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Abstract. In this paper, we study base-normality and total paracompactness of
subspaces of products of two ordinals. We prove the following: (1) For every regular
cardinal κ with κ ≥ ω1, there exists a normal non-base-normal subspace X of (κ + 1)2

with w(X) = κ. (2) If A and B are subspaces of an ordinal, then A×B is base-normal
if and only if A × B is normal. (3) Every normal subspace of ω1

2 is base-normal. (4)
Every paracompact subspace of products of two ordinals is totally paracompact.

1 Introduction Throughout this paper, all spaces are assumed to be Hausdorff topolog-
ical spaces. For a space X , w(X) denotes the weight of X . For a subspace A of X , the
closure of A in X is denoted by clXA. For a collection A of subsets of X , {clXA : A ∈ A}
is denoted by clXA.

Yamazaki [10] defined a space X to be base-normal if there is an open base B for X
with |B| = w(X) such that every binary open cover {U1, U2} of X admits a locally finite
cover B′ of X by members of B such that clXB′ refines {U1, U2}. A space X is said to be
totally paracompact [3] if every open base for X contains a locally finite subcover.

In this paper, we discuss base-normality and total paracompactness of subspaces of
products of two ordinals and show the results (1)-(4) stated in the abstract.

Answering Yamazaki’s question in [11], Gruenhage [4] gave an example of a countably
compact LOTS which is not base-normal. Our result (1) gives different examples in ZFC
of a normal space which is not base-normal.

It is known that many familiar examples of paracompact spaces are not totally para-
compact; for example, the space of all the irrationals, the Sorgenfrey line and the Michael
line are not totally paracompact ([1] and [2]). Our result (4) shows that there is no dif-
ference between paracompactness and total paracompactness for a subspace of products of
two ordinals.

Now we introduce some notations from [5].
Let cf(µ) denote the cofinality of an ordinal µ. When cf(µ) ≥ ω1, a subset S of µ is

said to be stationary in µ if it intersects all cub (i.e., closed and unbounded) sets in µ. For
A ⊆ µ, let Limµ(A) = {α < µ : α = sup(A ∩ α)}. We consider sup(∅) = −1 if there is
no special explanation. Assume that C is a cub in µ with cf(µ) ≥ ω, then Limµ(C) ⊆ C.
We define Succ(C) = C \ Limµ(C), and pC(α) = sup(C ∩ α) for each α ∈ C. Note that
pC(α) < α if and only if α ∈ Succ(C). Observe that µ\Limµ(C) is the union of the pairwise
disjoint collection {(pC(α), α] : α ∈ Succ(C)} of clopen intervals of µ.

For a limit ordinal µ, a strictly increasing function M : cf(µ) → µ is said to be normal
if M(γ) = sup{M (γ′) : γ′ < γ} for each limit ordinal γ < cf(µ) and µ = sup{M (γ) : γ <
cf(µ)}. For convenience, we defineM(−1) = −1. Clearly,M carries cf(µ) homeomorphically
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to the range ran(M ) ofM and ran(M ) is closed in µ. Note that for all S ⊆ µ with cf(µ) ≥ ω1,
S is stationary in µ if and only ifM−1(S) is stationary in cf(µ). If µ and ν are limit ordinals,
let M and N denote the fixed normal functions for µ and ν, respectively.

The following Lemma will be used frequently throughout the paper (see [8]).

Lemma 1.1. (The PDL.) Let κ > ω be regular, S a stationary subset in κ, and f : S → κ
such that f(γ) < γ for each γ ∈ S; then for some α < κ, f−1(α) is stationary.

2 Normal non-base-normal subspaces of (κ + 1)2 First, we show that for every
regular cardinal κ with κ ≥ ω1, there exists a normal non-base-normal subspace X of
(κ+ 1)2 with w(X) = κ.

Theorem 2.1. Let κ be a regular cardinal with κ ≥ ω1, and let X = {〈α, β〉 : β < α <
κ, α and β are successor ordinals} ∪ ({κ} × κ). Then X is normal and not base-normal.

