un}.
For any f ∈ C[a, b], let pf and qf be best approximations to f from G in (P.1) and (P.2),
respectively. Then, the following hold:

(1) pf + f(a) − pf (a) is a best approximation to f from G in (C[a, b], ‖ · ‖v1),

(2) qf +
m(f − qf ) + M(f − qf )

2
is a best approximation to f from G in (C[a, b], ‖ · ‖∞),

(3) 2‖f − pf‖∞ = ‖f − qf‖v1.

Proof. (1) First we see that v1(f) = M(f) − m(f) for f ∈ C[a, b]. Let pf be a best
approximation to f from G in (C[a, b], ‖·‖∞). Since 1 ∈ G, we have ‖f−pf‖∞ = M(f−pf) =
−m(f − pf) for f ∈ C[a, b]. Hence, v1(f − pf ) = 2‖f − pf‖∞. Furthermore, v1(f − p) �
v1(f−pf) for all p ∈ G, because if v1(f−p0) < v1(f−pf) for some p0 ∈ G, then the function

p0+
m(f − p0) + M(f − p0)

2
is a better approximation to f than pf in (C[a, b], ‖·‖∞), which

contradicts to the assumption of pf . Noting that v1(f − (pf + f(a) − pf (a))) = v1(f − pf )
and (f − (pf + f(a) − pf (a)))(a) = 0, pf + f(a) − pf (a) is a best approximation to f from
G in (C[a, b], ‖ · ‖v1).

(2) Let qf be a best approximation to f from G in (C[a, b], ‖ · ‖v1). If we consider an

approximating function qf +
m(f − qf ) + M(f − qf )

2
, then the function satisfies∥∥∥∥f −

(
qf +

m(f − qf ) + M(f − qf )
2

)∥∥∥∥
∞

=
1
2

v1

(
f −

(
qf +

m(f − qf ) + M(f − qf )
2

))
.

Since v1

(
f −

(
qf +

m(f − qf ) + M(f − qf )
2

))
= v1(f − qf ), we have for any q ∈ G,

‖f − q‖∞ � 1
2
v1(f − q) � 1

2
v1(f − qf ) =

∥∥∥∥f −
(

qf +
m(f − qf ) + M(f − qf )

2

)∥∥∥∥
∞

.

This means that the function qf +
m(f − qf ) + M(f − qf )

2
is a best approximation to f

from G in (C[a, b], ‖ · ‖∞).
As for (3), one can see that 2‖f − pf‖∞ = ‖f − qf‖v1 without any difficulty. �

By Theorem 1 and Proposition 2, we immediately have the following statement.
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Theorem 3. (Chebyshev Type Theory in (C[a, b], ‖ · ‖v1)) Let {1, u1, . . . , un} be a system
of (C[a, b], ‖ · ‖v1) and G = Span{1, u1, . . . , un}. Then, the following statements hold:

(1) If every f ∈ C[a, b] has a unique best approximation from G, then G is a Chebyshev
space.

Furthermore, suppose that {1, u1, . . . , un} is a Chebyshev system.

(2) For any f ∈ C[a, b], qf ∈ G is a best approximation to f from G if and only if
|(f−qf )(a)| = 0 and there exist n+2 distinct points x1, . . . , xn+2 (a � x1 < · · · < xn+2

� b) such that

(i) |(f(xi+1) − qf (xi+1)) − (f(xi) − qf (xi))| = ‖f − qf‖v1, i = 1, 2, . . . , n + 1,

(ii) (f(xi+1) − qf (xi+1)) − (f(xi) − qf (xi)) = −((f(xi+2) − qf (xi+2)) − (f(xi+1) −
qf (xi+1))),

i = 1, 2, . . . , n.

(3) Every f ∈ C[a, b] has a unique best approximation qf from G. Furthermore, there
exisits a positive number η depending on f such that

‖f − q‖v1 � ‖f − qf‖v1 + η‖q − qf‖v1 for all q ∈ G.

(4) For any f ∈ C[a, b], let {pn} be a sequence of G obtained by the second Remez
algorithm in Theorem 1 (4). Then, the sequence {pn + f(a)− pn(a)} converges to the
unique best approximation to f from G.

Proof. Since from Theorem 1 and Proposition 2, it is obvious that (1) and (2) hold, we
only show the inequality in (3) and convergence of the sequence in (4).

