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ABSTRACT. In this paper, we study base-normality and total paracompactness of
subspaces of products of two ordinals. We prove the following: (1) For every regular
cardinal x with > w1, there exists a normal non-base-normal subspace X of (k4 1)?
with w(X) = k. (2) If A and B are subspaces of an ordinal, then A x B is base-normal
if and only if A x B is normal. (3) Every normal subspace of w;? is base-normal. (4)
Every paracompact subspace of products of two ordinals is totally paracompact.

1 Introduction Throughout this paper, all spaces are assumed to be Hausdorff topolog-
ical spaces. For a space X, w(X) denotes the weight of X. For a subspace A of X, the
closure of A in X is denoted by clx A. For a collection A of subsets of X, {clxA: A € A}
is denoted by clx.A.

Yamazaki [10] defined a space X to be base-normal if there is an open base B for X
with |B| = w(X) such that every binary open cover {Uy, Uz} of X admits a locally finite
cover B’ of X by members of B such that clxB’ refines {U;,Us}. A space X is said to be
totally paracompact [3] if every open base for X contains a locally finite subcover.

In this paper, we discuss base-normality and total paracompactness of subspaces of
products of two ordinals and show the results (1)-(4) stated in the abstract.

Answering Yamazaki’s question in [11], Gruenhage [4] gave an example of a countably
compact LOTS which is not base-normal. Our result (1) gives different examples in ZFC
of a normal space which is not base-normal.

It is known that many familiar examples of paracompact spaces are not totally para-
compact; for example, the space of all the irrationals, the Sorgenfrey line and the Michael
line are not totally paracompact ([1] and [2]). Our result (4) shows that there is no dif-
ference between paracompactness and total paracompactness for a subspace of products of
two ordinals.

Now we introduce some notations from [5].

Let cf(u) denote the cofinality of an ordinal p. When cf(u) > wq, a subset S of p is
said to be stationary in p if it intersects all cub (i.e., closed and unbounded) sets in p. For
A C p, let Lim,(A) = {& < p: a = sup(ANa)}. We consider sup(f)) = —1 if there is
no special explanation. Assume that C is a cub in p with cf(p) > w, then Lim,(C) C C.
We define Suce(C) = C'\ Lim,(C), and pc(a) = sup(C N «) for each oo € C. Note that
pc(a) < acif and only if & € Suce(C). Observe that p\ Lim,,(C) is the union of the pairwise
disjoint collection {(pc (@), a] : a € Suce(C)} of clopen intervals of .

For a limit ordinal p, a strictly increasing function M : cf(u) — p is said to be normal
if M(v) =sup{M(v') : v < v} for each limit ordinal v < cf(p) and p = sup{M(y) : v <
cf(p)}. For convenience, we define M (—1) = —1. Clearly, M carries cf(x) homeomorphically
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to the range ran(M) of M and ran(M) is closed in . Note that for all S C p with cf(p) > wy,
S is stationary in y if and only if M ~1(S) is stationary in cf(p). If u and v are limit ordinals,
let M and N denote the fixed normal functions for p and v, respectively.

The following Lemma will be used frequently throughout the paper (see [8]).

Lemma 1.1. (The PDL.) Let £ > w be regular, S a stationary subset in x, and f: S — &
such that f(vy) < v for each v € S; then for some o < k, f~!(«) is stationary.

2 Normal non-base-normal subspaces of (k + 1)? First, we show that for every

regular cardinal k with k > wj, there exists a normal non-base-normal subspace X of
(k+1)? with w(X) = k.

Theorem 2.1. Let  be a regular cardinal with k > wq, and let X = {{o,3) : f < a <
k,a and B are successor ordinals} U ({k} x k). Then X is normal and not base-normal.

Proof. To show that X is normal, let F} and F» be disjoint closed subsets of X. Since & is
normal, there exist disjoint open sets G; and G5 of k such that F;N({k} x &) C {k} x G; for
i =1,2. Tt is easy to show that ((((k+1)xG1)\F2)UF1)NX and ((((k+1)xG2)\ F1)UF3)NX
are disjoint open sets in X containing I} and Fb, respectively. Hence, X is normal.

Next, we show that X is not base-normal. Obviously, w(X) = . Suppose B is a base
of X with |B| = k. We will show that B cannot witness base-normality of X.

Claim 1. Let B € B. If {6 < £ : (k,0) € B} is stationary in k, then there exist a cub
set C(B) in &, a function f(B,-) : C(B) — & and an ordinal g(B) < min(C(B)) such that
((f(B,7), K] x (9(B),7]) N X C B for each v € C(B).

