CONTROLLED CONVERGENCE THEOREM
FOR NUCLEAR HILBERTIAN (UCs-N) SPACES
VALUED HENSTOCK-KURZWEIL INTEGRALS

Kuninori Sakurada
Received October 20, 2004; revised September 24, 2005

ABSTRACT. In [9], S. Nakanishi generalized the definition of Henstock-Kurzweil integral to functions with values in (UCs-N) spaces, and pointed out that the Saks-Henstock lemma holds for the case when the (UCs-N) spaces are nuclear Hilbertian (UCs-N) spaces, which include the spaces S, S', D and D' occurring in distribution theory of L. Schwartz as typical spaces. In [12], L. I. Paredes and T. S. Chew studied a controlled convergence theorem for Banach space valued HL integrals. The purpose of this paper is to study a controlled convergence theorem for Henstock-Kurzweil integrals of functions taking values in nuclear Hilbertian (UCs-N) spaces.

In [1], S. S. Cao studied the Henstock-Kurzweil integral for Banach space valued functions, and pointed out that the Saks-Henstock lemma holds for finite dimensional Banach space valued functions, but it does not always hold for the case of infinite dimension, and introduced a definition of HL integrability. In [9], S. Nakanishi generalized the definition of Henstock-Kurzweil integral to functions taking values in (UCs-N) spaces, and pointed out that the Saks-Henstock lemma holds for the case when the (UCs-N) spaces are nuclear Hilbertian (UCs-N) spaces, which include the spaces S, S', D and D' occurring in distribution theory of L. Schwartz as typical spaces (see [5-11]). In [12], L. I. Paredes and T. S. Chew studied a controlled convergence theorem for Banach space valued HL integrals. The purpose of this paper is to study a controlled convergence theorem for Henstock-Kurzweil integrals of functions taking values in nuclear Hilbertian (UCs-N) spaces.

1. Preliminaries.
Throughout this paper, “vector space” means a vector space over the field of real numbers, and we denote the set of all non-negative integers by $N = \{0, 1, 2, \cdots \}$.

First, according to Nakanishi, we recall the definitions of (UCs-N) spaces ([11, pp.1-3]) and $H-K$ integrals ([9, p.320 and p.327]):

(1.1) (UCs-N) spaces. Let X be a vector space, and let $(X_\alpha, \{p^\alpha_n\}_{n=0}^{\infty}) (\alpha \in \Xi)$ be a family of vector subspaces X_α of X such that a sequence of semi-norms $\{p^\alpha_n\}_{n=0}^{\infty}$ is defined on X_α for each $\alpha \in \Xi$. Suppose that they satisfy the following conditions (I)-(V):

(I) $\bigcup_{\alpha \in \Xi} X_\alpha = X$.

(II) Ξ is an upward directed set with the ordering \leq.

(III) $\alpha \leq \beta$ if and only if $X_\alpha \subset X_\beta$.

(IV) For each $\alpha \in \Xi$, $p^\alpha_0(x) \leq p^\alpha_1(x) \leq \cdots$ for every $x \in X_\alpha$.

2000 Mathematics Subject Classification. 28B05, 26A39, 46G10.

Key words and phrases. controlled convergence, vector valued integral, Henstock-Kurzweil integral, nuclear Hilbertian (UCs-N) space.
(V) If \(\alpha \leq \beta \), then \(p_n^\alpha(x) \geq p_n^\beta(x) \) for every \(x \in X_\alpha \) and every \(n \in N \).

In the space \(X \) mentioned in the above, the notion concerned with "convergence" is defined only for the countable sequence of points as follows.

(C1) A sequence \(\{x_i\} \) is said to be convergent to \(x \) in \(X \) if and only if there exists an \(\alpha \in \Xi \) such that \(x_i(i = 1, 2, \ldots) \) and \(x \) are contained in \(X_\alpha \) and the sequence is convergent to \(x \) in the space \(X_\alpha \) topologized by \(\{p_n^\alpha\}_{n=0}^\infty \).

(C2) A sequence \(\{x_i\} \) is said to be a Cauchy sequence in \(X \) if and only if there exists an \(\alpha \in \Xi \) such that \(x_i(i = 1, 2, \ldots) \) are contained in \(X_\alpha \) and the sequence is a Cauchy sequence in the space \(X_\alpha \) topologized by \(\{p_n^\alpha\}_{n=0}^\infty \).

(C3) The space \(X \) is said to be separated if \(x = y \) whenever \(\lim x_i = x \) and \(\lim x_i = y \).