As for (3), it is sufficient to show the existence of positive number η(< 1) such that for
any f ∈ C[a, b]

‖f − q‖v1 � ‖f − qf‖v1 + η‖q − qf‖v1 for all q ∈ G, (2.1)

or

|(f−q)(a)|+v1(f−q) � |(f−qf)(a)|+v1(f−qf )+η|(q−qf )(a)|+ηv1(q−qf ) for all q ∈ G.

Since qf is a best approximation to f , f(a) = qf (a). Hence, we have

|(f − q)(a)| � |(f − qf )(a)| + η|(q − qf )(a)| for all η (0 < η < 1). (2.2)

Put pf = qf +
m(f − qf ) + M(f − qf )

2
, which is the unique best approximation to f from

G in (C[a, b], ‖ · ‖∞). Noting that v1(g) = v1(g + c) for any g ∈ C[a, b] and any c ∈ R, by
Proposition 2, we obtain

v1(f − q) = 2
∥∥∥∥f −

(
q +

m(f − q) + M(f − q)
2

)∥∥∥∥
∞

, v1(f − qf ) = 2‖f − pf‖∞,
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and∥∥∥∥
(

q +
m(f − q) + M(f − q)

2

)
− pf

∥∥∥∥
∞

� 1
2

v1

((
q +

m(f − q) + M(f − q)
2

)
− pf

)
=

1
2

v1(q − qf ).

On the other hand, since by Theorem 1 (3),∥∥∥∥f −
(

q +
m(f − q) + M(f − q)

2

)∥∥∥∥
∞

� ‖f−pf‖∞+γ

∥∥∥∥
(

q +
m(f − q) + M(f − q)

2

)
− pf

∥∥∥∥
∞

,

holds, we have
v1(f − q) � v1(f − qf ) + γv1(q − qf ). (2.3)

From (2.2) and (2.3), (2.1) follows immdiately.
For any f ∈ C[a, b], let {pn} be a sequence of G obtained by the second Remez algorithm

in Theorem 1 (4). Since {pn} converges to the unique best approximation pf to f from G,
{pn + f(a)− pn(a)} converges to pf + f(a)− pf(a), which is the unique best approximation
to f from G in (C[a, b], ‖ · ‖v1). �

3. Chebyshev Type Theory in (L1[a, b], ‖ · ‖I)

First we consider a property of complete Chebyshev systems which is necessary to show
a Chebyshev type theory in (L1[a, b], ‖ · ‖I).

Definition 1. Let {1, u1, . . . , un} be a system of C[a, b]. Then, {1, u1, . . . , un} is said to
have (*) property if for any n subintervals [a1, b1], . . . , [an, bn] ∈ S with [a1, b1] < · · · <
[an, bn], the n-th order determinant∣∣∣∣∣∣∣∣∣

u1(b1) − u1(a1) u2(b1) − u2(a1) · · · un(b1) − un(a1)
u1(b2) − u1(a2) u2(b2) − u2(a2) · · · un(b2) − un(a2)

...
...

...
u1(bn) − u1(an) u2(bn) − u2(an) · · · un(bn) − un(an)

∣∣∣∣∣∣∣∣∣
�= 0.

For convenience, we write u(I), I = [α, β] for u(β) − u(α).

Now we obtain

Lemma 4. If a system {1, u1, . . . , un} of C[a, b] has (*) property, then {1, u1, . . . , un} is a
Chebyshev system.

Proof. On the contrary, suppose that {1, u1, . . . , un} is not a Chebyshev system. Then,
there exists a nontrivial linear combination c0 + c1u1(x) + · · · + cnun(x) which possesses
n + 1 zeros x0, x1, . . . , xn (x0 < x1 < · · · < xn) in [a, b]. And c2

1 + c2
2 + · · ·+ c2

n �= 0 because
c0 + c1u1(x) + · · · + cnun(x) can’t possess n + 1 zeros for c0 �= 0, c1 = · · · = cn = 0. Since
it is seen that

(c0 + c1u1 + · · · + cnun)(xi) − (c0 + c1u1 + · · · + cnun)(xi−1) = 0, i = 1, 2, . . . , n,

if we put Ii = [xi−1, xi], i = 1, 2, . . . , n, we obtain⎛
⎜⎜⎜⎝

u1(I1) u2(I1) · · · un(I1)
u1(I2) u2(I2) · · · un(I2)

...
...