Proof. To show that X is normal, let F1 and F2 be disjoint closed subsets of X . Since κ is
normal, there exist disjoint open sets G1 and G2 of κ such that Fi∩({κ}×κ) ⊆ {κ}×Gi for
i = 1, 2. It is easy to show that ((((κ+1)×G1)\F2)∪F1)∩X and ((((κ+1)×G2)\F1)∪F2)∩X
are disjoint open sets in X containing F1 and F2, respectively. Hence, X is normal.

Next, we show that X is not base-normal. Obviously, w(X) = κ. Suppose B is a base
of X with |B| = κ. We will show that B cannot witness base-normality of X .

Claim 1. Let B ∈ B. If {δ < κ : 〈κ, δ〉 ∈ B} is stationary in κ, then there exist a cub
set C(B) in κ, a function f(B, ·) : C(B) → κ and an ordinal g(B) < min(C(B)) such that
((f(B, γ), κ] × (g(B), γ]) ∩X ⊆ B for each γ ∈ C(B).

Proof of Claim 1. For each δ ∈ κ with 〈κ, δ〉 ∈ B, fix p(B, δ) < κ and q(B, δ) < δ such that
((p(B, δ), κ]×(q(B, δ), δ])∩X ⊆ B. Applying the PDL, we can find an ordinal g(B) < κ and
a stationary set S in κ such that S ⊆ {δ < κ : 〈κ, δ〉 ∈ B} and q(B, δ) = g(B) for each δ ∈ S.
Let C(B) = {γ ∈ κ : γ > min(S)}. For each γ ∈ C(B), let ψ(γ) = min{δ ∈ S : γ ≤ δ}, and
f(B, γ) = p(B,ψ(γ)). Then (f(B, γ), κ]×(g(B), γ])∩X ⊆ ((p(B,ψ(γ)), κ]×(g(B), ψ(γ)])∩
X ⊆ B. The proof of Claim 1 is complete.

Let B′ = {B ∈ B : {δ < κ : 〈κ, δ〉 ∈ B} is stationary in κ}. Rewrite B′ = {Bα :
α < ξ}, where ξ is a cardinal. By Claim 1, for each α < ξ, there exist a cub set
Cα in κ, a function f(Bα, ·) : Cα → κ and an ordinal g(Bα) < min(Cα) such that
((f(Bα, γ), κ] × (g(Bα), γ]) ∩ X ⊆ Bα for each γ ∈ Cα. If ξ < κ, let C′ =

⋂
α<ξ Cα.

If ξ = κ, let C′ = {γ ∈ κ : ∀α < γ(γ ∈ Cα)}. In any case, C′ is a cub set in κ ([8], II,
Lemma 6.8 and Lemma 6.14). Let C = Limκ(C′). Then C is a cub set in κ and C ⊆ C′.
For each γ ∈ C, take a limit ordinal f(γ) < κ such that f(γ) > sup{f (Bα, γ) : α < γ}.
We may assume that f(γ′) < f(γ) if γ′ < γ. Let U1 =

⋃{((f(γ), κ] × [0, γ]) ∩X : γ ∈ C}.
Then {κ} × κ ⊆ U1. Let U2 = X \ ({κ} × κ). Then {U1, U2} is a binary open cover of X .
We will show that {U1, U2} admits no locally finite refinement by members of B. Suppose
B∗ is a refinement of {U1, U2} by members of B. To complete the proof, it suffices to show
that B∗ is not locally finite in X .

Claim 2. For each α < ξ, Bα \ U1 �= ∅.

