MULTIPLIERS ON SECOND DUAL ALGEBRAS OF WEIGHTED GROUP ALGEBRAS

ALIREZA BAGHERI SALEC AND ABDOLHAMID RIAZI

Received May 21, 2005; revised June 26, 2005

ABSTRACT. Let G be a locally compact group. In this paper we show by an example that compactness of G is not necessarily equivalent to the existence of a non-zero compact (or weakly compact) multiplier on the second dual of weighted group algebra $L^1(G, \omega)$.

Let G be a locally compact group with a fixed left Haar measure λ . A weight function ω on G is a strictly positive sub-additive λ -measurable function on G. The weighted group algebra $L^1(G, \omega)$ is the set of all λ -measurable functions f such that:

$$\parallel f \parallel_{1,\omega} = \int_{G} |f|(x)\omega(x)d\lambda(x) < \infty.$$

Let also

 $L^{\infty}(G,\omega) = \{f : f \text{ is } \lambda - measurable \text{ and } \| f \|_{\infty,\omega} = \| f/\omega \|_{\infty} < \infty \}.$ Then $(L^{1}(G,\omega), \| . \|_{1,\omega})$ and $(L^{\infty}(G,\omega), \| . \|_{\infty,\omega})$ are Banach spaces and $L^{\infty}(G,\omega)$ is the dual of $L^{1}(G,\omega)$ by the pairing,

$$< f,g> = \int_G f(x)g(x)d\lambda(x) \quad (f\in L^\infty(G,\omega) \quad , \quad g\in L^1(G,\omega)).$$

A.T. Lau and F. Gharamani proved that G is compact if and only if there is a compact (or weakly compact) left multiplier T on $L^1(G)^{**}$ with $< T(n), 1 \ge 0$ for some $n \in L^1(G)^{**}$ [3,4]. Recently V. Losert proved that G is compact if and only if there is a $m \in M(G)^{**}$ such that $n \mapsto mn$ is weakly compact on $M(G)^{**}$ [7]. The last statement is equivalent to the existence a compact (or weakly compact) left multiplier on $M(G)^{**}$ or $L^1(G)^{**}$. In this paper we give a counter example for this equivalence in weighted group algebras. We recall that a Banach algebra A is Arens regular if the first and second Arens products are coincide on A^{**} , or equivalently left multipliers are *weak*^{*} continuous on A^{**} (see [2] for example). So also if A is commutative, then A^{**} is commutative under either Arens product if and only if A is Arens regular [2, proposition 1].

Let G be a abelian group and ω be a weight on G with $\omega(s) \ge 1(s \in G)$, such that $\ell^1(G, \omega)$ be Arens regular and $\ell^{\infty}(G, \omega)$ has a topological left invariant mean, such as m. Let . be the first Arens product on $\ell^1(G, \omega)^{**}$ and \diamond be the first Arens product on $\ell^1(G, \omega)^{***}$ where $\ell^{\infty}(G, \omega)$ is considered with pointwise multiplication, and define the maps $\Phi : \ell^1(G, \omega) \longrightarrow \ell^1(G, \omega)^*$ and $\Psi : \ell^1(G, \omega)^{***} \longrightarrow \ell^1(G, \omega)^{**}$ by $\Phi(f) = 1.f$ and $\Psi(\mathcal{F}) = \mathcal{F} \diamond m$. Then for $n, p \in \ell^1(G, \omega)^{**}$ we have $\Phi^*(n) = n.1$ and $< \Phi^{**}(n), p >=<1, n ><1, p >$, because 1 is a

²⁰⁰⁰ Mathematics Subject Classification. 43A22.

Key words and phrases. multipliers, weighted group algebras, Arens regular Banach algebras, amenability.

character on $\ell^1(G, \omega)^{**}$ [1, proposition 6.12]. Now let $T = \Psi \circ \Phi^{**}$ then for $n, p \in \ell^1(G, \omega)^{**}$ and $f \in \ell^{\infty}(G, \omega)$ we have,

$$\begin{array}{lll} < T(n.p), f > & = & < \Psi \circ \Phi^{**}(n.p), f > \\ & = & < \Phi^{**}(n.p) \diamond m, f > \\ & = & < \Phi^{**}(n.p), m \diamond f > \\ & = & < 1, n.p > < 1, m \diamond f > \\ & = & < 1, n > < 1, p > < m, f > \\ & = & < 1, n > < p.m, f > \end{array}$$

on the other hands

$$\begin{array}{lll} < T(n)p, f > & = & < T(n), p.f > \\ & = & < \Psi \circ \Phi^{**}(n), p.f > \\ & = & < \Phi^{**}(n) \circ m, p.f > \\ & = & < \Phi^{**}(n), m \circ p.f > \\ & = & < 1, n > < 1, m \circ p.f > \\ & = & < 1, n > < m, 1 \circ p.f > \\ & = & < 1, n > < m, p.f > \\ & = & < 1, n > < m.p, f > \\ & = & < 1, n > < p.m, f > . \end{array}$$