...
u1(In) u2(In) · · · un(In)

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

c1

c2

...
cn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎟⎠ .
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But this contradicts the conditon that {1, u1, . . . , un} of C[a, b] has (*) property. �

Remark 1. As is easily seen, Lemma 4 holds without continuity of u1, u2, . . . , un.

To prove the converse of Lemma 4, we prepare some definitions and propositions.

Definition 2. (Zielke[12; p.33, 34]) (1) Let f be a real-valued function on [a, b]. Points
x1, x2, . . . , xk (a � x1 < x2 < · · · < xk � b) are called a strong (resp. weak) oscillation of f
of length k if

(−1)i(f(xi+1) − f(xi)) > 0 (resp. � 0) , i = 1, 2, . . . , k − 1

or
(−1)i(f(xi+1) − f(xi)) < 0 (resp. � 0) , i = 1, 2, . . . , k − 1

hold.
(2) Let U be an n dimensional space which consists of real-valued functions on [a, b]. Then
U is called a strong (resp.weak) oscillation space if no nonconstant f ∈ U has a weak (resp.
strong) oscillation of length n + 1.

We show a slightly special version of Theorem 8.8 in Zielke[12] for this paper.

Proposition 5. (Zielke[12; Theorem 8.8 in p.39]) Let U be an (n + 1)-dimensional Cheby-
shev space of F [a, b] which contains contant functions. Then the following statements are
equivalent:
(1) U is a strong oscillation space.
(2) U is a weak oscillation space.
(3) U has a basis {1, u1, . . . , un} which is a complete Chebyshev system.

From Lemma 4 and Proposition 5, we have a property of a complete Chebyshev system.

Theorem 6. Let U be an (n + 1)-dimensional space of C[a, b] which contains contant
functions. Then the following statements are equivalent:
(1) U has a basis {1, u1, . . . , un} which has (*) property.
(2) U has a basis {1, v1, . . . , vn} which is a complete Chebyshev system.

Proof. (1) ⇒ (2). U is a Chebyshev space by Lemma 4. Hence, by Proposition 5, it
is sufficient to show that U is a weak oscillation space. On the contrary, suppose that
U isn’t a weak oscillation space. There exists a nonconstant u ∈ U and n + 2 ponits
x1, x2, . . . , xn+2 (x1 < x2 < · · · < xn+2) in [a, b] such that

(−1)i(u(xi+1) − u(xi)) > 0 , i = 1, 2, . . . , n + 1.

Put d = min{(−1)i(u(xi+1) − u(xi)) | i = 1, 2, . . . , n + 1}. Since u = c0 +
∑n

i=1 ciui is
continuous, there exist n subintervals Ij = [aj , bj], j = 1, 2, . . . , n of [a, b] satisfying that

xj < aj < xj+1 < bj < xj+2 , j = 1, 2, . . . , n,

I1 < I2 < · · · < In,

u(aj) = u(bj) = u(xj+1) +
(−1)j+1d

3
, j = 1, 2, . . . , n.

Noting that u = c0 +
∑n

i=1 ciui isn’t a nonconstant function, c2
1 + · · · + c2

n �= 0. Thus, we
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have ⎛
⎜⎜⎜⎝

u1(I1) u2(I1) · · · un(I1)
u1(I2) u2(I2) · · · un(I2)

...
...

...
u1(In) u2(In) · · · un(In)

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

c1

c2

...
cn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎟⎠ .

But this contradicts the conditon that {1, u1, . . . , un} of C[a, b] has (*) property.
(2) ⇒ (1). Let {1, v1, . . . , vn} be a basis which is a complete Chebyshev system. We show
that the system 1, v1, . . . , vn has (*) property. On the contrary, suppose that {1, v1, . . . , vn}
doesn’t have (*) property. Then, there exist n subintervals I1, . . . , In(I1 < · · · < In) such
that ∣∣∣∣∣∣∣∣∣

v1(I1) v2(I1) · · · vn(I1)
v1(I2) v2(I2) · · · vn(I2)

...
...

...
v1(In) v2(In) · · · vn(In)

∣∣∣∣∣∣∣∣∣
= 0.

Hence, there is a (c1, c2, . . . , cn) ∈ Rn−{0} satisfying that
∑n

i=1 civi(Ij) = 0, j = 1, 2, . . . , n.
If we write Ij = [αj , βj ] for j = 1, 2, . . . , n, then

n∑
i=1

civi(αj) =
n∑

i=1

civi(βj) , j = 1, 2, . . . , n.