Proof of Claim 2. Fix α < ξ. Take γ1 ∈ C such that γ1 > α. Let γ2 = min{γ ∈ C : γ > γ1}.
By the definition of C, we have γ1 ∈ Cα and γ2 ∈ Cα. Since f(γ2) > f(Bα, γ2) and f(γ2)
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is a limit ordinal, there exists a successor ordinal α′ ∈ κ such that f(Bα, γ2) < α′ < f(γ2).
Since γ2 > γ1 and γ2 is a limit ordinal, there exists a successor ordinal β′ ∈ κ such that
γ1 < β′ < γ2. Since g(Bα) < min(Cα) and γ1 ∈ Cα, we have γ1 > g(Bα). Hence,
〈α′, β′〉 ∈ ((f(Bα, γ2), κ] × (γ1, γ2]) ∩ X ⊆ ((f(Bα, γ2), κ] × (g(Bα), γ2]) ∩X ⊆ Bα. Since
{f (γ) : γ ∈ C} is strictly increasing and γ2 is the successor of γ1 in C, it follows from the
definition of U1 that 〈α′, β′〉 �∈ U1. The proof of Claim 2 is complete.

Let B′′ = B \ B′. Rewrite B′′ = {Bβ : β < η}, where η is a cardinal. For each
β < η, since {δ < κ : 〈κ, δ〉 ∈ Bβ} is not stationary in κ, there exists a cub set Dβ in κ
such that Dβ ∩ {δ < κ : 〈κ, δ〉 ∈ Bβ} = ∅. If η < κ, let D =

⋂
β<η Dβ . If η = κ, let

D = {σ ∈ κ : ∀β < σ(σ ∈ Dβ)}. In any case, D is a cub set in κ. Since B∗ is a refinement
of {U1, U2}, we can take σ0 ∈ D and W0 ∈ B∗ such that 〈κ, σ0〉 ∈ W0 ⊆ U1. It follows
from Claim 2 that W0 ∈ B′′. Hence, W0 = Bβ0 for some β0 ∈ η. Since D is unbounded
in κ, there exists σ1 ∈ D such that σ1 > σ0 and σ1 > β0. By the definition of D, we
have σ1 ∈ Dβ0 . Hence, 〈κ, σ1〉 �∈ Bβ0 = W0. Take W1 ∈ B∗ such that 〈κ, σ1〉 ∈ W1 ⊆ U1.
Then, W1 �= W0 and W1 ∈ B′′. Proceeding by induction, we can choose a strictly increasing
sequence {σi : i ∈ ω} in D and a sequence {Wi : i ∈ ω} in B∗ such that 〈κ, σi〉 ∈ Wi for
each i ∈ ω and Wi �= Wj whenever i �= j. Let σ = sup{σi : i ∈ ω}. Then, {Wi : i ∈ ω} is
not locally finite at 〈κ, σ〉 in X . Thus, B∗ is not a locally finite refinement of {U1, U2}. The
proof is complete.

3 Some properties of τ-base-normality Throughout Sections 3 and 4, τ stands for
an infinite cardinal. We introduce the notion of τ -base-normality, which is a generalization
of base-normality, and use it to prove main theorems in Sections 4 and 5. For a space X and
a cardinal τ with w(X) ≤ τ , we call X τ -base-normal if there is an open base B for X with
|B| ≤ τ such that every binary open cover {U1, U2} of X admits a locally finite cover B′ of X
by members of B such that clXB′ refines {U1, U2}. Note that for a space X with w(X) ≥ ω,
X is w(X)-base-normal if and only if X is base-normal. Yamazaki[11] called a subspace A
of X base-normal relative to X if there is an open base B for X with |B| = w(X) such
that for every binary open (in X) cover {U1, U2} of A there is a locally finite (in X) family
B′ ⊆ B such that clXB′ is a partial refinement of {U1, U2} and A ⊆ ⋃B′. Similarly, we
define τ -base-normality relative to X by replacing the condition |B| = w(X) by |B| ≤ τ .
It is noted that if X is τ -base-normal, then every closed subspace of X is τ -base-normal
and τ -base-normal relative to X .

The proof of the following lemma is straightforward and left to the reader.

Lemma 3.1. For a space X and a cardinal τ with τ ≥ w(X), the following statements
hold:

(1) If X is the topological sum of a collection {At : t ∈ T } of τ-base-normal subspaces of
X with |T | ≤ τ , then X is τ-base-normal.

(2) If X is normal, then X is τ-base-normal if and only if there is a base B for X
with |B| ≤ τ such that every binary open cover {U1, U2} of X admits a locally finite
refinement B′ of X by members of B.