By (C1) and (C2), we see that the space \(X \) is separated if and only if for every \(\alpha \in \Xi \), the space \(X_\alpha \) topologized by \(\{p_n^\alpha\}_{n=0}^\infty \) is separated.

If \(X \) is a vector space endowed with \((X_\alpha, \{p_n^\alpha\}_{n=0}^\infty)(\alpha \in \Xi) \) satisfying (I)-(V) and if, on \(X \), convergence, Cauchy sequence and separation axiom are defined by (C1), (C2) and (C3), respectively, then the space \(X \) is called a (UCs-N) space with component spaces \((X_\alpha, \{p_n^\alpha\}) \) \((\alpha \in \Xi) \).

In particular, when \(\Xi \) is a set consisting of a single element, say \(\alpha \), and \(p_0^\alpha(x) \leq p_n^\alpha(x) \leq \cdots \) for every \(x \in X \), the space \(X \) is called a (Cs-N) space and denoted by \((X, \{p_n^\alpha\}) \).

(1.2) \(H-K \) integrals.

Two intervals are called non-overlapping if there are no common inner points. Let \(\delta \) be a positive function defined on \([a, b]\), and let \(P = \{(c_i, d_i) : i = 1, 2, \ldots, h\} \) be a finite collection of interval-point pairs, where \([c_1, d_1], \ldots, [c_h, d_h]\) are non-overlapping intervals and \(\xi_1, \ldots, \xi_h \) are real numbers. We say that \(P \) is a \(\delta \)-fine Perron partition (abbr. \(P \)-partition) in \([a, b]\) if \(\cup_{i=1}^h [c_i, d_i] \subset [a, b] \) and \(\xi_i \in [c_i, d_i] \subset (\xi_i - \delta(\xi_i), \xi_i + \delta(\xi_i)) \) for \(i = 1, 2, \ldots, h \); if, in addition, \(\cup_{i=1}^h [c_i, d_i] = [a, b] \), we say that \(P \) is a \(\delta \)-fine \(P \)-partition of \([a, b]\).

Definition 1.1. Let \((X, p)\) be a normed space endowed with a norm \(p \) and let \(f \) be an \(X \)-valued function defined on \([a, b]\). The function \(f \) is said to be Henstock-Kurzweil (abbr. \(H-K \)) integrable to a vector \(z \in X \) on \([a, b]\) if for given \(\varepsilon > 0 \) there is a positive function \(\delta_\varepsilon \) on \([a, b]\) such that for any \(\delta \)-fine \(P \)-partition \(P = \{[u_i, v_i], \xi_i \} : i = 1, 2, \ldots, h \} \) of \([a, b]\), we have

\[
p \left(\sum_{i=1}^h f(\xi_i)(v_i - u_i) - z \right) < \varepsilon,
\]
or alternatively,

\[
p \left(\sum_{P} f(\xi)(v - u) - z \right) < \varepsilon,
\]

where \(([u, v], \xi)\) denotes a typical interval-point pair in \(P \) with \(\xi \in [u, v] \subset (\xi - \delta_\varepsilon(\xi), \xi + \delta_\varepsilon(\xi)) \).

It is easy to see that the vector \(z \) is uniquely determined. The integral of \(f \) on \([a, b]\) is given by the vector \(z \), and it is written \(\int_a^b f(t) dt \). The function \(f \) is said to be \(H-K \) integrable on a set \(A \subset [a, b] \) if \(A \) is a Lebesgue measurable subset of \([a, b]\) and the function \(\chi_A f \) is \(H-K \) integrable on \([a, b]\), where \(\chi_A \) is the characteristic function of \(A \).

Let \(f \) be an \(X \)-valued \(H-K \) integrable function defined on \([a, b]\). Then, \(f \) is also \(H-K \) integrable on any subinterval \([c, d]\) of \([a, b]\). The primitive of \(f \) is the function \(F \) such that \(F(x) = \int_a^x f(t) dt \) for each \(x \in [a, b] \) and \(F(a) = 0 \). We say that the Saks-Henstock Lemma holds for \(f \), if, given \(\varepsilon > 0 \), there is a positive function \(\delta_\varepsilon \) on \([a, b]\) such that for any \(\delta_\varepsilon \)-fine
P-partition \(\{(c_i, d_i], \xi_i) : i = 1, 2, \ldots, h \} \) in \([a, b]\) we have

\[
\sum_{i=1}^{h} p(f(\xi_i))(d_i - c_i) - (F(d_i) - F(c_i)) < \varepsilon.
\]

Definition 1.2. Let \((X, \{p_n\})\) be a separated \((Cs-N)\) space. An \(X\)-valued function \(f\) defined on \([a, b]\) is said to be \(H-K\) integrable to a vector \(z \in X\) on \([a, b]\) if for every \(n \in N\) there is a positive function \(\delta_n(\xi)\) on \([a, b]\) such that for any \(\delta_n\)-fine P-partition \(P = \{(u, v)\}\) of \([a, b]\), we have

\[
p_n \left(\sum_{p} f(\xi)(v - u) - z \right) < 1/2^n,
\]

It is easy to see that the vector \(z\) is uniquely determined. The definitions of the integral \(\int_{a}^{b} f(t)dt\) and the primitive of \(f\) are similar to the normed space valued case.

