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Abstract. Let R be a ring. A right R-module M is called minimal quasi-injective
if every homomorphism from a simple submodule of M to M can be extended to
an endomorphism of M . Some characterizations and properties of minimal quasi-
injective modules are given. Some results of Nicholson and Yousif on mininjective
rings are extended to these modules. Besides, V-rings are characterized by minimal
quasi-injective modules.

A ring R is called right mininjective if every homomorphism from a simple right ideal
of R to R can be extended to an endomorphism of R. These rings were first introduced
by Harade [2], who studied the Artinian case in [2] and [3]. In their paper [5], Nicholson
and Yousif studied the general case and some particular case. The nice structure of right
mininjective rings have led us to extend this notion to modules. In this paper, we extend
the notion of mininjective rings to minimal quasi-injective modules and many properties of
mininjective rings are extended to these modules.

Throught this paper, R is an associative ring with identity and all modules are unitary
. All standard notations can be found in the text book of Anderson and Fuller[1].

1. Minimal quasi-injectivity

We start with the following definition.

Definition 1.1 A right R-module M is called minimal quasi-injective if every homomor-
phism from a simple submodule of M to M can be extended to an endomorphism of M .

Clearly, a ring R is right mininjective if and only if RR is minimal quasi-injective. Each
principally quasi-injective module [6] is minimal quasi-injective.

Theorem 1.2 Let M be a right R-module with S = end(MR). Then the following condi-
tions are equivalent:

(1) M is minimal quasi-injective;
(2) If mR is simple, where m ∈ M , then lMrR(m) = Sm;
(3) If mR is simple and rR(m) ⊆ rR(n), where m, n ∈ M and n �= 0, then Sm = Sn;
(4) If mR is simple and γ : mR → M is a homomorphism, where m ∈ M , then
γ(m) ∈ Sm;
(5) If mR is simple, where m ∈ M , then lM [aR ∩ rR(m)] = lM (a) + Sm for all a ∈ R. .

Proof. (1)⇒(2). Since SmrR(m) = 0, we always have Sm ⊆ lMrR(m). Conversely, if
n ∈ lMrR(m), then γ : mR → M is well defined by γ(mr) = nr, so let γ̂ ∈ S extend γ.
Then n = γ(m) = γ̂(m) ∈ Sm, proving (2).

(2)⇒(3). If rR(m) ⊆ rR(n) and mR is simple, n �= 0, then rR(m) = rR(n) and nR is
also simple. Hence Sm = Sn by (2).
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(3)⇒(4). It is obvious that rR(m) ⊆ rR(γ(m)), therefore γ(m) ∈ Sm by (3).
(4)⇒(1) and (5)⇒(2) are clear.
(3)⇒(5). It is always the case that lM (a) + Sm ⊆ lM [aR ∩ rR(m)]. Let x ∈ lM [aR ∩

rR(m)]. Then rR(ma) ⊆ rR(xa) (in fact, if (ma)r = 0 then ar ∈ aR∩rR(m), so (xa)r = 0).
If ma = 0, then xa = 0, so x ∈ lM (a) and (5) follows. If ma �= 0, then maR is simple, and
hence xa = sma for some s ∈ S by (3). This means that x−sm ∈ lM (a), so x ∈ lM (a)+Sm.
Thus lM [aR ∩ rR(m)] ⊆ lM (a) + Sm, and again (5) follows.

Let M be a right R-module. We call a right R-module N minimal M -injective, if for
each simple submodule K of M , every R-homomorphism γ : K → N extends to M . Clearly,
M is minimal quasi-injective if and only if M is minimal M -injective. It is easy to see that⊕n

i=1 Ni is minimal M -injective if and only if each Ni is minimal M -injective.
Our following theorem shows that min-C2 and min-C3 conditions which are weaker than

C2 and C3 conditions [4] hold for minimal quasi-injective modules.

Theorem 1.3 Let MR be a minimal quasi-injective module with S = end(MR) and let e, f
be idempotents in S.

(Min − C2) If K is a simple submodule of MR and K ∼= eM , then K = gM for some
g2 = g ∈ S.

(Min − C3) If fM is simple and eM ∩ fM = 0, then eM ⊕ fM = gM for some
g2 = g ∈ S.

Proof. (Min − C2) Let K be a simple submodule of M and let K ∼= eM . Since eM is a
summand of M and M is minimal M -injective, so eM is minimal M -injective, thus K is a
minimal M -injective simple submodule of M , and whence K is a summand of M .

(Min − C3) We have eM ⊕ fM = eM ⊕ (1 − e)fM . Clearly, (1 − e)fM ∼= fM
because fM is simple, so (1 − e)fM = hM for some h2 = h ∈ S by (Min − C2). Hence
eh = 0, g = e + h− he is an idempotent such that eg = e = ge and hg = h = gh. It follows
that eM ⊕ fM = gM .