Yamazaki [11] showed that if a normal space X is the countable union of closed base-
normal sets relative to X , then X is base-normal. Similarly, we can prove the following
Lemma 3.2.

Lemma 3.2. Let X be a normal space. If X is the countable union of closed τ-base-normal
sets relative to X, then X is τ-base-normal.
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Lemma 3.3. Let X be a normal space and A ⊆ Y ⊆ X with A closed in X and Y open in
X. Let τ ≥ w(X). If Y is τ-base-normal, then A is τ-base-normal relative to X.

Proof. Since X is normal, there exists an open subset V of X such that X \ Y ⊆ V ⊆
clXV ⊆ X \ A. Let BY be an open base for Y witnessing τ -base-normality of Y . Since Y
is open in X , we can take an open base BX for X such that |BX | ≤ τ and BY ⊆ BX . Let
{U1, U2} be an open (in X) cover of A. Since X is normal and A is closed in X , there exist
open subsets W1 and W2 of X such that A ⊆ W1 ∪W2 and clXWi ⊆ Ui for i = 1, 2. Let
Gi = Wi \ clXV for i = 1, 2. Then A ⊆ G1 ∪G2 ⊆ Y . Since A is a closed subset of τ -base-
normal space Y , A is τ -base-normal relative to Y . Hence, there exists B′ ⊆ BY such that
B′ is locally finite in Y , A ⊆ ⋃B′ and clY B′ is a partial refinement of {G1, G2}. Clearly,
clXB′ is a partial refinement of {U1, U2}. Since Y is open in X and X \ Y ⊆ V ⊆ X \⋃B′,
B′ is locally finite in X . Thus, A is τ -base-normal relative to X .

Proposition 3.4. Let X be a normal space and τ ≥ w(X). If X is the union of two
τ-base-normal open subspaces of X, then X is τ-base-normal.

Proof. Let Y and Z be two τ -base-normal open subsets of X with Y ∪ Z = X . Since
X is normal, there exist disjoint open subsets U and V of X such that X \ Y ⊆ U and
X \ Z ⊆ V . By Lemma 3.3, X \ U and X \ V are τ -base-normal relative to X . Since
X = (X \ U) ∪ (X \ V ), it follows from Lemma 3.2 that X is τ -base-normal.

4 Base-normality of products of two subspaces of ordinals Let λ be an ordinal
with the order topology and let X ⊆ λ2. For A ⊆ λ+1 and B ⊆ λ+1, putXA = (A×λ)∩X ,
XB = (λ×B) ∩X and XB

A = XA ∩XB. The proof of Lemma 4.1 is easy and omitted.

Lemma 4.1. Let X be a subspace of λ2 for some ordinal λ. Then w(X) = |X |.
Proposition 4.2. For every ordinal α, every subspace A of α is base-normal.

Proof. We prove the proposition by induction on α. Assume that for all β < α, every
subspace of β is base-normal. Let A be a subspace of α. We separate the proof into the
following two cases.

Case 1. α = β + 1 for some ordinal β. If β �∈ A, then A ⊆ β. By the assumption, A
is base-normal. If β ∈ A and β is an isolated point in A, then it is easy to show that A is
base-normal. If β ∈ A and β ∈ Limα(A), then w(A) = |A| ≥ cf(β). Let f : cf(β) → β be a
normal function for β. For each γ < cf(β), let Bγ be a base for A ∩ (f(γ) + 1) witnessing
base-normality of A ∩ (f(γ) + 1). Let

B = (
⋃

γ<cf(β)

Bγ) ∪ {(f(γ), β] ∩A : γ < cf(β)}.

It is easy to check that B witnesses base-normality of A.

Case 2. α is a limit ordinal. If A is bounded in α, then A ⊆ β for some β < α and
therefore A is base-normal. If A is unbounded in α, we treat the following subcases (2a)
and (2b) separately.

