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STABLE RANK OF THE SEMIGROUP CROSSED PRODUCTS BY
NATURAL NUMBERS
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Abstract. We estimate the stable rank of crossed products by actions of the additive
semigroups of natural numbers under certain conditions on actions. As an application
we estimate the stable rank of canonical subalgebras of the Hecke C∗-algebra of Bost
and Connes, which is isomorphic to the crossed product by the multiplicative semigroup
of natural numbers of Laca and Raeburn, and also estimate that of the crossed products
by the additive semigroups of natural numbers of Larsen and Raeburn.

1 Introduction The (topological) stable rank for C∗-algebras was introduced by Rieffel
[Rf] to study the dimension theory of C∗-algebras and the (non-stable) K-theory of C∗-
algebras (cf. [Bl] and [BP] for the real rank of C∗-algebras). As one of interesting results in
[Rf] the stable rank of the ordinary crossed products A �α Z of C∗-algebras A by actions α
of Z the group of integers by automorphisms was estimated as: sr(A �α Z) ≤ sr(A) +1 (see
[Pd] for the general theory of crossed products of C∗-algebras). On the other hand, crossed
products of C∗-algebras by semigroups have also been of great interest, and their repre-
sentation theory and structures have been investigated by Murphy [Mp1], [Mp3-6], Laca
and Raeburn [LR1-2] and some many others (cf. [A-R], [ALR], [Lc], [Sc]). In particular,
Laca and Raeburn [LR2] studied the Hecke C∗-algebra of Bost and Connes as the crossed
product by actions of the multiplicative semigroup of natural numbers (cf. [LsR] for certain
crossed products by actions of the products of the additive semigroup of natural numbers).

Under the situation given above, it should be interesting and useful to obtain the similar
stable rank estimate for the case of semigroup crossed products as the case of ordinary
crossed products. Our first motivation is in fact to estimate the stable rank of the Hecke
C∗-algebra of Bost-Connes described by Laca-Raeburn as a semigroup crossed product, and
it is found by us that existence of a left inverse of an action and its certain conditions (a
sort of right inverse of an action) are useful for calculating the stable rank of canonical
subalgebras of the Hecke C∗-algebra. As the first step we consider the case of crossed
products by the additive semigroup of natural numbers. It would be possible to generalize
this case to the case of crossed products by some general abelian or non-abelian semigroups.
In particular, it would be an interesting problem to consider the stable rank of the C∗-
algebras of semigroups (cf. Remarks 2.2.2, 2.4.1, 2.5.2 and 2.5.3 below). Refer to Sheu
[Sh], Takai and the author [ST] and [Sd1-5] for some works on the stable rank of group
C∗-algebras.

In this paper we first estimate the stable rank and connected stable rank of crossed
products of C∗-algebras by the additive semigroup N of natural numbers. We next consider
the case of crossed products by the products Nk similarly. Our technique for the proofs is
based on the Rieffel’s proof for the case of crossed products by the integers Z [Rf, Theorem
7.1]. However, there are some differences between group and semigroup cases so that we
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need to be more careful about generators in crossed products and the definition of lengths
of elements of dense parts of crossed products. Consequently, we obtain the stable rank
estimates of canonical subalgebras (certain crossed products by Nk) of the Hecke C∗-algebra
of Bost-Connes (or the semigroup crossed product of Laca-Raeburn), and obtain those of
the crossed products by Nk of Larsen and Raeburn.

Notation Let N denote the additive semigroup of all natural numbers. Let N∗ be the
multiplicative semigroup of all natural numbers. For a C∗-dynamical system (A, S, α) of a
C∗-algebra A, an abelian semigroup S and an action α of S by endomorphisms of A, its
covariant representation (π, V, H) (or (π, V ) in what follows) consists of a nondegenerate
representation π of A and an isometric representation V of S on the same Hilbert space
H such that π(αn(a)) = Vnπ(a)V ∗

n for n ∈ S and a ∈ A (the covariance of (π, V )). The
crossed product A �α S of (A, S, α) is the universal C∗-algebra generated by the universal
covariant representation (π(u), V (u), H(u)) of (A, S, α) in the sense that for any covariant
representation (π, V, H) of (A, S, α) there exists a ∗-homomorphism π × V from A �α S
to B(H) the C∗-algebra of all bounded operators on H such that π = (π × V ) ◦ π(u) and
V = (π×V )◦V (u) (compositions). Therefore, the crossed product A�α S may be assumed
to be generated by π(A) and Vn for n ∈ S if the representation π ×U of A �α S associated
with (π, V ) is faithful although existence of such faithful representations is non-trivial in
general (cf. [LR1-2]).

For a C∗-algebra A (or its unitization A+), we denote by sr(A), csr(A) the (topological)
stable rank and connected stable rank of A respectively [Rf]. By definition, for n ∈ N,
sr(A) ≤ n if and only if the set Ln(A) of all elements (aj) ∈ An with

∑n
j=1 a∗

jaj invertible
in A is dense in An, and csr(A) ≤ n if and only if Lm(A) is connected for all m ≥ n (note
that

∑n
j=1 a∗

jaj is invertible if and only if there exists (bj) ∈ An such that
∑n

j=1 bjaj is
invertible in A). If no such n ∈ N, set sr(A) = ∞ and csr(A) = ∞. See [Bl], [Pd] and [Mp2]
for some other related topics.