Since {1, v1, . . . , vn} is a complete Chebyshev system, there exist γj ∈ (αj , βj), j = 1, 2, . . . , n
such that

n∑
i=1

civi(αj) <

n∑
i=1

civi(γj) or
n∑

i=1

civi(αj) >

n∑
i=1

civi(γj).

Clearly α1, γ1, β1 are a strong oscillation of
∑n

i=1 civi of length 3 and some 4 points among
points αi, γi, βi, i = 1, 2 are a strong oscillation of

∑n
i=1 civi of length 4. Analogously, we

can find n + 2 points among points αi, γi, βi, i = 1, 2, . . . , n which are a strong oscillation
of
∑n

i=1 civi of length n + 2. Since
∑n

i=1 civi is nonconstant, this contradicts Proposition
5. Thus, {1, v1, . . . , vn} has (*) property. �

Now we proceed to the Chebyshev theory in (L1[a, b], ‖·‖I). Let AC[a, b] be the subspace
of F [a, b] which consists of absolutely continuous functions. Then, we begin by the following
lemma.

Lemma 7. Let {u1, . . . , un} be a system in L1[a, b]. Put w0(x) = 1 and wi(x) =
∫ x

a
ui(t) dt ∈

AC[a, b], i = 1, 2, . . . , n. If for any f ∈ AC[a, b], c∗0w0 +
∑n

i=1 c∗i wi is a best approximation
to f from Span{w0, w1, . . . , wn} in (AC[a, b], ‖·‖v1), then

∑n
i=1 c∗i ui is a best approximation

to f ′ from Span{u1, . . . , un} in (L1[a, b], ‖ · ‖I).

Proof. Suppose that c∗0w0+
∑n

i=1 c∗i wi is a best approximation to f from Span{w0, w1, . . . , wn}
in (AC[a, b], ‖ · ‖v1). For any c0w0 +

∑n
i=1 ciwi ∈ Span{w0, w1, . . . , wn}, we observe that

v1(f − (c∗0w0 +
n∑

i=1

c∗i wi)) � v1(f − (c0w0 +
n∑

i=1

ciwi)),

because if v1(f − (c∗0w0 +
∑n

i=1 c∗i wi)) > v1(f − (c0w0 +
∑n

i=1 ciwi)) for some c0w0 +∑n
i=1 ciwi ∈ Span{w0, w1, . . . , wn}, then f(a)w0 +

∑n
i=1 ciwi is a better approximation to

f than c∗0w0 +
∑n

i=1 c∗i wi, which contradicts the assumption of c∗0w0 +
∑n

i=1 c∗i wi. Hence,
we have for any

∑n
i=1 ciui ∈ Span{u1, . . . , un},
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∥∥∥∥∥f ′ −
n∑

i=1

ciui

∥∥∥∥∥
I

= v1

(
f −

n∑
i=1

ciwi

)

� v1

(
f − (c∗0w0 +

n∑
i=1

c∗i wi)

)
= v1

(
f −

n∑
i=1

c∗i wi

)
=

∥∥∥∥∥f ′ −
n∑

i=1

c∗i ui

∥∥∥∥∥
I

.

Thus,
∑n

i=1 c∗i ui is a best approximation to f ′ from Span{u1, . . . , un} in (L1[a, b], ‖ · ‖I). �

We are in position to state

Theorem 8. (Chebyshev Type Theory in (L1[a, b], ‖ · ‖I)) Let {u1, . . . , un} be an ap-
proximating system (L1[a, b], ‖ · ‖I) and Gk = Span{u1, . . . , uk}, k = 1, 2, . . . , n. Then, the
following statements hold:

(1) If every f ∈ L1[a, b] has a unique best approximation from Gk, k = 1, 2, . . . , n, then
Gn is a quasi Chebyshev space.

Furthermore, suppose that Gn is a quasi Chebyshev space.

(2) For any f ∈ L1[a, b], rf ∈ Gn is a best approximation to f from Gn if and only if
there exist n + 1 subintervals I1, I2, . . . , In+1 ∈ S with I1 < · · · < In+1 of [a, b] such
that

(i) | ∫Ij
(f − rf ) dx| = ‖f − rf‖I , j = 1, 2, . . . , n + 1,

(ii)
∫

Ij
(f − rf ) dx = − ∫Ij+1

(f − rf ) dx j = 1, 2, . . . , n.