Subcase (2a). A is not stationary in α. Then there exists a cub set C in α such that
A ∩C = ∅ and |C| = cf(α). Hence, A can be represented as

A =
⊕

γ∈Succ(C)

((pC(γ), γ] ∩A),
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where pC(γ) is defined in the introduction. For each γ ∈ Succ(C), since (pC(γ), γ] ∩A is a
base-normal space with the weight ≤ w(A), it is w(A)-base-normal. Since |Succ(C)| ≤ |C| =
cf(α) ≤ |A| = w(A), by Lemma 3.1(1), A is w(A)-base-normal. Hence, A is base-normal.

Subcase (2b). A is stationary in α. Let g : cf(α) → α be a normal function for α.
For each γ < cf(α), let Wγ be a base for A ∩ (g(γ) + 1) witnessing base-normality of
A ∩ (g(γ) + 1). Let B = (

⋃
γ<cf(α) Wγ) ∪ {(g(γ), α) ∩A : γ < cf(α)}. Then B is a base for

A and |B| = w(A). Using the PDL, it is easy to show that B witnesses base-normality of
A. The proof is complete.

Theorem 4.3. For A, B ⊆ λ, A×B is base-normal if and only if A×B is normal.

To prove Theorem 4.3, we need the following two lemmas.

Lemma 4.4 (Kemoto, Ohta and Tamano, [6], Lemma 4.3). Let A, B ⊆ λ, µ, ν ∈
λ + 1. Put X = (A ∩ (µ + 1)) × (B ∩ (ν + 1)) and let P be a collection of subsets of X.
Assume that P is closed under taking subsets and each point of X is contained in an open
set in P. Then there exist µ0 < µ and ν0 < ν such that

X ∩ ((µ0, γ] × (ν0, δ]) ∈ P
for each γ ∈ A∩ (µ0, µ] and each δ ∈ B ∩ (ν0, ν], in each of the following cases (1) and (2):

(1) µ /∈ A, ν /∈ B, cf(µ) ≥ ω1, cf(ν) ≥ ω1 and either (1-1) or (1-2) in the following holds:

(1-1) cf(µ) �= cf(ν), A ∩ µ is stationary in µ and B ∩ ν is stationary in ν.

(1-2) cf(µ) = cf(ν) and M−1(A)∩N−1(B) is stationary in cf(µ), where M : cf(µ) → µ
and N : cf(ν) → ν are normal functions defined in the introduction.

(2) µ ∈ A, ν /∈ B, cf(ν) ≥ ω1, cf(µ) �= cf(ν) and B ∩ ν is stationary in ν.

Lemma 4.5 (Kemoto, Ohta and Tamano, [6], Theorem A). For A, B ⊆ λ, A × B
is normal if and only if for each µ, ν ∈ λ + 1 with cf(µ) = cf(ν) ≥ ω1, the following
conditions hold:

(1) If µ /∈ A and ν /∈ B, then A∩ µ is not stationary in µ or B ∩ ν is not stationary in ν
or M−1(A)∩N−1(B) is stationary in cf(µ), where M : cf(µ) → µ and N : cf(ν) → ν
are normal functions.

(2) If µ ∈ A and ν /∈ B, then A ∩ µ is bounded in µ or B ∩ ν is not stationary in ν.

(3) If µ /∈ A and ν ∈ B, then A ∩ µ is not stationary in µ or B ∩ ν is bounded in ν.

Proof of Theorem 4.3. Assume that A × B is normal and let τ = w(A × B). It suffices
to show that A × B is τ -base-normal. We use the idea in the proof of Theorem A in [6].
Suppose that A×B is not τ -base-normal. Put

µ = min{ξ ≤ λ : (A×B) ∩ ((ξ + 1) × λ)) is not τ -base-normal}
and

ν = min{η ≤ λ : (A×B) ∩ ((µ+ 1) × (η + 1)) is not τ -base-normal}.
Let X = (A×B) ∩ ((µ+ 1)× (ν + 1)). Note that X is normal and not τ -base-normal. For
each µ′ < µ, since Xµ′+1 is a closed subspace of τ -base-normal space (A×B)∩((µ′+1)×λ),
Xµ′+1 is τ -base-normal. For each ν′ < ν, by the definition of ν, Xν′+1 is τ -base-normal. It
follows from Proposition 4.2 and Lemma 3.1(1) that µ and ν are limit ordinals. Observe
that
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(1) A ∩ µ is unbounded in µ and B ∩ ν is unbounded in ν;

(2) if µ /∈ A, then cf(µ) ≥ ω1 and A ∩ µ is stationary in µ; and

(3) if ν /∈ B, then cf(ν) ≥ ω1 and B ∩ ν is stationary in ν.