Proof of Claim 1. For each 6 € k with (k,d) € B, fix p(B,d) < k and ¢(B, d) < 0 such that
((p(B,d), k] x(q(B,0),0])NX C B. Applying the PDL, we can find an ordinal g(B) < « and
a stationary set S in k such that S C {6 < k: (k,d) € B} and ¢(B,d) = g(B) foreach d € S.
Let C(B) = {y € k: v > min(S)}. For each v € C(B), let (y) =min{d € S : vy <}, and
7(B,7) = p(B, (7). Then (£(B,~), 5] x (g(B), 1) NX C (((B, (1)), #] x (9(B), (1))
X C B. The proof of Claim 1 is complete. |

Let B = {B € B:{j < k: (k,0) € B} is stationary in k}. Rewrite B’ = {B, :
a < &}, where € is a cardinal. By Claim 1, for each a < &, there exist a cub set
Co in K, a function f(Ba,:) : Co — &k and an ordinal g(B,) < min(Cy,) such that
((f(Basv), k] x (9(Ba),7]) N X C B, for each v € Cy. If & < &, let C" = [, Ca.
If&=k,1let C'" ={y €r:Va<vy(y € Cy} Inany case, C' is a cub set in & ([8?, I1,
Lemma 6.8 and Lemma 6.14). Let C = Lim,(C"). Then C' is a cub set in k¥ and C' C C".
For each v € C, take a limit ordinal f(vy) < & such that f(y) > sup{f(Ba,7) : @ < v}.
We may assume that f(v') < f(v) if ¥/ <. Let Uy = J{((f(7),&] x [0,7]) N X : v € C}.
Then {k} x k C U;. Let Uy = X \ ({k} X k). Then {Uy,Us} is a binary open cover of X.
We will show that {U;,Us} admits no locally finite refinement by members of B. Suppose
B* is a refinement of {Uy, U2} by members of B. To complete the proof, it suffices to show
that B* is not locally finite in X.

Claim 2. For each a < £, B, \ Uy # 0.

Proof of Claim 2. Fix a < £. Takey; € C such that 1 > a. Let o = min{y € C: vy > 11 }.
By the definition of C, we have v1 € C,, and 2 € C,. Since f(v2) > f(Ba,72) and f(y2)
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is a limit ordinal, there exists a successor ordinal &/ € s such that f(Bg,72) < & < f(72).
Since 2 > v1 and 79 is a limit ordinal, there exists a successor ordinal 5’ € k such that
7 < B < 7. Since g(B,) < min(Cy,) and 71 € C,, we have 71 > g(B,). Hence,
(@, 8) € ((F(Bar2)s ] X (11,792]) 1 X € ((F(Bas12), ] % (9(Ba)s72)) 0 X € By Since
{f(v) : v € C} is strictly increasing and 7, is the successor of v; in C, it follows from the
definition of Uy that (o', 3') & Uy. The proof of Claim 2 is complete. O

Let B” = B\ B'. Rewrite B” = {B? : 3 < n}, where n is a cardinal. For each
B <, since {6 < K : (k,d) € B} is not stationary in &, there exists a cub set Dg in &
such that Dg N {6 < k : (k,0) € B} = 0. If n < &, let D = Ng<y Dp- I = &, let
D={ocekr:Y3<o(oc € Dg)}. In any case, D is a cub set in k. Since B* is a refinement
of {Uy,Us}, we can take og € D and Wy € B* such that (k,00) € Wy C U;. It follows
from Claim 2 that Wy € B”. Hence, Wy = B% for some 3y € 1. Since D is unbounded
in k, there exists o7 € D such that o7 > og and o1 > (. By the definition of D, we
have o1 € Dg,. Hence, (k,01) & BPfo = W,. Take W, € B* such that (k,0,) € Wy C Uj.
Then, W1 # Wy and Wy € B”. Proceeding by induction, we can choose a strictly increasing
sequence {o; : i € w} in D and a sequence {W; : i € w} in B* such that (k,o0;) € W; for
each ¢ € w and W; # W, whenever i # j. Let 0 = sup{o; : i € w}. Then, {W; : i € w} is
not locally finite at (x,o) in X. Thus, B* is not a locally finite refinement of {Uy,Us}. The
proof is complete. O