Let \(X\) be a \((Cs-N)\) space \((X, \{p_n\})\). Put \(N(n) = \{x \in X : p_n(x) = 0\}\). Then, the quotient space \(X/N(n)\) is a normed space. We denote the element of the quotient space with \(x \in X\) as a representative by \(\{x\}_n\). We denote the completion of the normed space \(X/N(n)\) by \((\hat{X}_n, \hat{p}_n)\), where \(\hat{p}_n\) denotes the norm on \(\hat{X}_n\). In particular, we denote the element of \(\hat{X}_n\) with a Cauchy sequence \(\{(x_n, [x]_n, \ldots) : x \in X\}\) as a representative by \(\{[x]_n\}^\wedge\). For an \(X\)-valued function \(f\), we define \(\hat{X}_n\)-valued function \(\hat{f}_n\) by \(\hat{f}_n(t) = \{[f(t)]_n\}^\wedge\). (see [11, p.8]).

Then, the following proposition holds from [11, Proposition 3].

Proposition 1.3. Let \((X, \{p_n\})\) be a separated complete \((Cs-N)\) space, and \(f\) an \(X\)-valued function. Then, the function \(f\) is \(H-K\) integrable on \([a, b]\) as an \((X, \{p_n\})\)-valued function if and only if for every \(n \in N\), the function \(\hat{f}_n\) is \(H-K\) integrable on \([a, b]\) as an \((\hat{X}_n, \hat{p}_n)\)-valued function. In this case, \(\int_{a}^{b} \hat{f}_n(t)dt = \{\int_{a}^{b} [f(t)]_n dt\}^\wedge\) for every \(n \in N\).

Definition 1.4. Let \(X\) be a separated \((UCs-N)\) space with component spaces \((X_\alpha, \{p_n^\alpha\})\) \((\alpha \in \Xi)\). An \(X\)-valued function \(f\) defined on \([a, b]\) is said to be \(H-K\) integrable to a vector \(z \in X\) on \([a, b]\) if there is a component space \(X_\alpha\) such that:

- (1) The image of \([a, b]\) by \(f\) is contained in \(X_\alpha\) and \(z \in X_\alpha\);
- (2) \(f\) is \(H-K\) integrable to \(z\) on \([a, b]\) as an \((X_\alpha, \{p_n^\alpha\})\)-valued function.

If it is necessary to indicate such an \(X_\alpha\) explicitly, for convenience we will say that \(f\) is \(H-K\) integrable\((X_\alpha)\) to \(z\) on \([a, b]\). By [10, (0.13)] the vector \(z\) is determined uniquely independently of the choice of \(X_\alpha\). The definitions of the integral and the primitive are similar to the normed space valued case.

Next, according to Paredes and Chew([12]), we recall the controlled convergence theorem.

1.3 HL integrals and the controlled convergence theorem.

An interval function in \([a, b]\) means a function defined on the family of all subintervals of \([a, b]\). An interval function \(F\) in \([a, b]\) is called finitely additive if \(F(I_1 \cup I_2) = F(I_1) + F(I_2)\) for any pair of non-overlapping intervals \(I_1\) and \(I_2\) in \([a, b]\) whose union is an interval(see [14, p.61]). Let \(F\) be a function defined on \([a, b]\). Then \(F\) can be treated as a function of intervals by defining \(F([u, v]) = F(v) - F(u)\).
Definition 1.5. (cf. [1]) Let \((X, p)\) be a Banach space with a norm \(p\). An \(X\)-valued function \(f\) defined on \([a, b]\) is said to be HL integrable on \([a, b]\) if there is an \(X\)-valued interval function \(F\) in \([a, b]\) which is finitely additive and having the following property: for given \(\varepsilon > 0\) there is a positive function \(\delta_\varepsilon\) on \([a, b]\) such that for any \(\delta_\varepsilon\)-fine \(P\)-partition \(P = \{(\xi, [u, v])\}\) of \([a, b]\) we have

\[
\sum_P p(f(\xi)(v - u) - F([u, v])) < \varepsilon.
\]

It is easy to see that the vector \(F([a, b])\) is uniquely determined. The HL integral of \(f\) on \([a, b]\) is given by the vector \(F([a, b])\), and it is denoted by \((HL) \int_a^b f(t)dt\). Setting \(F(t) = F([a, t])\) when \(t \in (a, b]\), and \(F(a) = 0\), the function \(F\) is called the HL-primitive of \(f\) on \([a, b]\), or simply the primitive.