2 Stable rank of semigroup crossed products First of all, we check the following
conditions which are used for the stable rank estimates below (cf. [Mp6, Section 4]):

Proposition 2.1 Let (A, S, α) be a C∗-dynamical system and (π, V ) its covariant repre-
sentation in the sense of Notation. Suppose that π is faithful on A and the property of β :
V ∗

n π(a) = π(βn(a))V ∗
n for n ∈ S and a ∈ A where β is an action of S by endomorphisms of

A. Then βn is a left inverse for αn. Hence αn is injective.
In addition, if A is unital, then VnV ∗

n ∈ π(A), βn(VnV ∗
n ) is the identity and αn(A) is

the corner pnApn with pn = VnV ∗
n .

Proof. For each n ∈ S and a ∈ A, using the property of β we have

π(βn(αn(a)) = V ∗
n π(αn(a))Vn = V ∗

n Vnπ(a)V ∗
n Vn = π(a).

Since π is faithful, βn is a left inverse for αn so that αn is injective.
If A is unital, then π(αn(1)) = Vnπ(1)V ∗

n = VnV ∗
n ∈ π(A) by the covariance. Since π is

faithful, we identify π(A) with A in the following. Set pn = VnV ∗
n ∈ A. For a ∈ A,

αn(βn(pn)a) = Vnβn(pn)aV ∗
n = Vnβn(pn)V ∗

n (VnaV ∗
n )

= VnV ∗
n pn(VnaV ∗

n ) = VnaV ∗
n = αn(a).

Since αn is injective, βn(pn)a = a for all a ∈ A. Thus, βn(pn) is the identity for A. Fur-
thermore, we have αn(a) = VnaV ∗

n = VnaV ∗
n VnV ∗

n = αn(a)pn. Thus, we have pnαn(a)pn =
pnαn(a) = VnV ∗

n VnaV ∗
n = αn(a). �
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Remark 2.1.1. Conversely, if αn is injective, under the same situation as above note that

βn(αn(a))V ∗
n = aV ∗

n = V ∗
n (VnaV ∗

n ) = V ∗
n αn(a).

Thus, the action βn satisfying the property on αn(A) can be defined to be the left inverse of
αn on the restriction to αn(A), but it would be nontrivial to have βn defined on A satisfying
the property.
Remark 2.1.2. The property of β: V ∗

n π(a) = π(βn(a))V ∗
n is equivalent to the equality

π((αn◦βn)(a)) = VnV ∗
n π(a). By taking conjugation, it is also equivalent to π((αn◦βn)(a)) =

π(a)VnV ∗
n , which suggests that β is a sort of a right inverse of α. The condition VnV ∗

n ∈ π(A)
with π faithful implies that A can not be projectionless. Non-unitarity of isometries Vn is
closely related to faithfulness of its covariant representation (cf. [LR2, Proposition 1.1]).

Theorem 2.2 Let A �α N be the crossed product of a C∗-algebra A by N and (π, V ) a
covariant representation of (A, N, α) with π and π×V faithful. Suppose that there exists an
action β of N by endomorphisms of A such that V ∗

n π(a) = π(βn(a))V ∗
n for any n ∈ N and

a ∈ A. Then sr(A �α N) ≤ sr(A) + 1.
In addition, if A is unital, then csr(A �α N) ≤ sr(A) + 1. Also, if Vn for some n ∈ N is

non-unitary, then sr(A �α N) ≥ 2 and csr(A �α N) ≥ 2.

Proof. The lower estimate sr(A � N) ≥ 2 is easily deduced from that A � N contains a
non-unitary isometry Vn. In fact, if sr(A � N) = 1, then there exists an element Wn of
A � N such that WnV ∗

n = 1 for n ∈ N, which is impossible. Also, csr(A � N) = 1 means
that left invertibles of A� N are invertible (cf. [Rf, p.312]), which is impossible when A� N

contains a proper isometry.
When A is non-unital, we consider the exact sequence: 0 → A �α N → A+ �α+ N →

C � N → 0, where the extended action α+ of N on C1 of A+ is trivial. Then sr(A � N) ≤
sr(A+ � N) by [Rf, Theorem 4.4]. Note that A+ � N = A+ � Z by the covariance since α+

is trivial on C1. By [Rf, Theorem 7.1], we obtain sr(A+ � Z) ≤ sr(A) + 1. Thus we may
assume that A is unital in the following. By Proposition 2.1, we have VnV ∗

n ∈ π(A) for all
n ∈ N. We also identify A with π(A) in the following since π is faithful.

By a part of assumptions, A � N may be assumed to be generated by the linear span of
elements of the form aVxV ∗

y for x, y ∈ N∪{0} and a ∈ A, where we set V0 = 1 ∈ A. In fact,
using the property of β and the covariance of (π, V ) we have

(aVx1V
∗
y1

)(bVx2V
∗
y2

) = aVx1βy1(b)V
∗
y1

Vx2V
∗
y2

= a(Vx1βy1(b)V
∗

x1
)Vx1V

∗
y1

Vx2V
∗
y2

= (aαx1(βy1(b)))Vx1V
∗
y1

Vx2V
∗
y2

.

Moreover, when y1 < x2, V ∗
y1

Vx2 = Vx2−y1 , and when y1 > x2, V ∗
y1

Vx2 = V ∗
y1−x2

, and

(aVxV ∗
y )∗ = VyV ∗

x a∗ = Vyβx(a∗)V ∗
x = (Vyβx(a∗)V ∗

y )VyV ∗
x = αy(βx(a∗))VyV ∗

x .