3 Some properties of 7-base-normality Throughout Sections 3 and 4, 7 stands for
an infinite cardinal. We introduce the notion of 7-base-normality, which is a generalization
of base-normality, and use it to prove main theorems in Sections 4 and 5. For a space X and
a cardinal 7 with w(X) < 7, we call X 7-base-normal if there is an open base B for X with
|B| < 7 such that every binary open cover {U;, Us} of X admits a locally finite cover B’ of X
by members of B such that clx B’ refines {U1,Us}. Note that for a space X with w(X) > w,
X is w(X)-base-normal if and only if X is base-normal. Yamazaki[11] called a subspace A
of X base-normal relative to X if there is an open base B for X with [B| = w(X) such
that for every binary open (in X) cover {Uy,Us} of A there is a locally finite (in X) family
B’ C B such that clxB’ is a partial refinement of {U;,Us} and A C |JB’. Similarly, we
define T-base-normality relative to X by replacing the condition |B| = w(X) by |B| < 7.
It is noted that if X is 7-base-normal, then every closed subspace of X is 7-base-normal
and 7T-base-normal relative to X.
The proof of the following lemma is straightforward and left to the reader.

Lemma 3.1. For a space X and a cardinal 7 with 7 > w(X), the following statements
hold:

(1) If X is the topological sum of a collection {A; : t € T'} of T-base-normal subspaces of
X with |T| < 7, then X is T-base-normal.

(2) If X is normal, then X is T-base-normal if and only if there is a base B for X
with |B| < 7 such that every binary open cover {Uy,Us} of X admits a locally finite
refinement B’ of X by members of B.

Yamazaki [11] showed that if a normal space X is the countable union of closed base-
normal sets relative to X, then X is base-normal. Similarly, we can prove the following
Lemma 3.2.

Lemma 3.2. Let X be a normal space. If X is the countable union of closed T-base-normal
sets relative to X, then X is T-base-normal.
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Lemma 3.3. Let X be a normal space and A CY C X with A closed in X andY open in
X. Let 7 > w(X). If Y is T-base-normal, then A is T-base-normal relative to X .

Proof. Since X is normal, there exists an open subset V' of X such that X \Y C V C
clxV C X\ A. Let By be an open base for Y witnessing 7-base-normality of Y. Since Y
is open in X, we can take an open base Bx for X such that |[Bx| < 7 and By C Bx. Let
{U1,Us3} be an open (in X) cover of A. Since X is normal and A is closed in X, there exist
open subsets Wy and W5 of X such that A C W7 U W5 and clxW; C U; for ¢ = 1,2. Let
G; =W;\clxV for i =1,2. Then A C G; UGy CY. Since A is a closed subset of 7-base-
normal space Y, A is 7-base-normal relative to Y. Hence, there exists B’ C By such that
B’ is locally finite in Y, A C |JB' and cly B’ is a partial refinement of {G,Gs}. Clearly,
clx B’ is a partial refinement of {Uy,Usz}. Since Y isopenin X and X\Y CV C X\ JFB,
B’ is locally finite in X. Thus, A is 7-base-normal relative to X. O

Proposition 3.4. Let X be a normal space and 7 > w(X). If X is the union of two
T-base-normal open subspaces of X, then X is T-base-normal.

Proof. Let Y and Z be two 7-base-normal open subsets of X with Y U Z = X. Since
X is normal, there exist disjoint open subsets U and V' of X such that X \' Y C U and
X\Z CV. By Lemma 3.3, X \ U and X \ V are 7-base-normal relative to X. Since
X =(X\U)U(X\V), it follows from Lemma 3.2 that X is 7-base-normal. O

4 Base-normality of products of two subspaces of ordinals Let A be an ordinal
with the order topology and let X C A2, For A C A+1and B C A+1, put X4 = (AxA\)NX,
XB=(AxB)nX and X% = X, N XB. The proof of Lemma 4.1 is easy and omitted.

Lemma 4.1. Let X be a subspace of \* for some ordinal X. Then w(X) = |X]|.
Proposition 4.2. For every ordinal o, every subspace A of a is base-normal.

Proof. We prove the proposition by induction on «. Assume that for all § < «, every
subspace of (3 is base-normal. Let A be a subspace of . We separate the proof into the
following two cases.

Case 1. o« = 3+ 1 for some ordinal . If 3 ¢ A, then A C 3. By the assumption, A
is base-normal. If § € A and [ is an isolated point in A, then it is easy to show that A is
base-normal. If € A and § € Lim,(A), then w(A) = |A| > cf(5). Let f: cf(8) — 3 be a
normal function for 8. For each v < cf(3), let B, be a base for AN (f(y) + 1) witnessing
base-normality of AN (f(y)+1). Let

B=( |J B)U{(f().81NnA:v<ct(B)}.