For any module MR, soc(MR) stands for the socle of MR. For a simple submodule K of
MR, socK(MR) denotes the homogeneous component of MR generated by K.

Our next result extends Theorem 1.14 in [5].

Theorem 1.4 Let MR be a minimal quasi-injective module with S = end(MR), and let
m, n ∈ M .

(1) If mR is simple, then Sm is also simple.
(2) If nR is simple and nR ∼= mR, then Sn ∼= Sm.
(3) If mR is simple, then socmR(MR) = SmR is a simple submodule of SMR contained
in socSm(SM).
(4) soc(MR) ⊆ soc(SM).

Proof. (1) If 0 �= sm ∈ Sm, define γ : mR → smR by γ(x) = sx. Then γ is a right
R-isomorphism, and hence γ−1 extends to an endomorphism of M . Thus m = γ−1(sm) =
α(sm) for some α ∈ S, and (1) follows.

(2) Let σ : nR → mR be an isomorphism. Write σ(n) = ma, a ∈ R. Obviously rR(n) =
rR(σ(n)). As σ(n)R = mR is simple, Theorem 1.2 gives Sn = Sσ(n) = S(ma) = (Sm)a.
Now we define τ : Sm → Sn by τ(sm) = (sm)a. Then τ is a left S-isomorphism.

(3) Write T = socmR(MR). We always have SmR ⊆ T . Suppose KR ≤ MR and
σ : mR → K is an R-isomorphism. Then rR(m) = rR(σ(m)), so Sm = Sσ(m) by Theorem
1.2. Hence K = σ(m)R ⊆ SmR, so T ⊆ SmR, and thus T = SmR. Now let 0 �= SAR ≤
STR. If BR is a simple submodule of AR, then B ∼= mR. So, if XR is any submodule
of MR isomorphic to mR, let γ : B → X be an R-isomorphism. Then γ extends to an
endomorphism s of M , so X = γ(B) = s(B) ⊆ A. This means that T ⊆ A, therefore T is a
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simple submodule of SMR. Finally, for any r ∈ R, we define φr : Sm → SM by sm 
→ smr.
Then φr is a left S-homomorphism, so Smr ⊆ socSm(SM), and thus SmR ⊆ socSm(SM).

(4) This follows from (1).
Recall that a ring R is said to be a right V-ring if every simple right R-module is

injective. Our following theorem gives a new characterization of right V-rings.
For any right R-module M, E(M) denotes the injective hull of M .

Theorem 1.5 A ring R is a right V-ring if and only if every right R-module is minimal
quasi-injective.

Proof. We need only to prove the sufficiency. Let K be any simple right R-module. Since
K ⊕ E(K) is minimal quasi-injective, K is minimal K ⊕ E(K)-injective, and hence K is
minimal E(K)-injective. Therefore, K = E(K) is injective. This proves the theorem.

2.Duality

Let M be a right R-module with S = end(MR). If N is a right R-module, then homR(NR, SMR)
is a left S-module. Here, if s ∈ S and f ∈ homR(NR, SMR), the map sf is defined by
(sf)(n) = s(f(n)). We call the left S-module homR(NR, SMR) the M -dual of NR.

Lemma 2.1 Let N = nR(n ∈ N) be a cyclic module and let T = rR(n). If M is a right
R-module with S = end(MR), then homR(NR, SMR) ∼= lM (T ).

Proof. For any m ∈ lM (T ), let fm : N → M by fm(nr) = mr. Then fm is a right R-
homomorphism. Now we define σ : lM (T ) → homR(NR, SMR) by σ(m) = fm. Then σ is
a left S-isomorphism.

The next result gives an important characterization of minimal quasi-injective modules
in terms of duality.

Theorem 2.2 The following conditions are equivalent for a module MR with S = end(MR):
(1) MR is minimal quasi-injective;
(2) homR(NR,S MR) is a simple or zero left S-module for all simple right R-module N ;
(3) lM (T ) is simple or zero left S-module for all maximal right ideals T of R.

Proof. (1)⇒ (2). Let γ, δ ∈ homR(NR, SMR), where NR is simple, and assume that γ �= 0.
Then δγ−1 : γ(N) → M is a homomorphism. Since γ(N) is simple, δγ−1 can be extended
to an endomorphism α of M by (1). Thus δ = αγ, proving (2).

(2)⇒(3). Let T be a maximal right ideal. Take N = R/T, n = 1 + T . Then T = rR(n),
and lM (T ) ∼= homR(R/T, M) by Lemma 2.1. Consequently, lM (T ) is simple or zero by (2).