Definition 1.6. (cf. [4]) Let \((X, p)\) be a normed space and let \(F\) be an \(X\)-valued function defined on \([a, b]\). Let \(E\) be a subset of \([a, b]\).

1. \(F\) is said to be absolutely continuous (abbr. AC) on \(E\) if for every \(\varepsilon > 0\) there exists an \(\eta > 0\) such that for every finite collection of non-overlapping intervals \(\{[u_i, v_i] : i = 1, 2, \cdots, h\}\) with the endpoints belonging to \(E\) and with \(\sum_{i=1}^h (v_i - u_i) < \eta\), we have

\[
\sum_{i=1}^h p(F([u_i, v_i])) < \varepsilon.
\]

2. \(F\) is said to be absolutely continuous in the restricted sense (abbr. \(AC_\varepsilon\)) on \(E\) if for every \(\varepsilon > 0\) there exists an \(\eta > 0\) such that for every finite collection of non-overlapping intervals \(\{[u_i, v_i] : i = 1, 2, \cdots, h\}\) with one of the endpoints belonging to \(E\) and with \(\sum_{i=1}^h (v_i - u_i) < \eta\), we have

\[
\sum_{i=1}^h p(F([u_i, v_i])) < \varepsilon.
\]

3. \(F\) is said to be generalized absolutely continuous (abbr. \(AC\Gamma\)) on \(E\) if \(E\) can be written as a countable union of sets on each of which \(F\) is \(AC\). \(F\) is said to be generalized absolutely continuous in the restricted sense (abbr. \(AC\Gamma_\varepsilon\)) on \(E\) if \(E\) can be written as a countable union of sets on each of which \(F\) is \(AC\Gamma_\varepsilon\).

The following statement holds from the Theorem 3.1 in [12].

Theorem 1.7 (Controlled convergence theorem). Let \((X, p)\) be a Banach space, let \(\{f_j\}\) be a sequence of \(X\)-valued functions which are HL integrable on \([a, b]\), and let \(F_j\) be the primitive of \(f_j\) for every \(j\). Suppose that:

1. \(\lim_{j \to \infty} f_j(t) = f(t)\) almost everywhere on \([a, b]\).
2. \(\{F_j\}\) is \(AC\Gamma\) on \([a, b]\) uniformly in \(j\), i.e., \([a, b]\) is the union of a sequence \(\{E_s\}\) of closed sets such that \(\{F_j\}\) is \(AC\Gamma_\varepsilon\) on each \(E_s\) uniformly in \(j\).
3. \(\{F_j\}\) converges uniformly on \([a, b]\).

Then, \(f\) is also HL integrable on \([a, b]\) and

\[
\lim_{j \to \infty} (HL) \int_a^b f_j(t)dt = (HL) \int_a^b f(t)dt.
\]
2. Controlled convergence theorem for H-K integrals of functions with values in Hilbert spaces.

Throughout this section, H_1 and H_2 are Hilbert spaces and T is a nuclear operator of H_1 into H_2.

The following lemma holds from [10, (0.7), and Lemmas 1, 2 and 9].

Lemma 2.1. Let f be an H_1-valued function defined on $[a, b]$. If f is H-K integrable on $[a, b]$ and F is the primitive of f, then Tf has the following properties as an H_2-valued function.

1. Tf is measurable on $[a, b]$.
2. Tf is H-K integrable on $[a, b]$, and $\int_a^b Tf \, dt = T\int_a^b f \, dt$.
3. TF is the primitive of Tf.
5. TF is continuous on $[a, b]$.

Let $\{f_j\}$ be a sequence of H_1-valued functions which are H-K integrable on $[a, b]$, and F_j the primitive of f_j for every j. By Lemma 2.1, for every j, Tf_j is H-K integrable on $[a, b]$, TF_j is the primitive of Tf_j, and Saks-Henstock Lemma holds for Tf_j. Hence $\{Tf_j\}$ is a sequence of H_2-valued functions which are HL integrable on $[a, b]$. Therefore, the following statement holds from Theorem 1.7.