~y<cf(3)

It is easy to check that B witnesses base-normality of A.

Case 2. « is a limit ordinal. If A is bounded in «, then A C ( for some § < « and
therefore A is base-normal. If A is unbounded in «, we treat the following subcases (2a)
and (2b) separately.

Subcase (2a). A is not stationary in a. Then there exists a cub set C' in « such that
ANC =0 and |C| = cf(«). Hence, A can be represented as

A= @ (rem)nA),

y€Succ(C)
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where pc(7y) is defined in the introduction. For each v € Succ(C), since (pc(7),7] N A is a
base-normal space with the weight < w(A), it is w(A)-base-normal. Since |Succ(C)| < |C| =
cf(a) < |A| = w(A), by Lemma 3.1(1), A is w(A)-base-normal. Hence, A is base-normal.
Subcase (2b). A is stationary in . Let g : cf(a) — a be a normal function for .
For each v < cf(«), let W, be a base for AN (g() + 1) witnessing base-normality of
An(g(y) +1). Let B = (U, <cra)y Wy) U{(g(7),0) N Ay <cf(a)}. Then B is a base for
A and |B] = w(A). Using the PDL, it is easy to show that B witnesses base-normality of
A. The proof is complete. O

Theorem 4.3. For A, B C \, A x B is base-normal if and only if A x B is normal.
To prove Theorem 4.3, we need the following two lemmas.

Lemma 4.4 (Kemoto, Ohta and Tamano, [6], Lemma 4.3). Let A, B C A\, u, v €
A+1. Put X = (An(p+1)) x (BN (v+1)) and let P be a collection of subsets of X.
Assume that P is closed under taking subsets and each point of X is contained in an open
set in P. Then there exist po < p and vy < v such that

X 0 ((po, 7] > (v0,0]) € P
for each v € AN (o, 1] and each § € BN (vy,v], in each of the following cases (1) and (2):
(1) p¢ A, v ¢ B, cf(p) > wi, cf(v) > wy and either (1-1) or (1-2) in the following holds:
(1-1) cf(p) # cf(v), AN p is stationary in 4 and B Nv is stationary in v.
(1-2) cf(p) = cf(v) and M~ (A)NN~1(B) is stationary in cf (u), where M : cf (1) —
and N : cf(v) — v are normal functions defined in the introduction.
(2) pe A, v¢ B, ct(v) > wy, cf(u) # cf(v) and B Nv is stationary in v.

Lemma 4.5 (Kemoto, Ohta and Tamano, [6], Theorem A). For A, BC )\, Ax B
is mormal if and only if for each p, v € A+ 1 with cf(un) = cf(v) > wy, the following
conditions hold:

(1) If u ¢ A and v ¢ B, then AN p is not stationary in g or BN v is not stationary in v
or M—1(A)N N~Y(B) is stationary in cf(u), where M : cf(u) — pu and N : cf(v) — v
are normal functions.

(2) If p€ A and v ¢ B, then AN u is bounded in p or BN v is not stationary in v.
(3) If n ¢ A and v € B, then AN u is not stationary in p or BN v is bounded in v.

Proof of Theorem 4.3. Assume that A x B is normal and let 7 = w(A x B). It suffices
to show that A x B is 7-base-normal. We use the idea in the proof of Theorem A in [6].
Suppose that A x B is not 7-base-normal. Put

p=min{ < A: (A x B)N((§+1) x A)) is not 7-base-normal }

and

v=min{n < A: (Ax B)N((x+1) x (n+1)) is not 7-base-normal}.
Let X = (Ax B)N((p+1) x (v+1)). Note that X is normal and not 7-base-normal. For
each p/ < p, since X411 is a closed subspace of 7-base-normal space (A x B)N((¢'+1) x A),
X,+1 is T-base-normal. For each v/ < v, by the definition of v, X v'+1 is r-base-normal. It

follows from Proposition 4.2 and Lemma 3.1(1) that p and v are limit ordinals. Observe
that
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(1) Anp is unbounded in p and B Nv is unbounded in v;
(2) if p ¢ A, then cf(p) > w1 and ANy is stationary in p; and
(3) if v ¢ B, then cf(v) > w; and B Nv is stationary in v.