Denote by B the set of all linear spans of elements of the the form aVxV ∗
y . Moreover, since

VnV ∗
n ∈ A, observe that aVxV ∗

y = (aVxV ∗
x )V ∗

y−x when y > x, and

aVxV ∗
y = aVx−y(VyV ∗

y ) = (aVx−y(VyV ∗
y )V ∗

x−y)Vx−y = aαx−y(VyV ∗
y )Vx−y

when y < z. Therefore, B is in fact equal to the set of all linear spans of elements of the
the forms aVx and bV ∗

y for a, b ∈ A.
Define the length of a nonzero finite sum d =

∑l
k=1 akVxk

+
∑m

k=1 bkV ∗
yk

with 0 ≤ x1 <
· · · < xl and 0 < y1 < · · · < ym by L(d) = xl + ym + 1 when both xl and ym exist, and
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L(d) = xl − x1 + 1 when no yk exists, and L(d) = ym − y1 + 1 when no xk exists. Set
L(0) = 0. Note that L(V1d) = L(d) and L(V ∗

1 d) = L(d). In fact, observe that

V1aVx = (V1aV ∗
1 )Vx+1, V1aV ∗

y = (V1aV ∗
1 )V1V

∗
y = (α1(a)V1V

∗
1 )V ∗

y−1, and

V ∗
1 aVx = β1(a)V ∗

1 Vx = β1(a)Vx−1, V ∗
1 aV ∗

y = β1(a)V ∗
y+1.

To have the length L(d) well-defined, we of course use the cancellations in the expression
of d such as VnaV ∗

n = αn(a) and V ∗
n Vn = 1 for n ∈ N.

Now suppose that sr(A) ≤ n. Let (cj)n+1
j=1 ∈ (A � N)n+1. Since A � N is generated

by elements of the forms aVx and bV ∗
y , each cj (1 ≤ j ≤ n + 1) is approximated closely

by a finite sum dj =
∑lj

k=1 ajkVxjk
+

∑mj

k=1 bjkV ∗
yjk

such that 0 ≤ xj1 < · · · < xjlj and
0 < yj1 < · · · < yjmj . Set L((dj)n+1

j=1 ) =
∑n+1

j=1 L(dj).
Now consider the left multiplication to D = (dj)n+1

j=1 by elements of the set ELn+1(B)
of all elementary matrices over B. Note that ELn+1(B) ⊂ GLn+1(A�N). We now may as-
sume that for X a fixed (sufficiently small) open neighborhood of D, L(D) is smallest among
{L(WD) |D ∈ X, W ∈ ELn+1(B)} by replacing D with WD for some W if necessary.

Suppose that dj 
= 0 for any j. We then show a contradiction in the following. We may
assume that L(d1) ≤ L(d2) ≤ · · · ≤ L(dn+1) by a permutation by elementary matrices if
necessary. When xn+1,ln+1 exists, consider the multiplication as follows: for 1 ≤ j ≤ n,

Sjdj ≡

⎧⎪⎨
⎪⎩

Vxn+1,ln+1−xjlj
dj if xjlj exists and xjlj ≤ xn+1,ln+1 ,

V ∗
xjlj

−xn+1,ln+1
dj if xjlj exists and xjlj > xn+1,ln+1 ,

Vxn+1,ln+1−yj1dj if no xjk exists.

Note that the highest term of Sjdj with respect to V is Vxn+1,ln+1
. When no xn+1,k exists,

consider the multiplication as follows: for 1 ≤ j ≤ n,

Sjdj ≡

⎧⎪⎨
⎪⎩

Vyn+1,1−yj1dj if no xjk exists and yj1 ≥ yn+1,1,

V ∗
yn+1,1−yj1

dj if no xjk exists and yj1 < yn+1,1,

V ∗
xj,lj

+yn+1,1
dj if xj,lj exists.

Note that the lowest term of Sjdj with respect to V ∗ is V ∗
n+1,1. In both cases, let hj ∈ A

(1 ≤ j ≤ n + 1) be the coefficients of Sjdj (1 ≤ j ≤ n) and dn+1 at Vxn+1,ln+1
or V ∗

n+1,1.
Since sr(A) ≤ n, there exists (fj)n

j=1 ∈ An such that hn+1 =
∑n

j=1 fjhj if necessary by
replacing hj with elements obtained by small perturbation. Then, consider the following
operation: ⎛

⎜⎜⎜⎝
1

. . .
1

−f1S1 · · · −fnSn 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

d1

...
dn

dn+1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

d1

...
dn

d′n+1

⎞
⎟⎟⎟⎠

where d′n+1 = dn+1 − ∑n
j=1 fjSjdj . Then we obtain L(dn+1) > L(d′

n+1), which is the
contradiction.