Theorem 2.2 (Controlled convergence theorem). Let $\{f_j\}$ be a sequence of H_1-valued functions which are H-K integrable on $[a, b]$

1. $\lim_{j \to \infty} Tf_j(t) = f(t)$ in H_2 almost everywhere on $[a, b]$.
2. $\{TF_j\}$ is ACG$_*$ on $[a, b]$ uniformly in j.
3. $\{TF_j\}$ converges uniformly on $[a, b]$.

Then, f is also H-K integrable on $[a, b]$ and

$$\lim_{j \to \infty} \int_a^b Tf_j(t) \, dt = \int_a^b f(t) \, dt \quad \text{in } H_2.$$

3. Generalized AC$_*$ functions with values in (UCs-N) spaces.

Definition 3.1. Let $(X, \{p_n\})$ be a (Cs-N) space and let F be an X-valued function defined on $[a, b]$ and let E be a subset of $[a, b]$.

1. F is said to be AC on E if for every $n \in N$ there exists an $\eta_n > 0$ such that for every finite collection of non-overlapping intervals $\{[u_i, v_i] : i = 1, 2, \ldots, h\}$ with the endpoints belonging to E and with $\sum_{i=1}^h (v_i - u_i) < \eta_n$, we have

$$\sum_{i=1}^h p_n(F([u_i, v_i])) < 1/2^n.$$

2. F is said to be AC$_*$ on E if for every $n \in N$ there exists an $\eta_n > 0$ such that for every finite collection of non-overlapping intervals $\{[u_i, v_i] : i = 1, 2, \ldots, h\}$ with one of the endpoints belonging to E and with $\sum_{i=1}^h (v_i - u_i) < \eta_n$, we have

$$\sum_{i=1}^h p_n(F([u_i, v_i])) < 1/2^n.$$

3. F is said to be ACG(resp. ACG$_*$) on E if E can be written as a countable union of sets on each of which F is AC(resp. AC$_*$).
The proofs of the next two propositions are essentially similar to the real-valued case (see [4] or [3]).

Proposition 3.2. Let \(X \) be a separated complete (Cs-N) space. Let \(E \) be a closed subset of \([a, b]\) and let \((a, b) \setminus E\) be the union of \((a_k, b_k)\) for \(k = 1, 2, \ldots\). Suppose that an \(X \)-valued function \(F \) is continuous on \([a, b]\). Then the following statements are equivalent:

1. \(F \) is \(AC_\ast \) on \(E \).
2. \(F \) is \(AC \) on \(E \) and \(\sum_{k=1}^{\infty} \omega_k(F; [a_k, b_k]) < \infty \) for every \(n \in \mathbb{N} \).
3. For every \(n \in \mathbb{N} \) there exists an \(\eta_n > 0 \) such that for every finite collection \([u_i, v_i] : i = 1, 2, \ldots, h\) of non-overlapping intervals in \([a, b]\) with the endpoints belonging to \(E \) and with \(\sum_{i=1}^{h} (v_i - u_i) < \eta_n \), we have

\[
\sum_{i=1}^{h} \omega_n(F; [u_i, v_i]) < 1/2^n
\]

where \(\omega_n(F; [u, v]) = \sup \{ p_n (F(x) - F(y)) : x, y \in [u, v] \} \).

Proposition 3.3. Let \(X \) be a separated complete (Cs-N) space. Let \(E \) be a subset of \([a, b]\). If an \(X \)-valued function \(F \) is \(AC_\ast \) on \(E \) and continuous on \([a, b]\), then \(F \) is \(AC_\ast \) on \(\overline{E} \), where \(\overline{E} \) is the closure of \(E \).

Definition 3.4. Let \(X \) be a (UCs-N) space with component spaces \((X_\alpha, \{p_\alpha^n\}) (\alpha \in \Xi)\). Let \(F \) be an \(X \)-valued function defined on \([a, b]\) and let \(E \) be a subset of \([a, b]\).

\(F \) is said to be \(AC \) (resp. \(AC_\ast \), \(ACG \), \(ACG_\ast \)) on \(E \) if there is a component space \((X_\alpha, \{p^n_\alpha\})\) such that the image of \([a, b]\) by \(F \) is contained in \(X_\alpha \) and \(F \) is \(AC \) (resp. \(AC_\ast \), \(ACG \), \(ACG_\ast \)) on \(E \) as an \((X_\alpha, \{p^n_\alpha\})\)-valued function.