In fact, (1) follows from the definitions of pu and v, Proposition 4.2 and Lemma 3.1(1).
To see (2), suppose that u ¢ A and either cf(u) = w or AN p is not stationary in p.
Then, in both cases, AN (u+ 1) can be expressed as the sum of < c¢f(x) many bounded,
clopen subspaces of AN p. By Lemma 4.1 and (1) in the above, we have 7 > w(X) =
| X | = max{|A N ul, | BNv|} > max{cf(p),cf(v)}. Thus, X is the topological sum of < 7
many 7-base-normal subspaces of X. By Lemma 3.1(1), X is 7-base-normal, which is a
contradiction. The proof of (3) is similar to that of (2).

For each ¢/ € ANy and v/ € BN, let G(i') be a base for X/, witnessing 7-base-
normality of X,/ 1, and H(v') a base for X*'*! witnessing 7-base-normality of X'+,
Let

B=|( |J dw) U( U H(V')>

pneEANU v’ e€BNv

u{xXn((w,p x@,v):peAnpand v € Bnu}.

Then B is a base for X and |B| < 7. Let Y = {U;,Us} be an open cover of X. We shall
show that there exist po € ANp, vy € BNy and iy € {1,2} such that

(4) X N ((ko, u] x (v0, 1) € Ui

If we can find such pug, v and 4g, then there exist G’ C G(up) such that G’ is a locally
finite (in X,+1) refinement of {Us N X041, U2 N X 041}, and H' C H(vp) such that H' is
a locally finite (in X*°*1) refinement of {U; N X0t Uyn X*0F1}, Put B’ = G'UH' U{X N
((po, p] x (vo,v])}. Then B’ is a locally finite refinement of & by members of B. It follows
from Lemma 3.1(2) that B witnesses 7-base-normality of X, which is a contradiction.
To prove (4), let
P={WCX:WCU; or WC Us}.

Then P is closed under taking subsets and each point of X is contained in an open set in
P. Now we separate the proof into four cases.

Case 1. u ¢ A and v ¢ B. In this case, it follows from (2) and (3) that cf(u) > wy,
cf(v) > w1, AN p is stationary in g and B Nv is stationary in v. Hence, by Lemma 4.5,
we have two subcases: (1a) cf(u) # cf(v), and (1b) cf(u) = cf(v) and M~ (A)N N~Y(B) is
stationary in cf(u), where M : c¢f(u) — p and N : cf(v) — v are normal functions. In both
cases, (1) in Lemma 4.4 holds. Hence, there exist puo < p and vy < v such that

(5) X N ((po,v] x (vo,0]) € P for each v € AN (o, p] and each 6 € BN (v, v].

Since AN p and B Nv are unbounded in p and v respectively, we can assume that pg € A
and vy € B.

Subcase (1la). cf(p) # cf(v). Put B’ = BN (v, v]. For each § € B’, define a map
f5 : {1a2} - [MO;,LL] by

fs(@) =sup{y : po < v < pand X N ((no,7] x (v, 6]) € Ui}
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for i € {1,2}, where the supremum is taken in [uo, p], thus sup(f) = po. Since AN p is
unbounded in p, by (5), either f5(1) = p or f5(2) = p. Hence, there exist an unbounded
set D(9) in p and i(d) € {1, 2} satisfying

X N ((po, 7] x (v0,0]) € Uysy for each v € D(6).

This implies that X N ((uo0, ] x (10,0]) € Ussy. Since BN v is unbounded in v, there exist
ip € {1,2} and B"” C B’ such that B” is unbounded in v and i(d) = iy for each § € B”.
Thus, X N ((po, u] x (0, v]) € Us,.

Subcase (1b). cf(u) = cf(v) and M~1(A) N N~1(B) is stationary in cf(x). Choose
ag < cf(p) with pg < M(ap) and vg < N(ap). Define a map g : {1,2} — [ag, cf(u)] by

g(i) =sup{a: ag < a < cf(p) and X N ((uo, M ()] x (vo, N()]) C U;}

for i € {1,2}, where the supremum is taken in [ag, cf(u)], thus sup(d) = «g. By (5), there
exists ig € {1,2} such that g(ig) = cf(u). Hence, X N ((po, | X (vo,v]) C Uj,.