(3) Every f ∈ L1[a, b] has a unique best approximation rf from Gn. Furthermore, there
exisits a positive number η depending on f such that

‖f − r‖I � ‖f − rf‖I + η‖q − rf‖I for all r ∈ Gn. (2.4)

(4) Let f be any function in L1[a, b] and put ϕf (x) =
∫ x

a
f(t) dt. Let {w0 = 1, w1 =∫ x

a
u1(t) dt, . . . , wn =

∫ x

a
un(t) dt} be an approximating system of (C[a, b], ‖ · ‖v1). For

ϕf ∈ AC[a, b], let {qk} be a sequence of Span{w0, . . . , wn} obtained by the algorithm
in Theorem 3 (4). Then, the sequence {q′n} converges to the unique best approximation
to f from Gn.

Proof. (1) We show that the system {w0 = 1, w1 =
∫ x

a
u1(t) dt, . . . , wn =

∫ x

a
un(t) dt} has

(*) property. By Theorem 6, it is sufficient to prove that each system {1, w1, . . . , wk}, k =
1, 2, . . . , n is a Chebyshev system.

Let f be any function in AC[a, b]. From the assumption, f ′ ∈ L1[a, b] has a unique best
approximation

∑k
i=1 ciui from Gk in (L1[a, b], ‖ · ‖I). Hence, by Proposition 7, f ∈ AC[a, b]

has a unique best approximation qf = f(a)w0 +
∑k

i=1 ciwi from Span{1, w1, . . . , wk} in
(AC[a, b], ‖ · ‖v1). Moreover, by Proposition 2, f has a unique best approximation qf +
m(f − qf ) + M(f − qf )

2
from Span{w0, w1, . . . , wk} in (AC[a, b], ‖ · ‖∞). Using the same

proof as that of Theorem 1 (1), we can verify that {1, w1, . . . , wk} is a Chebyshev system.
But, to make sure, we show a proof for this setting.
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On the contrary, suppose that {w0, w1, . . . , wk} isn’t a Chebyshev system. Then, there
exist k + 1 distinct points x0, x1, . . . , xk in [a, b] such that

detA :=

∣∣∣∣∣∣∣∣∣

w0(x0) w1(x0) · · · wk(x0)
w0(x1) w1(x1) · · · wk(x1)

...
...

...
w0(xk) w1(xk) · · · wk(xk)

∣∣∣∣∣∣∣∣∣
= 0.

Since A is singular, there are c = (ci),d = (di) ∈ Rk+1 − {0} satisfying that

k∑
i=0

ciwj(xi) = 0 , j = 0, 1, . . . , k ,

k∑
j=0

djwj(xi) = 0 , i = 0, 1, . . . , k. (2.5)

Without loss of generality, we assume that h(x) =
∑k

j=0 djwj(x) satisfies ‖h‖∞ < 1. Let
us consider f1 ∈ AC[a, b] with ‖f1‖∞ = 1 and f1(xi) = sign(ci), i = 0, 1, . . . , n (Polygonal
lines are suitable for f1.). If we put f(x) = f1(x)(1−|h(x)|), then f is a function in AC[a, b]
such that

‖f‖∞ = 1 and f(xi) = f1(xi)(1 − |h(xi)|) = f1(xi) = sign(ci) , i = 0, 1, . . . , k.

Now we show that
∥∥∥f −∑k

i=0 aiwi

∥∥∥
∞

� 1 for all a = (ai) ∈ Rk+1. On the contrary,

suppose that
∥∥∥f −∑k

i=0 aiwi

∥∥∥
∞

< 1 for some a = (ai) ∈ Rk+1. For any xj with cj �= 0,
we have

sign

(
k∑

i=0

aiwi(xj)

)
= sign(f(xj)) = sign(cj) �= 0.

Hence,
∑k

i=0 cj

(∑k
i=0 aiwi(xj)

)
> 0 holds. But we see that by (2.5),

k∑
j=0

cj

(
k∑

i=0

aiwi(xj)

)
=

k∑
i=0

ai

⎛
⎝ k∑

j=0

cjwi(xj)

⎞
⎠ = 0,

which leads to a contradiction. Hence,
∥∥∥f −∑k

i=0 aiwi

∥∥∥
∞

� 1 for all a = (ai) ∈ Rk+1.