Proposition 3.5. Let \(X \) be a separated (UCs-N) space with complete component spaces \((X_\alpha, \{p^n_\alpha\}) (\alpha \in \Xi)\). Let \(E \) be a closed subset of \([a, b]\) and let \((a, b) \setminus E\) be the union of \((a_k, b_k)\) for \(k = 1, 2, \ldots\). Suppose that an \(X \)-valued function \(F \) defined on \([a, b]\) is continuous on \([a, b]\). Then the following statements are equivalent:

1. \(F \) is \(AC_\ast \) on \(E \).
2. \(F \) is \(AC \) on \(E \) and there exists a \(\beta \in \Xi \) such that \(\sum_{k=1}^{\infty} \omega_k(F; [a_k, b_k]) < \infty \) for every \(n \in \mathbb{N} \), where \(\omega_k(F; [u, v]) = \sup \{ p_k (F(x) - F(y)) : x, y \in [u, v] \} \).
3. There is a component space \(X_\beta \) such that the image of \([a, b]\) by \(F \) is contained in \(X_\beta \) and for every \(n \in \mathbb{N} \) there exists an \(\eta_n > 0 \) such that for every finite collection \([u_i, v_i] : i = 1, 2, \ldots, h\) of non-overlapping intervals in \([a, b]\) with the endpoints belonging to \(E \) and with \(\sum_{i=1}^{h} (v_i - u_i) < \eta_n \), we have

\[
\sum_{i=1}^{h} \omega_n(F; [u_i, v_i]) < 1/2^n
\]

Proof. (1) \(\Rightarrow \) (2) : Since \(F \) is \(AC_\ast \) on \(E \), there is a component space \((X_\beta, \{p_\beta^n\})\) such that the image of \([a, b]\) by \(F \) is contained in \(X_\beta \) and \(F \) is \(AC_\ast \) on \(E \) as an \((X_\beta, \{p^n_\beta\})\)-valued function. Hence, by Proposition 3.2, \(F \) is \(AC \) on \(E \) as an \((X_\beta, \{p^n_\beta\})\)-valued function and \(\sum_{k=1}^{\infty} \omega_k(F; [a_k, b_k]) < \infty \) for every \(n \in \mathbb{N} \).

(2) \(\Rightarrow \) (3) : Let \(F \) be \(AC \) on \(E \) and there exists a \(\beta \in \Xi \) such that \(\sum_{k=1}^{\infty} \omega_k(F; [a_k, b_k]) < \infty \) for every \(n \in \mathbb{N} \). Since \(F \) is \(AC \) on \(E \), there is a component space \((X_\gamma, \{p^n_\gamma\})\) such
that the image of $[a,b]$ by F is contained in X_γ and F is AC on E as an $(X_\gamma, \{p_\alpha^n\})$-valued function. By (1.1) (I), choose an $\alpha \in \Xi$ such that $\beta \leq \alpha$ and $\gamma \leq \alpha$. Then, by (1.1) (III) and (V), $X_\gamma \subset X_\alpha$ and F is AC on E as an $(X_\alpha, \{p_\alpha^n\})$-valued function, and
\[\sum_{k=1}^{\infty} \omega_n^\alpha(F; [a_k, b_k]) \leq \sum_{k=1}^{\infty} \omega_n^\beta(F; [a_k, b_k]) < \infty \]
for every $n \in \mathbb{N}$. Hence, (3) holds by Proposition 3.2.

(3) \Rightarrow (1) : By Proposition 3.2, it is clear.

Proposition 3.6. Let X be a separated (UCs-N) space with complete component spaces $(X_\alpha, \{p_\alpha^n\}) (\alpha \in \Xi)$ and let E be a subset of $[a,b]$. If an X-valued function F is AC_α on E and continuous on $[a,b]$, then F is AC_α on \overline{E}.

Proof. Since an X-valued function F is AC_α on E, by definition, there is a component space $(X_\alpha, \{p_\alpha^n\})$ such that the image of $[a,b]$ by F is contained in X_α and F is AC_α on E as an $(X_\alpha, \{p_\alpha^n\})$-valued function. Hence, by Proposition 3.3, F is AC_α on \overline{E} as an $(X_\alpha, \{p_\alpha^n\})$-valued function. Thus, F is AC_α on \overline{E} as an X-valued function.

4. Controlled convergence theorem for H-K integrals of functions with values in nuclear Hilbertian (UCs-N) spaces.

According to Nakanishi [11, pp.5-6], we recall the definition of nuclear Hilbertian (UCs-N) spaces:

Let X be a separated (UCs-N) space with complete component spaces $(X_\alpha, \{p_\alpha^n\}) (\alpha \in \Xi)$ such that, on each component space $(X_\alpha, \{p_\alpha^n\})$, for every $n \in \mathbb{N}$ there is defined a positive hermitian form $(\ ,)_n^\alpha$ and p_α^n is the semi-norm associated with $(\ ,)_n^\alpha$.