Case 2. p € A and v ¢ B. In this case, it follows from (1) and (3) that cf(v) > wy,
AN p is unbounded in p and B N v is stationary in v. Since A x B is normal, we have
cf(p) # cf(v) by Lemma 4.5. Since (2) in Lemma 4.4 holds, there exist o < p and vg < v
satisfying the condition (5) in the proof of Case 1 above. We may assume that o € A and
vy € B. Define h : {1,2} — [vo,v] by

h(i) = sup{0 : vop < d < v and X N ((po, p] x (vo,9]) C U;}

for i € {1,2}, where the supremum is taken in [vg, V], thus sup(f) = vo. By (5), there exists
ip € {1, 2} such that h(ig) = v. This means that o, vo and io satisfy (4).

Case 3. ¢ A and v € B. The proof of this case is similar to that of Case 2.

Case 4. p € A and v € B. In this case, it is obvious that (4) is satisfied by some
o € ANp, vg € BNy and ig € {1,2}.
The proof is complete. O

5 Base-normality of subspaces of w2 By Theorem 2.1, not every normal subspace
of (w1 4+ 1)? is base-normal. By contrast, we show the following Theorem 5.1.

Theorem 5.1. For X C w2, X is base-normal if and only if X is normal.

To prove Theorem 5.1, we need Lemma 5.2 below.

Let X Cwi?, a €w; and B € wy. Put Vo (X) = {y <w;: (a,v) € X}, Hg(X) ={y <
wi: (7,0) € X} and A(X) = {y < w1 :(y,7) € X}. For subsets C and D of w; + 1, put
Xe=XN(Cxwy), XP=XnN(w xD)and XF = X N (C x D). Disjoint closed sets E
and F' of a space Y are said to be separated if there exist disjoint open sets U and V of YV
such that £ C U and FF C V.

Lemma 5.2 (N. Kemoto, T. Nogura, Kerry D. Smith and Y. Yajima, [5]). Let X C

wi2. Then X is normal if and only if the following conditions hold:

(1) If a is a limit ordinal in w1 and Vo, (X) is not stationary in w, then there is a cub set
D in w1 such that X,y and XP are separated.

(2) If B is a limit ordinal in w1 and Hg(X) is not stationary in w1, then there is a cub
set C'in w1 such that X5, and X are separated.
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(3) If A(X) is not stationary in w1, then there is a cub set C' in wy such that X¢ and
X are separated.

Proof of Theorem 5.1. Assume that X is normal. If w(X) < w, then X is metrizable
and therefore is base-normal (see Theorem 3.3 in [9] and Corollary 2.3 in [10]). Suppose
w(X) = w; and X is not base-normal. Then X is not w;-base-normal. Let

pw=min{¢ < w; : X¢4q is not wy-base-normal}

and
v =min{n <w : X;’ﬂ is not wy-base-normal}.

Note that XZ_H is normal and not w;-base-normal, but for each p/ < p and v/ < v, X*!

n+1
and XZ++11 are wi-base-normal. Let Y = XZI% Then, for each p/ < p and v/ < v,
Yy = XZ,erll and YV +1 = X,’jljll. For each ¢/ < p and v/ < v, let G(i') be a base

for Y,/41 witnessing wi-base-normality of Y, 41, and H(¥') a base for YV’ +1 witnessing
w1-base-normality of Y *1. Let

B=|Jdw)|u <U H(V’)) U{Y N (s ) x (V) s < v <}

w<p v <v

Then B is a base for Y and |B| < wy. Since Y is normal and not w;-base-normal, by Lemma
3.1(2), there exists a binary open cover U = {Uy,Us} of Y admitting no locally finite re-
finement B’ by members of B. Similar to the proof of Theorem 4.3, 1 and v are limit ordinals.

Claim 1. {(u,v) €Y.

Proof of Claim 1. Suppose {u,v) € Y. Then there exist y/ < p, v < v and iy € {1,2}
such that Y N ((¢/, p] x (v/,v]) C U,,. Take a subcollection G’ C G(n’) such that G is
a locally finite (in Y,/41) refinement of {U1 N Y, 11,02 N Y41}, and H C H(v') such
that M’ is a locally finite (in Y*'*1) refinement of {U; N Y*'*1, U, N Y¥' 1}, Put B =
G UH U{Y n((,u] x (¢v,v])}. Then B’ is a locally finite refinement of U, which is a
contradiction. O

Claim 2. p=wy and v = wy.

Proof of Claim 2. Suppose that it does not hold. We distinguish the following three cases
(i), (ii) and (iii).

Case (i). p < wy and v < wy. In this case, Y is metrizable. Hence, Y is base-normal
and wi-base-normal, which is a contradiction.

