A NOTE ON QUASI P-INJECTIVE MODULES

ZHANMIN ZHU* AND ZHISONG TAN**

Received April 21, 2003; revised February 11, 2005

ABSTRACT. Let R be a ring. In this note we study some properties of finitely generated quasi p-injective Kasch R-modules and show that if M_R is a finitely generated quasi p-injective Kasch module, then M/RadM is semisimple if and only if S is left finite dimensional, where $S = end(M_R)$. This generalizes the result obtained by Weimin Xue.

Throught R is an associative ring with identity and modules are unitary. A right R-module M is called quasi p-injective if every homomorphism from an M-cyclic submodule of M to M can be extended to an endomorphism of M. These modules are studied in [5] and [6]. Clearly, R is right p-injective(principally injective) if and only if R_R is quasi p-injective. Following Albu and Wisbauer [1, 2.6], a module M_R is called Kasch if any simple module in $\sigma[M]$ embeds in M. Here $\sigma[M]$ is the category consisting of all M-subgenerated right R-modules. It is easy to see that a ring R is right Kasch if and only if R_R is Kasch. In this note we study finitely generated quasi p-injective Kasch R-modules, and some properties of p-injective Kasch rings are extended to these modules.

As usual, we denote the socle and the Jacobson radical of a module N by Soc(N) and Rad(N) respectively. The Goldie dimension and the lenth of a module N are denoted by G(N) and c(N) respectively. Let M be a right R-module, let $S = end(M_R), X \subseteq M$ and $Y \subseteq S$. Then we write $l_S(X) = \{s \in S \mid sx = 0, \forall x \in X\}$ and $r_M(Y) = \{m \in M \mid ym = 0, \forall y \in Y\}$.

Lemma 1. Let M_R be a Kasch module with $S = end(M_R)$. Then $l_S(T) \neq 0$ for any maximal submodule T of M.

Proof: By hypothesis, there exists a monomorphism $\varphi : M/T \to M$. Define $\alpha : M \to M$ by $x \mapsto \varphi(x+T)$. Then $0 \neq \alpha \in S$, $\alpha T = \varphi(0) = 0$, and so $l_S(T) \neq 0$.

Our next result extends Theorem 1.2 in [2].

Theorem 2. Let M_R be a finitely generated, quasi p-injective Kasch module with $S = end(M_R)$. Then the maps

$$K \mapsto r_M(K)$$
 and $T \mapsto l_S(T)$

are mutually inverse bijections between the set of all minimal left ideals K of S and the set of all maximal submodules T of M. In particular

- (1) $l_S r_M(K) = K$ for all minimal left ideals K of S.
- (2) $r_M l_S(T) = T$ for all maximal submodules T of M.

Proof: (1) follows from [5, Theorem 2.10] because M is quasi p-injective. Observe that always $T \subseteq r_M l_S(T)$ and that $r_M l_S(T) \neq M$ by Lemma 1. Hence (2) holds by the maximality of T. The proof is completed by establishing the following claims:

Claim 1. $r_M(K)$ is a maximal submodule of M_R for all minimal left ideals K of S.

²⁰⁰⁰ Mathematics Subject Classification. 16D50,16D60,16D70.

Key words and phrases. Quasi p-injective modules; Kasch modules.

Proof. Since M is finitely generated, $r_M(K) \subseteq T$ for some maximal submodule T of M. By Lemma 1 and (1), we have $0 \neq l_S(T) \subseteq l_S r_M(K) = K$, and hence $l_S(T) = K$ by the minimality of K. Therefore, $r_M(K) = r_M l_S(T) = T$ by (2).

Claim (2). $l_S(T)$ is a minimal left ideal of S for all maximal submodules T of M.

Proof. By Lemma 1, we can choose $0 \neq a \in l_S(T)$. Then $T = r_M(a)$, and hence $l_S(T) = l_S r_M(a) = Sa$ because M is quasi p-injective. It follows that $l_S(T)$ is minimal.

Proposition 3. If M_R is a finitely generated, quasi p-injective Kasch module with $S = end(M_R)$, then

- (1) $l_S(RadM) \leq S S$,
- (2) $Soc(_SS) \leq_S S$.