Put $N(\alpha, n) = \{ x \in X_\alpha : p_\alpha^n(x) = 0 \}$ and consider the quotient space $X_\alpha/N(\alpha, n)$. Then, we can regard $(\ ,)_n^\alpha$ as a nondegenerate positive hermitian form on $X_\alpha/N(\alpha, n)$, and therefore the quotient space $X_\alpha/N(\alpha, n)$, denoted by X^α_n, can be considered to be a prehilbert space with the scalar product $(\ ,)_n^\alpha$. We denote the element of X^α_n having $x \in X_\alpha$ as a representative by $[x]_n^\alpha$.

Let $\alpha \leq \beta$ and $m \geq n$. Since X is a (UCs-N) space, we have $X_\alpha \subset X_\beta$ and $p_\alpha^m(x) \geq p_\beta^m(x)$ for $x \in X_\alpha$. We denote the completion of prehilbert spaces X^α_m and X^β_m with respect to p_α^m and p_β^m by \hat{X}^α_m and \hat{X}^β_m, respectively. If $\{[x]_m^\alpha\}_{i=1}^{\infty}$ is a Cauchy sequence in X^α_m, then $\{[x]_m^\beta\}_{i=1}^{\infty}$ is a Cauchy sequence in X^β_m. Hence, the element of \hat{X}^β_m having the Cauchy sequence $\{[x]_m^\beta\}_{i=1}^{\infty}$ as a representative is uniquely determined by the element of \hat{X}^α_m having the Cauchy sequence $\{[x]_m^\alpha\}_{i=1}^{\infty}$ as a representative. We denote the correspondence by \hat{T}^α_m. Then, \hat{T}^α_m is a continuous linear mapping of \hat{X}^α_m into \hat{X}^β_m such that

\[\hat{p}_m^\alpha(\hat{x}_m^\alpha) \geq \hat{p}_m^\beta(\hat{T}^\alpha_m(\hat{x}_m^\alpha)) \]

for $\hat{x}_m^\alpha \in \hat{X}^\alpha_m$,

where \hat{p}_m^α and \hat{p}_m^β are the norms associated with the scalar products on \hat{X}^α_m and \hat{X}^β_m, respectively.

Now, suppose that, for every $\alpha \in \Xi$, corresponding to α we can find

(i) a β and two increasing sequences of non-negative integers $\{m(0) < m(1) < \cdots \}$ and

{\{n(0) < n(1) < \cdots \}} such that:

(4.1) $\beta \geq \alpha$,

(4.2) $m(i) \geq n(i)$ for every $i \in \mathbb{N}$, and

(4.3) $\hat{T}^\alpha_{\beta, n(i)}$ is nuclear for every $i \in \mathbb{N}$, where $\hat{T}^\alpha_{\beta, n(i)}$ is the continuous linear mapping of $X^\alpha_{m(i)}$ into $\hat{X}^\beta_{n(i)}$ defined in the above.
Then we call such a space X a nuclear Hilbertian (UCs-N) space with component spaces $(X_\alpha, \{p^\alpha_n\})(\alpha \in \Xi)$.

Let X be a nuclear Hilbertian (UCs-N) space with component spaces $(X_\alpha, \{p^\alpha_n\})(\alpha \in \Xi)$. We denote the element of X^α_n with a Cauchy sequence $\{x^\alpha_n, [x^\alpha_n]_\alpha, \cdots\} (x \in X_\alpha)$ as a representative by $\{[x^\alpha_n]\}^\wedge$. For an X^α_n-valued function f defined on $[a, b]$, we define an X^α_n-valued function f^α_n by $f^\alpha_n(t) = \{[f(t)]^\alpha_n\}^\wedge$.

Now, we obtain the following convergence theorem.

Theorem 4.1 (Controlled convergence theorem). Let X be a nuclear Hilbertian (UCs-N) space with component spaces $(X_\alpha, \{p^\alpha_n\})(\alpha \in \Xi)$. Let $\{f_j\}$ be a sequence of X^α_n-valued functions which are H-K integrable on $(X_\alpha, \{p^\alpha_n\})$ almost everywhere on $[a, b]$. Suppose that there is a β such that:

1) The image of $[a, b]$ by f_j is contained in X_β for every j, and $\lim_{j \to \infty} f_j(t) = f(t)$ in $(X_\beta, \{p^\beta_n\})$ almost everywhere on $[a, b]$.