From the above argument we can assume that dj = 0 for some j. By permuta-
tion by elementary matrices, we may assume d1 = 0. Then we may replace d1 with
ε1 for small ε > 0. By subtraction by elementary matrices, (dj)n+1

j=1 can be mapped to
(1, 0, · · · , 0) ∈ Ln+1(A � N). Since Ln+1(A � N) is open and stable under the left multipli-
cation by elementary matrices ([Rf, Propositions 8.2 and 4.1]), any element (dj)n+1

j=1 can be
approximated by elements of Ln+1(A � N). Hence sr(A � N) ≤ n + 1.
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Also we have shown from the above argument that ELn+1(B)(1, 0, · · · , 0) is dense in
(A�N)n+1. Since ELn+1(B) is a subset of the connected component of GLn+1(A�N) with
the identity matrix, it follows that Ln+1(A�N) is connected. Therefore, csr(A�N) ≤ n+1
(cf. [Rf, Corollary 8.6] for the same reasoning). �

Remark 2.2.1. The Cuntz algebra On (2 ≤ n < ∞) generated by n isometries with their
range projections orthogonal and their sum equal to 1 ([Ct]) is regarded as a crossed product
Un �α N of the UHF algebra Un of type n∞ by N (the shift endomorphism) (cf. [Ct], [Sc]).
Then sr(On) = ∞ by [Rf, Proposition 6.5]. Thus it is not true that sr(Un � N) ≤ sr(Un)+1
since sr(Un) = 1 by [Rf, Proposition 3.5]. Also, csr(On) = ∞ by [Eh, Proposition 1.4].
Therefore, the formula in Theorem 2.2 is not true if no condition to β and no left or right
inverse of α as in Proposition 2.1 and Remark 2.1.2. This consequence might be of some
interest. See [Rd, Example 2.5] for another description of On as a C∗-algebra by a corner
endomorphism. See also [Rd, Theorem 3.1] from which the crossed product B �α N with
B a certain simple unital C∗-algebra of real rank zero and α a proper corner endmorphism
is purely infinite so that sr(B �α N) = ∞ and csr(B �α N) = ∞ by [Rf, Proposition 6.5]
and [Eh, Proposition 1.4].

Remark 2.2.2. When A = C, we have A� N ∼= C∗(Z) by the covariance since the action of
N on C is trivial. Then C∗(Z) ∼= C(T) the C∗-algebra of continuous functions on the torus
T. Thus we have sr(C∗(C � N)) = 1 by [Rf, Proposition 1.7] while csr(C∗(C � N)) = 2 by
[Sh, p.381]. Note that the C∗-algebra C∗(N) of N generated by a non-unitary isometry is
regarded as the Toeplitz algebra T(N) generated by all Toeplitz operators with continuous
symbols on the usual Hardy space (cf. [Mp3, p.324] and [Mp5, Introduction]). Then it
is well known that C∗(N) = T(N) is an extension of C(T) by the C∗-algebra of compact
operators (cf. [Mp2]). Hence sr(C∗(N)) = 2 (cf. [Rf, Examples 4.13]) and csr(C∗(N)) = 2
by using [Sh, Theorem 3.9 and p.381] and [Eh, Proposition 1.15]. If the K1-group of A�α N

is nontrivial, then csr(A �α N) ≥ 2 [Eh, Corollary 1.6]. Note that K1(T(N)) is trivial (cf.
[Wo, 9.L]) but T(N) is not stably finite.

Remark 2.2.3. As for the connected stable rank of A � N with A nonunital, we just know
the estimate: csr(A+ �α+ N) ≤ max{csr(A �α N), csr(C � N)} = max{csr(A �α N), 2}
obtained by [Sh, Theorem 3.9].

Next we consider the case of crossed products of C∗-algebras by actions of N2. We say
that for a covariant representation (π, V ) of the system (A, N2, α) for a C∗-algebra A, the
representation V of N2 is ∗-commuting (or covariant) if VxV ∗

y = V ∗
y Vx with Vx = V(x,0),

Vy = V(0,y) for x, y ∈ N (cf. [LR1, Definition 1.2 and its equivalent condition], and [Lc, 2.3
Definition 3] in which it says that the condition αm(1)αn(1) = αm∨n(1) for m, n ∈ N2 with
an partial order and m ∨ n the least upper bound of m and n holds only if the associated
representation of N2 is ∗-commuting).

Theorem 2.3 Let A �α N2 be the crossed product of a C∗-algebra A by N2 and (π, V ) a
covariant representation of (A, N2, α) with π and π×V faithful and V ∗-commuting. Suppose
that there exists an action β of N2 by endomorphisms of A such that V ∗

n π(a) = π(βn(a))V ∗
n

for any n ∈ N2 and a ∈ A. Then sr(A �α N2) ≤ sr(A) + 2.
In addition, if A is unital, then csr(A �α N2) ≤ sr(A) + 2. Also, if Vn for some n ∈ N2

is non-unitary, sr(A �α N2) ≥ 2 and csr(A �α N2) ≥ 2.

Proof. The lower estimates sr(A � N2) ≥ 2 and csr(A �α N2) ≥ 2 are deduced by the same
way with the proof of Theorem 2.2.

When A is non-unital, we consider the exact sequence: 0 → A �α N2 → A+ �α+ N2 →
C�N2 → 0, where the extended action α+ of N2 on C1 of A+ is trivial. Then sr(A� N2) ≤
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sr(A+ � N2) by [Rf, Theorem 4.4]. Note that A+ � N2 = A+ � Z2 by the covariance since
α+ is trivial on C1. By [Rf, Theorem 7.1], we obtain sr(A+ � Z2) ≤ sr(A) + 2.