We consider γh(x), 0 � γ � 1 as approximations to f from Span{w0, w1, . . . , wk}. Then,
we obtain for any x ∈ [a, b],

|f(x) − γh(x)| � |f(x)| + γ|h(x)| = |f1(x)|(1 − |h(x)|) + γ|h(x)| � 1 + (γ − 1)|h(x)| � 1.

This implies that ‖f −∑k
i=0 γdiwi‖∞ = 1 for 0 � γ � 1 and

∑k
i=0 γdiwi for 0 � γ � 1

are best approximations to f from Span{w0, w1, . . . , wk} in (AC[a, b], ‖ · ‖∞). But this
contradicts to the uniqueness of best approximation to f from Span{w0, w1, . . . , wk}.
(2) From Theorem 3 (2) and Lemma 7, (2) follows immdediately.
(3) Let f be any function in L1[a, b] and put ϕf (x) =

∫ x

a
f(t) dt, w0(x) = 1, wi(x) =∫ x

a ui(t) dt, i = 1, 2, . . . , n. Since {u1, . . . , un} is a quasi Chebyshev system, {w0, w1, . . . , wn}
has (*) property. By Theorem 3 (3), there exist a unique best approximation

∑n
i=0 c∗i wi to

ϕf from Span{w0, w1, . . . , wn} and a positive number η depending on f such that for any∑n
i=0 ciwi ∈ Span{w0, w1, . . . , wn},∥∥∥∥∥ϕf −

n∑
i=0

ciwi

∥∥∥∥∥
v1

�
∥∥∥∥∥ϕf −

n∑
i=0

c∗i wi

∥∥∥∥∥
v1

+ η

∥∥∥∥∥
n∑

i=0

ciwi −
n∑

i=0

c∗i wi

∥∥∥∥∥
v1

.



572 KAZUAKI KITAHARA

Since ϕf (a) = 0 and wi(a) = 0, i = 0, 1, . . . , n, we have∥∥∥∥∥ϕf −
n∑

i=0

ciwi

∥∥∥∥∥
v1

=

∥∥∥∥∥f −
n∑

i=1

ciui

∥∥∥∥∥
I

,

∥∥∥∥∥ϕf −
n∑

i=0

c∗i wi

∥∥∥∥∥
v1

=

∥∥∥∥∥f −
n∑

i=1

c∗i ui

∥∥∥∥∥
I

,

and ∥∥∥∥∥
n∑

i=0

ciwi −
n∑

i=0

c∗i wi

∥∥∥∥∥
v1

=

∥∥∥∥∥
n∑

i=1

ciui −
n∑

i=1

c∗i ui

∥∥∥∥∥
I

.

Thus we see that the inequality (2.4) holds.
(4) Put qk =

∑n
i=0 ak

i wi, k = 1, 2, . . . . Since ϕf has a unique best approximation q =∑n
i=0 aiwi from Span{w0, w1, . . . , wn}, each sequence {ak

i }, i = 0, . . . , n converges to ai.
Hence, {q′k} converges to q′ =

∑n
i=0 aiw

′
i in (L1[a, b], ‖ · ‖I) which is a unique best approxi-

mation to f from Span{u1, . . . , un}. �

Remark 2. In (C[a, b], ‖ · ‖I), Shi[10] gave constructive proofs of Theorem 8 (2), (3), and
Kitahara and Sakamori[8] showed an algorithm to obtain a best approximation from a quasi
Chebyshev space.

Finally, we give a problem in order to find best approximation problems in which Cheby-
shev type theory holds.

Problem. For a positive integer k, let ‖ · ‖vk be a norm on C[a, b] such that

‖f‖vk = |f(a)| + sup
a�x0<···<xk�b

k−1∑
i=0

|f(xi+1) − f(xi)| , f ∈ C[a, b].

Let G be a finite dimensional complete Chebyshev space of C[a, b] which contains constant
functions. If G is an approximating space, then is it true that Chebyshev type theory holds?

Remark 3. In case k = 1, the problem stated above is (P.2) itself. Let us consider the
function space C1[a, b] of all real-valued continuously differentiable functions on [a, b]. As a
norm on C1[a, b], we consider ‖f‖v∞ = limk→∞ ‖f‖vk = |f(a)| + v(f), f ∈ C1[a, b], where
v(f) denotes the total variation of f . It is stated in [7] that every finite dimensional complete
Chebyshev space which contains constant functions isn’t a unicity space in (C1[a, b], ‖·‖v∞).
Hence, we have a negative answer of Problem for k = ∞.
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