Hence T is a left multiplier on $\ell^1(G, \omega)^{**}$. In addition T is weakly compact because by Arens regularity of $\ell^1(G, \omega)$, Φ is weakly compact [2, Theorem 1]. Now if $\langle m, 1 \rangle \neq 0$ we have,

$$\begin{array}{rcl} < T(m), 1 > & = & <\Psi \circ \Phi^{**}(m), 1 > \\ & = & <\Phi^{**}(m) \diamond m, 1 > \\ & = & <\Phi^{**}(m), m \diamond 1 > \\ & = & ^2 \neq 0. \end{array}$$

Similarly we have,

$$< T(m), \omega > = < m, \omega > < m, 1 > \neq 0.$$

Thus we have following proposition.

Proposition 1: Let $\ell^1(G, \omega)$ be commutative and Arens regular and $\ell^{\infty}(G, \omega)$ has a topological left invariant mean, such as m, with $< m, 1 > \neq 0$. Then $\ell^1(G, \omega)^{**}$ has a weakly compact left multiplier T, with $< T(n), \omega > \neq 0$ (or $< T(n), 1 > \neq 0$) for some $n \in \ell^1(G, \omega)^{**}$.

Let $\Omega(x,y) = \omega(xy)/\omega(x)\omega(y)$ for $x, y \in G$. Then Ω is called zero cluster if $lim_n lim_m \Omega(x_n, y_m) = 0 = lim_m lim_n \Omega(x_n, y_m)$

for all sequences $\{x_n\}$ and $\{y_n\}$ in G with distinct element, whenever both iterated limits of $\Omega(x_n, y_m)$ exists. By [8] $L^1(G, \omega)$ is Arens regular if and only if $L^1(G, \omega)^{**}$ is Arens regular if and only if G is finite or G is discrete and Ω is zero cluster. Hence we have following example by proposition 1.

Example 2: Let $\omega_{\alpha}(n) = (1 + |n|)^{\alpha}$, $(n \in \mathbb{Z}, \alpha > 0)$. Then for each $\alpha > 0$ and $G = (\mathbb{Z}, +)$, there is a weakly compact left multiplier T on $\ell^{1}(\mathbb{Z}, \omega_{\alpha})^{**}$ with $\langle T(n), \omega_{\alpha} \rangle \neq 0$

(or $< T(n), 1 \ge \neq 0$) for some $n \in \ell^1(\mathbb{Z}, \omega_\alpha)^{**}$.

Note that by [4] $L^1(G)$ is amenable if and only if there is a non-zero compact (or weakly compact) right multiplier on $L^1(G)^{**}$. Similarly if $L^1(G, \omega)$ is amenable then by [9, corollary 2] $L^1(G, \omega)$ and $L^1(G)$ are isomorphic, and hence by [4, theorem 2.1] there is a non-zero compact (or weakly compact) right multiplier on $L^1(G, \omega)^{**}$. Example 2 show that the converse is not necessarily true because ω_{α}^* is not bounded (see [6]).

References

- [1] H. G. Dales and A. T.-M. Lau, The second duals of Beurling algebras, preprint.
- [2] J. Duncan and S. A. R. Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh 84A(1979), 309-325.
- [3] F. Ghahramani and A.T. Lau, Isomorphisms and multipliers on second dual algebras of Banach algebras, Math. Proc. Cambridge Philos. Soc. 111(1992), 161-168.
- [4] F. Ghahramani and A.T. Lau, Multipliers and ideals in second conjugate algebras related to locally compact groups, J. Funct. Anal. 132(1995), 170-191.
- [5] F. Ghahramani and A.T. Lau, Multipliers and Modulus on Banach algebras related to locally compact groups, J. Funct. Anal. 150(1997), 478-497.
- [6] N. Gronbaek, Amenability of weighted convolution algebras on locally compact groups, Trans. Amer. Math. Soc. 319(1990), 765-775.
- [7] V. Losert, Weakly compact multipliers on group algebras, J. Funct. Anal. 213(2004), 466-472.
- [8] A. Rejali and H. E. Vishki, Amenability and regularity of weighted group algebras and their duals, 13th. Seminar of analysis, Isfehan University, Iran (2003).
- [9] M.C. White, Characters on weighted amenable groups, Bull. London Math. Soc. 23(1991), 375-380.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, AMIR KABIR UNIVERSITY, 424 HAFEZ AVENUE, TEHRAN 15914, IRAN.

E-mail address: a.r.bagheri_s@aut.ac.ir, riazi@aut.ac.ir