Next we may assume that A is unital. By Proposition 2.1, we have VnV ∗
n ∈ π(A) for all

n ∈ N2. We identify A with π(A) since π is faithful. Set V(x,0) = Vx and V(0,y) = Vy and
use x for the first variable and y for the second one. Note that A � N2 ∼= (A � N) � N the
iterated crossed product by N since Vy(π(a)Vx)V ∗

y = Vyπ(a)V ∗
y Vx = π(αx(a))Vx for a ∈ A,

but we cannot use Theorem 2.2 repeatedly. We need to check the dense part of (A� N)� N

involving the second action of N on A � N and the property of β as the proof of Theorem
2.2 in the following. Since any element of A � N is approximated by finite sums of elements
of the form aVx1V

∗
x2

for a ∈ A, x1, x2 ∈ N, any element of A � N2 is approximated by finite
sums of elements of the form (aVx1V

∗
x2

)Vy1V
∗
y2

. In fact, using the property of β and the
covariance of (π, V ) we observe that for b ∈ A, xj , yj ∈ N (1 ≤ j ≤ 4),

(aVx1V
∗
x2

)Vy1V
∗
y2

(bVx3V
∗
x4

)Vy3V
∗
y4

= (aVx1V
∗
x2

)Vy1βy2(b)V
∗
y2

(Vx3V
∗
x4

)Vy3V
∗
y4

= (aVx1V
∗
x2

)αy1(βy2(b))Vy1V
∗
y2

(Vx3V
∗
x4

)Vy3V
∗
y4

.

Moreover, when x4 ≥ x3, we compute

Vy1V
∗
y2

(Vx3V
∗
x4

)Vy3V
∗
y4

= Vy1V
∗
y2

(Vx3V
∗
x3

V ∗
x4−x3

)Vy3V
∗
y4

= Vy1βy2(Vx3V
∗
x3

)V ∗
y2

V ∗
x4−x3

Vy3V
∗
y4

= αy1(βy2(Vx3V
∗
x3

))Vy1V
∗
(x4−x3,y2)

Vy3V
∗
y4

= αy1(βy2(Vx3V
∗
x3

))Vy1V
∗
x4−x3

V ∗
y2

Vy3V
∗
y4

= αy1(βy2(Vx3V
∗
x3

))Vy1V
∗
x4−x3

V ∗
y1

Vy1V
∗
y2

Vy3V
∗
y4

= αy1(βy2(Vx3V
∗
x3

))Vy1V
∗
(x4−x3,y1)

Vy1V
∗
y2

Vy3V
∗
y4

= αy1(βy2(Vx3V
∗
x3

))V ∗
x4−x3

(Vy1V
∗
y2

Vy3V
∗
y4

),

and when x4 < x3, we compute

Vy1V
∗
y2

(Vx3V
∗
x4

)Vy3V
∗
y4

= Vy1V
∗
y2

(Vx3−x4Vx4V
∗
x4

)Vy3V
∗
y4

= Vy1V
∗
y2

(αx3−x4(Vx4V
∗
x4

)Vx3−x4)Vy3V
∗
y4

= Vy1βy2(αx3−x4(Vx4V
∗
x4

))V ∗
y2

Vx3−x4Vy3V
∗
y4

= αy1(βy2(αx3−x4(Vx4V
∗
x4

)))Vy1V
∗
y2

Vx3−x4Vy3V
∗
y4

= αy1(βy2(αx3−x4(Vx4V
∗
x4

)))Vy1V
∗
y2

V ∗
y1

Vy1Vx3−x4Vy3V
∗
y4

= αy1(βy2(αx3−x4(Vx4V
∗
x4

)))Vy1V
∗
y1

V ∗
y2

Vx3−x4Vy1Vy3V
∗
y4

= αy1(βy2(αx3−x4(Vx4V
∗
x4

)))Vy1V
∗
y1

Vx3−x4(V
∗
y2

Vy1+y3V
∗
y4

)

(Note that ∗-commuting property of (π, V ) is necessary at the last equality only). For
transforming Vy1V

∗
y2

Vy3V
∗
y4

and V ∗
y2

Vy1+y3V
∗
y4

to the form cVy5V
∗
y6

for c ∈ A, y5, y6 ∈ N, use
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the properties observed in the proof of Theorem 2.2. Moreover, note that

((aVx1V
∗
x2

)Vy1V
∗
y2

)∗ = Vy2V
∗
y1

Vx2V
∗
x1

a∗

= Vy2V
∗
y1

Vx2βx1(a
∗)V ∗

x1

= Vy2V
∗
y1

αx2(βx1(a
∗))Vx2V

∗
x1

= Vy2βy1(αx2(βx1(a
∗)))V ∗

y1
Vx2V

∗
x1

= αy2(βy1(αx2(βx1(a
∗))))Vy2V

∗
y1

Vx2V
∗
x1

Then use the above observation of Vy2V
∗
y1

Vx2V
∗
x1

.
By the same reason as the proof of Theorem 2.2, define the length of a finite sum

d =
∑l

k=1 akVy1
k

+
∑m

k=1 bkV ∗
y2

k
for ak, bk finite sums of elements of the form csVx1

s
V ∗

x2
s

for
cs ∈ A by the same say. Note that L(V(0,1)d) = L(d) and L(V ∗

(0,1)d) = L(d), and this
property is used to show the length of d well-defined as in the proof of Theorem 2.2. In
fact, observe that