Case (ii). p < wy and v = wy. Since p is a limit ordinal and p < wy, cf(p) = w. If
Vi (Y) is stationary in wq, then by the PDL, there exist uo < p, vo < wy and ip € {1,2}
such that Y N ((po, p] x (vo,w1)) C Usy. Since Y\U;, C (Y041 UY 1), U has a locally finite
refinement B’ C B. This is a contradiction. If Vi,,(Y) is not stationary in wi, then there
exists a cub set D in w such that DN V() (Y) = 0. Hence, w1\ D = D, cguce(p) (P0(7),7]-
Thus, Y can be represented as the union

Y = <@ Y(M(i1),M(¢)]> U @ y (po ()]

i<w y€Suce(D)
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where M : w — p is a normal function. By Lemma 3.1(1) and Proposition 3.4, Y is
wi-base-normal, which is a contradiction.

Case (ili). p = w1 and v < w;. The proof of this case is similar to that of Case (ii).
The proof of Claim 2 is complete. O

By Claim 2, we have Y = X. To complete the proof, it suffices to consider the following
two cases:

Case 1. A(X) is stationary. In this case, by the PDL, there exist ' < wy, v < wy and
i’ € {1,2} such that X N ((¢',w1) x (¢',w1)) C Uy, This implies that U has a locally finite
refinement B’ C B, which is a contradiction.

Case 2. A(X) is not stationary. By Lemma 5.2, there is a cub set C' in w; such that
XcN X% =0. Since Y can be represented as the union

Y = @ Yipetal | U @ y (P (7)7]
y€E€Succ(C) y€E€Succ(C)

it follows from Lemma 3.1(1) and Proposition 3.4 that Y is wj-base-normal, which is a
contradiction. The proof is complete. O

6 Total paracompactness of subspaces of products of two ordinals J. E. Porter
[9] called a space X base-paracompact if there is an open base B for X with |B| = w(X)
such that every open cover of X has a locally finite refinement by members of B. Obviously,
every totally paracompact space is base-paracompact and every base-paracompact space
is paracompact. It remains unsolved whether or not every paracompact space is base-
paracompact. Porter [9] proved that all metrizable spaces and all Lindel6f spaces are base-
paracompact. Yamazaki [10] proved that a space is base-paracompact if and only if it is
base-normal and paracompact. Gruenhage [4] proved that every paracompact GO-space is
base-paracompact. In this section, we show that for a subspace of products of two ordinals,
total paracompactness, base-paracompactness and paracompactness coincide.

We call a space X locally totally paracompact if each point x of X has an open neigh-
borhood O, such that clxO, is totally paracompact.

The following Lemma seems to be known, but I could not find a suitable reference.

Lemma 6.1. Paracompact, locally totally paracompact spaces are totally paracompact.

Proof. Let X be paracompact and locally totally paracompact. For each x € X, take an
open neighborhood O, of x such that clxO, is totally paracompact. Since X is paracom-
pact, the open cover {O, : z € X} has a locally finite open refinement Y = {U, : a € Q}.
Let V = {V, : a € Q} be an open cover of X such that clxV, C U, for each o € Q. Let B
be an arbitrary open base for X. Foreach a € Q,let C, = {B € B: B C U, }U{BnNclxU, :
B € Band BNneclxV, = (0}. Then C, is an open base for clxU,. Since total paracom-
pactness is hereditary to closed subspaces, clxU, is totally paracompact. Hence, there
exists a subcollection C/, C C, such that C/, is a locally finite open cover of clxU,. Put
B, ={CecC,:CnV, #0}. Clearly, B, covers V, and B, C B. Let B = J,cq, B,- Then
B’ is a locally finite cover of X by members of B. Hence, X is totally paracompact. O

The following Lemma 6.2 follows directly from Lemma 6.1.

Lemma 6.2. If paracompact space X is the union of two totally paracompact open sub-
spaces of X, then X is totally paracompact.
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Lemma 6.3 (N. Kemoto, K. Tamano and Y. Yajima, [7], Lemma 2.2). Let X be
a subspace of an ordinal A\. Then X is paracompact if and only if for every p € (A+1)\ X
with cf(u) > wy, X N is not stationary in .

Proposition 6.4. For a subspace X of an ordinal A, the following are equivalent:
(a) X is totally paracompact.
(b) X is base-paracompact.
(¢) X is paracompact.

Proof. Tt suffices to show that (c) implies (a). The proof is similar to that of Lemma 2.2 in
[7]. Suppose (c) holds and X is not totally paracompact. Put

p={&<X: XN(&+1)is not totally paracompact}.