Proof: (1) If $0 \neq a \in S$, choose a maximal submodule *T* of the right *R*-moudle *aM*. Since *M* is Kasch, there exists a monomorphism $f : aM/T \to M$. Define $g : aM \to M$ by g(x) = f(x + T). As *M* is quasi p-injective, g = s|aM for some $s \in S$. Take $y \in M$ such that $ay \in T$. Then $say = g(ay) = f(ay + T) \neq 0$, and thus $sa \neq 0$. If $a(RadM) \not\subseteq T$, then a(RadM) + T = aM. But a(RadM) < aM because *M* is finitely generated. It follows that T = aM, a contradiction. Hence $a(RadM) \subseteq T$. Thus, (sa)(RadM) = g(a(RadM)) = f(0) = 0, whence $0 \neq sa \in Sa \cap l_S(RadM)$. This implies that $l_S(RadM) \leq S$.

(2) Let $0 \neq a \in S$ and let $r_M(a) \subseteq T$ for some maximal submodule T of M. Since M is quasi p-injective, $Sa = l_S r_M(a) \supseteq l_S(T)$. But $l_S(T)$ is minimal, so $Soc(S) \cap Sa \neq 0$, and hence $Soc(S) \trianglelefteq S$.

Corollary 4. If R is a right p-injective Kasch ring with J = J(R), then

(1) [3, Lemma 2.3] $l_R(J) \leq R$,

(2) [2, Corollary 1.1] $Soc(_RR) \trianglelefteq_R R$.

Lemma 5. Given a right R-module M_R with $S = end(M_R)$. Let $I = l_S(X)$ for some subset X of M and let K be a left ideal of S. If $r_M(I) \subseteq r_M(K)$, then $I \supseteq l_S r_M(K)$.

Proof: If $a \in l_S r_M(K)$, then $r_M(K) \subseteq r_M(a)$, and so $a \in l_S r_M(a) \subseteq l_S r_M l_S(X) = l_S(X)$, as required.

Proposition 6. Let M_R be a finitely generated Kasch module with $S = end(M_R)$. If S is left finite dimensional, then M/RadM is semisimple.

Proof: Let $\Omega = \{I \mid 0 \neq I = l_S(X) \text{ for some } X \subseteq M\}$. Since S is left finite dimensional, so there exist some minimal members I_1, I_2, \dots, I_n in Ω such that $I = \bigoplus_{i=1}^n I_i$ is a maximal direct sum of minimal members in Ω . The proof is completed by establishing the following claims:

Claim 1. $r_M(I_i)$ is a maximal submodule of M for each i.

Proof. Since M is finitely generated and Kasch, so $r_M(I_i) \subseteq T_i = r_M l_S(T_i)$ for some maximal submodule T_i . By Lemma 5 and Lemma 1, $I_i \supseteq l_S r_M l_S(T_i) = l_S(T_i) \neq 0$, and so $I_i = l_S(T_i)$ by the minimality of I_i in Ω . Now we choose $0 \neq a_i \in l_S(T_i)$. Then $T_i = r_M(a_i)$, and thus $r_M(I_i) = r_M l_S(T_i) = r_M l_S r_M(a_i) = r_M(a_i) = T_i$.

Claim 2. $RadM = \bigcap_{i=1}^{n} r_M(I_i).$

Proof. Clearly, $RadM \subseteq \bigcap_{i=1}^{n} r_M(I_i)$. If T is a maximal submodule of M, then $l_S(T)$ is minimal in Ω . In fact, if $l_S(T) \supseteq l_S(X) \neq 0$, where $X \subseteq M$, then $T \subseteq r_M l_S(X) \neq M$. So $T = r_M l_S(X)$, and hence $l_S(T) = l_S(X)$. Thus $l_S(T) \cap I \neq 0$. Taking some $0 \neq b \in l_S(T) \cap I$, we have $T = r_M(b) \supseteq \bigcap_{i=1}^{n} r_M(I_i)$. This gives that $\bigcap_{i=1}^{n} r_M(I_i) \subseteq RadM$, and the claim follows.

Lemma 7. Given a right R-Module M_R with $S = end(M_R)$. If $K_R \leq M_R$, then ${}_{S}Hom_R(M/K, {}_{S}M_R) \cong l_S(K)$.