V(0,1)(aVx1V
∗
x2

)Vy = V(0,1)(aVx1V
∗
x2

)V ∗
(0,1)Vy+1

= V(0,1)aV ∗
(0,1)V(0,1)Vx1V

∗
x2

V ∗
(0,1)Vy+1

= V(0,1)aV ∗
(0,1)Vx1V(0,1)V

∗
(x2,1)Vy+1

= V(0,1)aV ∗
(0,1)Vx1V(0,1)V

∗
(0,1)V

∗
x2

Vy+1

= [V(0,1)aV ∗
(0,1)αx1(V(0,1)V

∗
(0,1))Vx1V

∗
x2

]Vy+1 and

V(0,1)(aVx1V
∗
x2

)V ∗
y = V(0,1)(aVx1V

∗
x2

)V ∗
(0,1)V(0,1)V

∗
y

= [V(0,1)(aVx1V
∗
x2

)V ∗
(0,1)V(0,1)V

∗
(0,1)]V

∗
y−1.

Moreover, when x1 ≤ x2

V ∗
(0,1)(aVx1V

∗
x2

)Vy = β(0,1)(a)V ∗
(0,1)Vx1V

∗
x2

Vy

= β(0,1)(a)V ∗
(0,1)Vx1V

∗
x1

V ∗
x2−x1

Vy

= β(0,1)(a)β(0,1)(Vx1V
∗
x1

)V ∗
(0,1)V

∗
x2−x1

Vy

= β(0,1)(a)β(0,1)(Vx1V
∗
x1

)V ∗
x2−x1

V ∗
(0,1)Vy

= [β(0,1)(a)β(0,1)(Vx1V
∗
x1

)V ∗
x2−x1

]Vy−1

and when x1 > x2,

V ∗
(0,1)(aVx1V

∗
x2

)Vy = β(0,1)(a)V ∗
(0,1)Vx1V

∗
x2

Vy

= β(0,1)(a)Vx1V
∗
(0,1)V

∗
x2

Vy

= β(0,1)(a)Vx1V
∗
x2

V ∗
(0,1)Vy

= [β(0,1)(a)Vx1V
∗
x2

]Vy−1

(Note that ∗-commuting property is necessary in the second step of the last calculation),
and it follows from the above calculations that

V ∗
(0,1)(aVx1V

∗
x2

)V ∗
y =

{
[β(0,1)(a)β(0,1)(Vx1V

∗
x1

)V ∗
x2−x1

]V ∗
(0,1)V

∗
y if x1 ≤ x2[

β(0,1)(a)Vx1V
∗
x2

]
V ∗

(0,1)V
∗
y if x1 > x2

=
{

[β(0,1)(a)β(0,1)(Vx1V
∗
x1

)V ∗
x2−x1

]V ∗
y+1 if x1 ≤ x2[

β(0,1)(a)Vx1V
∗
x2

]
V ∗

y+1 if x1 > x2
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Now assume sr(A � N) ≤ n. Then the rest of the proof is the same as that of Theorem
2.2. �

We say that for a covariant representation (π, V ) of the system (A, Nk, α) for a C∗-
algebra A, the representation V of Nk is ∗-commuting (or covariant) if VxiV

∗
xj

= V ∗
xj

Vxi for
i 
= j, 1 ≤ i, j ≤ k with xi = xiei for xi ∈ N and ei the i-th basis of Nk (cf. [LR1, Definition
1.2] and [Lc, 2.3 Definition 3]).

Corollary 2.4 Let A �α Nk be the crossed product of a C∗-algebra A by Nk and (π, V ) a
covariant representation of (A, Nk, α) with π and π×V faithful and V ∗-commuting. Suppose
that there exists an action β of Nk by endomorphisms of A such that V ∗

n π(a) = π(βn(a))V ∗
n

for any n ∈ Nk and a ∈ A. Then sr(A �α Nk) ≤ sr(A) + k.
In addition, if A is unital, then csr(A �α Nk) ≤ sr(A) + k. Also, if Vn for some n ∈ Nk

is non-unitary, sr(A �α Nk) ≥ 2 and csr(A �α Nk) ≥ 2.

Proof. Use the argument of the proof of Theorem 2.3 repeatedly since we have A �α Nk ∼=
(· · · ((A � N) � N) · · · ) � N the k-times iterated crossed product by N. �

Remark 2.4.1. When A = C, we have C �α Nk ∼= C∗(Zk) by the covariance since α is
trivial on C. Since C∗(Zk) ∼= C(Tk) by the Fourier transform, we obtain sr(C �α Nk) =
sr(C(Tk)) = [k/2] + 1 and csr(C �α Nk) = csr(C(Tk)) = [(k + 1)/2] + 1 by [Rf, Proposition
1.7] and [Sh, p.381], where [x] means the maximum integer ≤ x. On the other hand, the
C∗-algebra C∗(Nk) of Nk is isomorphic to the tensor product ⊗kC∗(N). Thus it follows
from Remark 2.2.2 that C∗(Nk) ∼= ⊗kT(N). Therefore, C∗(Nk) has a quotient map to
C(Tk) and the kernel I by this map has a finite composition series with its subquotients
having the C∗-algebra of compact operators as a tensor factor, that is, stable C∗-algebras.
By using Remark 2.2.2, [Rf, Theorems 4.3, 4.11 and 6.4] and [Sh, Theorem 3.9] repeatedly,
we deduce that sr(I) ≤ 2, csr(I) ≤ 2 and

sr(C(Tk)) ≤ sr(C∗(Nk)) ≤ max{2, sr(C(Tk)), csr(C(Tk))},
2 ≤ csr(C∗(Nk)) ≤ max{2, csr(C(Tk))}.