It follows from the minimality of u that u is a limit ordinal. Note that X N (u + 1) is not
totally paracompact, and X N (u' + 1) is totally paracompact for each ' < u. Now we
show that p ¢ X. Suppose p € X. Then for any open base B of X N (u + 1), there exists
' < pand B’ € Bsuch that (¢/,u] N X C B’. Since X N (' + 1) is totally paracompact
and B'={B € B: B C pu 41} is an open base for X N (u' + 1), there exists a subcollection
B” C B’ such that B” is a locally finite open cover of X N (1 + 1). Hence, B” U {B'} is
a locally finite subcover of B, which contradicts the fact that X N (u 4+ 1) is not totally
paracompact. Thus p ¢ X. Let M : cf(u) — p be a normal function for .
If cf(11) = w, then X N (4 1) can be represented as the sum

X0 (p+1) =@ N (M@ 1), M)

i<w

of totally paracompact subspaces. Hence, X N (u + 1) is totally paracompact, which is a
contradiction.

If cf() > wn, then by Lemma 6.3, X N p is not stationary in p. Hence, there exists a
cub set C in cf(p) such that M(C)N X = 0. Since X N (u + 1) can be represented as the
sum

Xnu+)= @ (XN (Mpcr), MH))
~yESucc(C)

of totally paracompact subspaces, it is totally paracompact. This is a contradiction. [l

Lemma 6.5 (N. Kemoto, K. Tamano and Y. Yajima, [7], Theorem 3.3). Let X be
subspace of \? for some ordinal \. Then X is paracompact if and only if for each {u,v) €
A+1D2\ X,

(1) if cf(u) > w1, then there is a cub set C' in cf(p) such that X} and Xareyuguy are

separated,

2) if cf(v) > w1, then there is a cub set D in cf(v) such that X, and XNPIV} gre
{n}
separated,

(3) if cf(u) > w1 and cf(v) > wi, then there are two cub sets C in cf(u) and D in
cf(v) such that Xprcyuquy and XNDOWAYY gre separated, where M : cf (1) — p and
N : cf(v) — v are normal functions.

Theorem 6.6. Let X be a subspace of N> for some ordinal X. Then the following are
equivalent:
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(a) X is totally paracompact.
(b) X is base-paracompact.
(¢) X is paracompact.

Proof. Tt suffices to show that (c) implies (a). Suppose (c¢) holds and X is not totally
paracompact. Let

p=min{é < XA: Xey is not totally paracomapct }

and
v=min{n < \: XL’JH is not totally paracompact}.

Note that X L’_ﬁ is paracompact and not totally paracompact, but X L’,erll and X Z:rll are
totally paracompact for each p/ < pand v/ < v. It follows from Proposition 6.4 and the def-
initions of p and v that p and v are limit ordinals. Let Y = XZI% we show that (u,v) €Y.
Suppose (u,v) € Y. Let B be an arbitrary open base for Y. Then there exist p/ < p, v/ < v
and B € B such that (u,v) € (', ] x (/,v] C B. Since Y11 and Y *lare totally para-
compact, this implies that B has a locally finite subcover, which contradicts the fact that Y

is not totally paracompact. Let M : cf(u) — pand N : cf(v) — v be fixed normal functions.
To complete the proof, we only need to consider the following four cases.

Case 1. cf(p) = w and cf(v) = w. In this case, Y can be represented as the union

= (@) (@)

<w <w
of two open subspaces which are the sum of totally paracompact subspaces. By Lemma
6.2, Y is totally paracompact, which is a contradiction.

Case 2. cf(u) > wy and cf(v) = w. In this case, by Lemma 6.5, there is a cub set C' in
cf(p) such that y{tn Yumoyouy = (). Since Y can be represented as the union

Y = @ YMpo ()M | U <@ Y(N(il),N(i)]> 7

yESuce(C) i<w
Y is totally paracompact, which is a contradiction.

Case 3. cf(p) = w and cf(v) > wy. The proof of this case is quite similar to that of
Case 2.

Case 4. cf(u) > wy and cf(v) > wq. In this case, by Lemma 6.5, there are two cub
sets C' in cf(p) and D in cf(v) such that Yacyuguy N yNPU{rE — ¢ Since Y can be
represented as the union

N(pp(6)),N (8
Y=| @D Yoweonum |U| @ yeeonNe
y€ESuce(C) d€Succ(D)
Y is totally paracompact, which is a contradiction. The proof is complete. O
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