Proof: Let $\pi: M \to M/K$ be the natural epimorphism and define $\sigma: Hom_R(M/K, M) \to l_S(K)$ by $f \mapsto f\pi$. It is easy to see that σ is a left S-monomorphism. For any $s \in l_S(K)$, let $f_s: M/K \to M; x + K \mapsto s(x)$. Then $f_s \in Hom_R(M/K, M)$ with $\sigma(f_s) = s$, so σ is epic and hence an isomorphism.

Lemma 8. Let M be a right R-module. If M/RadM is a finitely generated none zero semisimple module, then $M/RadM \cong M/T_1 \oplus M/T_2 \oplus \cdots \oplus M/T_n$ for some maximal submodules T_1, T_2, \cdots, T_n of M.

Proof: It is obvious that M/RadM is Artinian and hence $RadM = T_1 \cap T_2 \cap \cdots \cap T_l$ for some maximal submodules T_1, T_2, \cdots, T_l . Let $\varphi : M/RadM \to \bigoplus_{i=1}^l M/T_i; x + RadM \mapsto (x + T_1, x + T_2, \cdots, x + T_l)$, then φ is a monomorphism, and so there exist some members in $\{T_1, T_2, \cdots, T_l\}$, say, T_1, T_2, \cdots, T_n such that $M/RadM \cong \bigoplus_{i=1}^n M/T_i$.

Now we give the main result of this paper.

Theorem 9. Let M_R be a finitely generated and quasi p-injective Kasch module with $S = end(M_R)$. Then M/RadM is semisimple if and only if S is left finite dimensional. In this case, $Soc(_SS) = l_S(RadM)$, and $G(_SS) = c(_SSoc(_SS)) = c(M/RadM)$.

Proof: (⇒). It is trival in case M = 0. If $M \neq 0$, then $M/RadM \neq 0$ because M is finitely generated. As M/RadM is semisimple, by Lemma 8, there exist maximal submodules T_1, T_2, \dots, T_n such that $M/RadM \cong \bigoplus_{i=1}^n M/T_i$. Hence, by Lemma 7 and Theorem 2, $l_S(RadM) \cong {}_{S}Hom_R(M/RadM, {}_{S}M_R) \cong {}_{S}Hom_R(\bigoplus_{i=1}^n M/T_i, {}_{S}M_R) \cong \bigoplus_{i=1}^n l_S(T_i)$ is semisimple. This implies that $l_S(RadM) = Soc({}_{S}S) \trianglelefteq_S S$ by Proposition 3, and therefore S is left finite dimensional and $G({}_{S}S) = n = c({}_{S}Soc({}_{S}S))$. (⇐). See Proposition 6.

Corollary 10. [7, Theorem 1] Let R be right p-injective and right Kasch. Then R is semilocal if and only if R is left finite dimensional. In this case, $Soc(_RR) = Soc(_RR)$, and $G(_RR) = c(_RSoc(_RR)) = c(\overline{R}_R)$, where $\overline{R} = R/J(R)$.

Proof: This is immediate from Theorem 9 and [4, Proposition 1.4].

Acknowledgments The authors are grateful for the useful suggestions and helps by the referee.

References

- T. Albu and R. Wisbauer, Kasch modules, in Advances in Ring Theory, S.K. Jain and S.T. Rizvi (eds.), Birkhäuser, 1997, 1-16.
- [2] W.K. Nicholson and M.F. Yousif, On a theorem of Camillo, Comm. Algebra 23(14), (1995), 5309-5314.
- [3] W.K. Nicholson and M.F. Yousif, Principally injective rings, J.Algebra 174(1995), 77-93.
- [4] W.K. Nicholson, J.K. Park and M.F. Yousif, Principally quasi-injective modules, Comm. Algebra 27(4) (1999), 1683-1693.
- [5] N.V. Sanh, K.P. Shum, S. Dhompongsa and S. Wangwai, On quasi-principally injective modules, Algebra Colloq. 6(3)(1999),269-276.
- [6] N.V. Sanh and K.P. Shum, Endomorphism rings of quasi-principally injective modules, Comm. Algebra 29(4)(2001),1437-1443.
- [7] Weimin Xue, A note on principally injective rings, Comm. Algebra 26(12)(1998), 4187-4190.

*Department of Math., Jiaxing University, Jiaxing, Zhejiang Province, 314001, China.

 $E\text{-mail}: \ zhanmin_zhu@hotmail.com$

**Department of Math., Hubei Institute for Nationalities, Enshi, Hubei Province, 445000, China.