2) $\{F_j\}$ is ACG* on $[a, b]$ uniformly in j as $(X_\beta, \{p^\beta_n\})$-valued functions.

3) $\{F_j\}$ converges uniformly to F on $[a, b]$ as $(X_\beta, \{p^\beta_n\})$-valued functions.

Then, f is H-K integrable on $[a, b]$ and

$$\lim_{j \to \infty} \int_a^b f_j(t)dt = \int_a^b f(t)dt \quad \text{in } X.$$

Proof. In the theorem we can suppose that β is the β associated with α by (†). In addition to β, take $\{m(i)\}$ and $\{n(i)\}$ associated with α by (†), i.e., for α, we can find a β and two increasing sequences of non-negative integers $\{m(0) < m(1) < \cdots\}$ and $\{n(0) < n(1) < \cdots\}$ so that $\beta \geq \alpha$, $m(i) \geq n(i)$ for every $i \in N$, and $\tilde{F}^\alpha_{\beta, m(i)}$ is nuclear for every $i \in N$.

Given $n \in N$, choose an $i \in N$ with $n \leq n(i)$. Then, since each f_j is H-K integrable on $[a, b]$ as an $(X_\alpha, \{p^\alpha_n\})$-valued function, by Proposition 1.3 $(\hat{f}_j)_{m(i)}^\alpha$ is H-K integrable on $[a, b]$ as an $(\hat{X}^\alpha_m, \hat{p}^\alpha_n)$-valued function and $(\hat{F}_j)_{m(i)}^\alpha$ is the primitive of $(\hat{f}_j)_{m(i)}^\alpha$ for every j.

From the assumptions (1), (2) and (3), it is easy to see that the following three conditions hold:

1) $\lim_{j \to \infty} (\hat{f}_j)_{m(i)}^\beta(t) = \hat{f}^\beta_{m(i)}(t)$ in $(\hat{X}^\beta_{m(i)}, \hat{p}^\beta_{m(i)})$ a.e. on $[a, b]$.

2) $\{(\hat{F}_j)_{m(i)}^\beta\}$ is ACG* on $[a, b]$ uniformly in j as $(\hat{X}^\beta_{m(i)}, \hat{p}^\beta_{m(i)})$-valued functions.

3) $\{(\hat{F}_j)_{m(i)}^\beta\}$ converges uniformly to $\hat{F}_{m(i)}^\beta$ on $[a, b]$ as $(\hat{X}^\beta_{m(i)}, \hat{p}^\beta_{m(i)})$-valued functions.

Hence, by Theorem 2.2 $\hat{f}^\beta_{m(i)}$ is H-K integrable on $[a, b]$ as an $(\hat{X}^\beta_{m(i)}, \hat{p}^\beta_{m(i)})$-valued function and

$$\lim_{j \to \infty} \int_a^b (\hat{f}_j)_{m(i)}^\beta(t)dt = \int_a^b \hat{f}_{m(i)}^\beta(t)dt \quad \text{in } (\hat{X}^\beta_{m(i)}, \hat{p}^\beta_{m(i)})$$

Therefore, $\int_a^b \hat{f}^\beta_{m(i)}(t)dt = \lim_{j \to \infty} \int_a^b (\hat{F}_j)_{m(i)}^\beta(t)dt = \int_a^b \hat{F}_{m(i)}^\beta(t)dt \quad \text{in } (\hat{X}^\beta_{m(i)}, \hat{p}^\beta_{m(i)})$.

Moreover, since $n \leq n(i)$, we have

$$\int_a^b \hat{f}^\beta_n(t)dt = \hat{F}^\beta_n([a, b]) \quad \text{in } (\hat{X}^\beta_n, \hat{p}^\beta_n).$$
Consequently, by Proposition 1.3 \(f \) is \(H-K \) integrable \((X_{\beta})\) and
\[
\int_a^b f(t)dt = F([a, b]) \quad \text{in} \quad (X_{\beta}, \{p^\alpha_n\}).
\]

Since the right side of this equality is \(\lim_{j \to \infty} F_j([a, b]) = \lim_{j \to \infty} \int_a^b f_j(t)dt \), we have the conclusion immediately.

Acknowledgement. The author would like to express his hearty thanks to Dr. Masako Washihara for her valuable advices.

References

Mathematics Laboratory, Sapporo Campus, Hokkaido University of Education, 5-3-1 Ain- osato, Kita-ku, Sapporo 002-8502, JAPAN