By [Rf, Proposition 1.7] and [Sh, p.381], we obtain [k/2]+1 ≤ sr(C∗(Nk)) ≤ [(k + 1)/2] +1
and 2 ≤ csr(C∗(Nk)) ≤ [(k + 1)/2] + 1.

Remark 2.4.2. Since the C∗-algebra C∗(S) of the positive cone S of an partially ordered
abelian group G is just the Toeplitz algebra T(S) (or T(G)) (cf. [Mp3, p.338] and Remark
2.5.2 below), we could obtain the similar stable rank estimates of C∗(S) as above, and the
structure of T(S) obtained in [Mp1] and [Mp4] would be useful for computing the stable
ranks of T(S).

Now recall from [LR2] that the Bost-Connes’ Hecke C∗-algebra denoted by HQ is the
C∗-enveloping algebra of the Hecke algebra defined to be the universal involutive algebra
over C generated by elements µn for n ∈ N∗ and e(r) for r ∈ Q/Z such that

µ∗
nµn = 1, µmµn = µmn for m, n ∈ N∗, µmµ∗

n = µ∗
nµm if (m,n) = 1,

and e(0) = 1, e(r)∗ = e(−r), e(r + s) = e(r)e(s) for r, s ∈ Q/Z,

e(r)µn = µne(nr), µne(r)µ∗
n = (1/n)

n∑
j=1

e(r/n + j/n) for n ∈ N∗, r ∈ Q/Z.

It is shown by [LR2] that the Hecke C∗-algebra HQ is in fact the semigroup crossed product
C∗(Q/Z)�α N∗ by an action α of N∗ on C∗(Q/Z) defined by αn(i(r)) = (1/n)

∑n
j=1 i(r/n+

j/n) for r ∈ Q, where i : Q/Z → C∗(Q/Z) is the canonical embedding (unitary representa-
tion) and i(r) means i(r + Z). As an interesting application, we obtain
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Theorem 2.5 Let HQ = C∗(Q/Z) �α N∗ be the Hecke C∗-algebra of Bost-Connes or the
semigroup crossed product of Laca-Raeburn. For the canonical subalgebras C∗(Q/Z) �α Nk

of HQ, we obtain

[k/2] + 1 ≤ sr(C∗(Q/Z) �α Nk) ≤ 1 + k and 2 ≤ csr(C∗(Q/Z) �α Nk) ≤ 1 + k.

On the other hand, we have sr(HQ) = ∞.

Proof. Note that C∗(Q/Z) is isomorphic to the tensor product ⊗p∈PC∗(Gp), where Gp =
{r + Z : r = n/pk for some k ∈ N+ and n ∈ Z} = Z[p−1]/Z and P is the set of all prime
numbers, and also note that N∗ ∼= ⊕p∈PN (cf. [LR2, Introduction]). Moreover, we have
C∗(Q/Z) is isomorphic to the C∗-algebra C((Q/Z)∧) of all continuous functions on the
compact space (Q/Z)∧, where (Q/Z)∧ is the dual of Q/Z, which is an inverse limit of
Z/nZ, so that C((Q/Z)∧) is an inductive limit of C(Z/nZ) ([LR2, p.336]). Hence C∗(Q/Z)
is unital and sr(C∗(Q/Z)) = 1. Since N∗ ∼= Nk × Hk with Hk = ⊕p∈Pk

N for Pk the subset
of P obtained by removing k prime numbers, then C∗(Q/Z) �α Nk is a C∗-subalgebra of
HQ. By [LR2, Proposition 2.1, Remark 2.2, Lemmas 3.1 and 3.2 and Theorem 3.7], the
algebra HQ satisfies the conditions in Corollary 2.4. Thus sr(C∗(Q/Z) �α Nk) ≤ 1 + k and
csr(C∗(Q/Z) �α Nk) ≤ 1 + k.

On the other hand, we have the quotients: C∗(Q/Z) �α Nk → C � Nk → 0 and
C∗(Q/Z)�α N∗ → C � N∗ → 0 which are deduced from their covariant representations cor-
responding to the trivial representation of C∗(Q/Z). Note that C � Nk ∼= C∗(Zk) ∼= C(Tk)
and C � N∗ ∼= C∗(⊕∞

k=1Z) ∼= C(Π∞
k=1T). By [Rf, Proposition 1.7 and Theorem 4.3], we ob-

tain sr(C∗(Q/Z)�αNk) ≥ sr(C�Nk) = [k/2]+1 and sr(C∗(Q/Z)�αN∗) ≥ sr(C�N∗) = ∞.
�

Remark 2.5.1. The action α of HQ has a left inverse β of endomorphisms which is also
a sort of a right inverse as in Remark 2.1.1 (cf. [LR2, Proposition 2.1]). There exists a
covariant representation (V, π) of HQ with π × V faithful such that the covariant condition
VnV ∗

n VmV ∗
m = V[n,m]V

∗
[n,m] holds for any n, m ∈ N∗, where [n, m] is the least common

multiple of n and m, and VnV ∗
n ∈ π(C∗(Q/Z)) for all n ∈ N∗, and that there exists an

action β of N∗ by endomorphisms of C∗(Q/Z) such that V ∗
n π(a) = π(βn(a))V ∗

n for any
n ∈ N∗ and a ∈ C∗(Q/Z). Note that the covariant condition is equivalent to the relation
V ∗

n Vm = Vn−1[n,m]V
∗
m−1[n,m] (cf. [LR1, Definition 1.2]).