(3)⇒ (1). Let γ : mR → M be an R-homomorphism, where mR is simple, and let
i : mR → M be the inclusion map. Write T = rR(m). Then T is a maximal right ideal of
R, so lM (T ) ∼= homR(mR,M) by Lemma 2.1. Thus homR(mR,M) is simple, and whence
γ = βi for some β ∈ S, proving(1).

Recall that a right R-module M is called a Kasch module if every simple subquotient of
M embeds in M [6]. We call MR strongly Kasch if every simple right R-module embeds in
M . Clearly, if M is a generator, then M is Kasch if and only if M is strongly Kasch.

The following theorem gives important properties of minimal quasi-injective strongly
Kasch modules.

Theorem 2.3 Let MR be a minimal quasi-injective strongly Kasch module with S =
end(MR), and consider the map

θ : T 
−→ lM (T )

from the set of maximal right ideals T of R to the set of minimal submodules of SM .
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(1) θ is one-to-one.
(2) θ is a bijection if and only if lMrR(K) = K for all minimal submodules K of SM .

In this case θ−1 is given by K 
→ rR(K).

Proof. (1) If T is a maximal right ideal, and φ : R/T → M is a monomorphism, then
0 �= φ(1 + T ) ∈ lM (T ), and so lM (T ) �= 0. This implies that lM (T ) is simple by Theorem
2.2. Since T ⊆ rRlM (T ) �= R, we have T = rRlM (T ) because T is maximal. Now (1)
follows.

(2) Suppose θ is onto and K is a minimal submodule of SM . If K = lM (T ), where T is a
maximal right ideal of R, then lMrR(K) = lMrRlM (T ) = lM (T ) = K. Conversely, assume
that lMrR(K) = K for all minimal submodules K of SM .

Claim. If K is a minimal submodule of SM , then rR(K) is a maximal right ideal.

Proof. Let rR(K) ⊆ T , where T is a maximal right ideal. Then K = lMrR(K) ⊇ lM (T ) �= 0
by the proof of (1), so K = lM (T ) by the minimality of K. Thus rR(K) = rRlM (T ) ⊇ T ,
and whence rR(K) = T . This proves the claim.

By the claim we have a map φ given by K 
→ rR(K), which we assert is the inverse of
θ. Indeed, (φθ)(T ) = (φ(θ(T )) = rRlM (T ) = T by the calculation in (1), while (θφ)(K) =
(θ(φ(K)) = lMrR(K) = K. This completes the proof of (2).

Motivated by Theorem 2.3, we call a module MR with S = end(MR) a minannihilator
module if, for every minimal submodule K of SM , there exists a subset X ⊆ R such that
K = lM (X), equivalently, if lMrR(K) = K. Motivated by Theorem 1.4, we call a module
MR with S = end(MR) minsymmetric if mR is simple, where m ∈ M , implies that Sm is
also simple.

Theorem 2.4 The following are equivalent for a minannihilator module MR:
(1) MR is minimal quasi-injective;
(2) MR is minsymmetric;
(3) soc(MR) ⊆ soc(SM).

Proof. We have (1)⇒(2) by Theorem 1.4; (2)⇒(3) always holds.
(3)⇒(1). Given (3), let mR be simple. Then m ∈ soc(SM) by (3), so Sm contains

a simple submodule Sn, thus rR(m) ⊆ rR(n) and so rR(m) = rR(n) because rR(m) is
maximal. Since MR is a minannihilator module and Sn is simple, Sm ⊆ lMrR(Sm) =
lMrR(Sn) = Sn. It follows that Sm = lMrR(Sm) = lMrR(m), proving (1).

The proof of the implication (3)⇒(1) in Theorem 2.4 also yields the following

Corollary 2.5 If MR is a minannihilator module such that soc(SM) is essential in SM ,
where S = end(MR), then MR is minimal quasi-injective.

Finally , we give a characterization of minsymmetric modules.

Theorem 2.6 The following are equivalent for a module MR :
(1) MR is minsymmetric;
(2) If mR is simple, then lS [mR∩ker(s)] = lS(m)+Ss for all s ∈ S, where S = end(MR).

Proof. (1)⇒(2). Assume mR is simple and let s ∈ S. Clearly, lS(m)+Ss ⊆ lS [mR∩ker(s)].
If sm = 0, then mR∩ker(s) = mR, and so lS [mR∩ker(s)] = lS(mR) = lS(m) ⊆ lS(m)+Ss.
If sm �= 0, then mR ∩ ker(s) = 0, and hence lS [mR ∩ ker(s)] = S = lS(m) + Ss because
Sm is simple. Therefore (2) follows.

(2)⇒(1). Let mR be simple. If s∈lS(m), then mR ∩ ker(s) = 0, so lS(m) + Ss = S by
(2). This shows that lS(m) is maximal, proving (1).
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