Remark 2.5.2. Also, the covariant condition VnV ∗
n VmV ∗

m = V[n,m]V
∗
[n,m] is generalized

to the notion of covariant representations of certain semigroups P of quasi-lattice ordered
groups (cf. [LR1]). Note that all totally ordered groups and lattice orders are quasi-lattice
ordered (cf. [LR1] and [Nc]). The semigroup crossed product BP �α P associated with
P of [LR1] has a covariant representation (π, V ) satisfying the covariant condition, where
BP is a C∗-subalgebra of l∞(P ) and α is a left translation. In this case, VxV ∗

x ∈ π(BP )
for any x ∈ P ([LR1, p. 423 and Proposition 2.3]). Thus our methods might be applicable
to this situation. See also [A-R] for the case of P totally ordered abelian semigroups and
C∗(P ) = BP �α P = T(P ).
Remark 2.5.3. The C∗-algebra C∗(N∗) of N∗ is in fact the Toeplitz C∗-algebra of N∗, T(N∗)
([LR2, Section 1]) and T(N∗) = BN∗ �α N∗ in the sense of Remark 2.5.1. Moreover, the
algebra C∗(N∗) = T(N∗) is isomorphic to the infinite tensor product of the usual Toeplitz
algebra C∗(N) = T(N) over the set of prime numbers. There exist canonical quotients from
C∗(N∗) to any finite tensor products of C∗(N), and thus to C(Tn) for any n ∈ T. Hence it
follows from [Rf, Theorem 4.3 and Proposition 1.7] that sr(C∗(N∗)) = sr(T(N∗)) = ∞.
Remark 2.5.4. As a large generalization of the Hecke C∗-algebra above, Arledge, Laca
and Raeburn [ALR] have studied semigroup crossed products of the form C∗(K/O)�α O×,
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where K is a finite extension of Q, O is the ring of integers in K, and O× is the multiplicative
semigroup of nonzero integers of O. By using [ALR, Proposition 1.2, Lemmas 1.5 and 1.8
and Section 5] and that the dual of K/O is a topological inverse limit of finite groups (cf.
[ALR, Proof of Lemma 4.2]), we could deduce the similar results as Theorem 2.5.

Now recall from [LsR] that the semigroup crossed product C∗(G∞/G) �α Nk of Larsen
and Raeburn is induced by the C∗-dynamical system (C∗(G∞/G), Nk, α), where G is a
(discrete) abelian group and G∞ is the direct limit of the system (G, ηn−m) with η an
action of Nk by injective endomorphisms of G for m = (mi), n = (ni) ∈ Nk with mi ≤ ni for
1 ≤ i ≤ k, and the action α of Nk by endomorphisms of the group C∗-algebra C∗(G∞/G) is
defined by αm(δr) = (1/|G : ηm(G)|)∑

s∈G∞/G:βm(s)=r δs for r ∈ G∞/G and m ∈ Nk, where
βm is an endomorphism of the quotient G∞/G such that βm(s) = βm(g + G) = η∞

m (g) + G
for s = g + G and g ∈ G∞ and η∞

m is an automorphism of G∞ induced by the map ηm,
and δr, δs are unitaries by the unitary representation δ : G∞/G → C∗(G∞/G). Similarly
as Theorem 2.5,

Theorem 2.6 Let C∗(G∞/G) �α Nk be the semigroup crossed product of Larsen and Rae-
burn. Then [k/2]+1 ≤ sr(C∗(G∞/G)�αNk) ≤ 1+k and 2 ≤ csr(C∗(G∞/G)�αNk) ≤ 1+k.

Proof. Use [LsR, Proposition 1.3, Theorem 2.1, Lemma 2.2 and the first paragraph of
the proof of Proposition 2.4] and Corollary 2.4. In particular, note that C∗(G∞/G) is
isomorphic to the C∗-algebra C((G∞/G)∧) of all continuous functions on the (compact)
space (G∞/G)∧, where (G∞/G)∧ is the dual group of G∞/G and it is an inverse limit of
finite discrete groups. Thus, C∗(G∞/G) is unital and C((G∞/G)∧) is an inductive limit
of finite dimensional C∗-algebras. Hence, sr(C∗(G∞/G)) = sr(C((G∞/G)∧)) = 1 by [Rf,
Theorem 5.1]. �

Remark 2.6. The action α of (C∗(G∞/G), Nk, α) satisfies αn(1)αm(1) = αn∨m(1), which
implies that for any covariant representation (π, V ) of (C∗(G∞/G), Nk, α), V is covariant,
i.e. VnV ∗

n VmV ∗
m = Vn∨mV ∗

n∨m for n, m ∈ Nk ([LsR, Remark 1.4]), where n ∨ m is the
least upper bound of n and m. Then the covariant condition is equivalent to V ∗

n Vm =
V(n∨m)−nV ∗

(n∨m)−m (cf, [LR1, Definition 1.2]). Hence, V is ∗-commuting in our sense as
above.
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