In fact, (1) follows from the definitions of µ and ν, Proposition 4.2 and Lemma 3.1(1).
To see (2), suppose that µ /∈ A and either cf(µ) = ω or A ∩ µ is not stationary in µ.
Then, in both cases, A ∩ (µ + 1) can be expressed as the sum of ≤ cf(µ) many bounded,
clopen subspaces of A ∩ µ. By Lemma 4.1 and (1) in the above, we have τ ≥ w(X) =
|X | = max{|A ∩ µ|, |B ∩ ν|} ≥ max{cf(µ), cf(ν)}. Thus, X is the topological sum of ≤ τ
many τ -base-normal subspaces of X . By Lemma 3.1(1), X is τ -base-normal, which is a
contradiction. The proof of (3) is similar to that of (2).

For each µ′ ∈ A ∩ µ and ν′ ∈ B ∩ ν, let G(µ′) be a base for Xµ′+1 witnessing τ -base-
normality of Xµ′+1, and H(ν′) a base for Xν′+1 witnessing τ -base-normality of Xν′+1.
Let

B =

⎛
⎝ ⋃

µ′∈A∩µ

G(µ′)

⎞
⎠ ∪

( ⋃
ν′∈B∩ν

H(ν′)

)

∪ {X ∩ ((µ′, µ] × (ν′, ν]) : µ′ ∈ A ∩ µ and ν′ ∈ B ∩ ν}.

Then B is a base for X and |B| ≤ τ . Let U = {U1, U2} be an open cover of X . We shall
show that there exist µ0 ∈ A ∩ µ, ν0 ∈ B ∩ ν and i0 ∈ {1, 2} such that

(4) X ∩ ((µ0, µ] × (ν0, ν]) ⊆ Ui0 .

If we can find such µ0, ν0 and i0, then there exist G′ ⊆ G(µ0) such that G′ is a locally
finite (in Xµ0+1) refinement of {U1 ∩Xµ0+1, U2 ∩Xµ0+1}, and H′ ⊆ H(ν0) such that H′ is
a locally finite (in Xν0+1) refinement of {U1∩Xν0+1, U2∩Xν0+1}. Put B′ = G′ ∪H′∪{X ∩
((µ0, µ] × (ν0, ν])}. Then B′ is a locally finite refinement of U by members of B. It follows
from Lemma 3.1(2) that B witnesses τ -base-normality of X , which is a contradiction.

To prove (4), let
P = {W ⊆ X : W ⊆ U1 or W ⊆ U2}.

Then P is closed under taking subsets and each point of X is contained in an open set in
P . Now we separate the proof into four cases.

Case 1. µ /∈ A and ν /∈ B. In this case, it follows from (2) and (3) that cf(µ) ≥ ω1,
cf(ν) ≥ ω1, A ∩ µ is stationary in µ and B ∩ ν is stationary in ν. Hence, by Lemma 4.5,
we have two subcases: (1a) cf(µ) �= cf(ν), and (1b) cf(µ) = cf(ν) and M−1(A)∩N−1(B) is
stationary in cf(µ), where M : cf(µ) → µ and N : cf(ν) → ν are normal functions. In both
cases, (1) in Lemma 4.4 holds. Hence, there exist µ0 < µ and ν0 < ν such that

(5) X ∩ ((µ0, γ] × (ν0, δ]) ∈ P for each γ ∈ A ∩ (µ0, µ] and each δ ∈ B ∩ (ν0, ν].

Since A ∩ µ and B ∩ ν are unbounded in µ and ν respectively, we can assume that µ0 ∈ A
and ν0 ∈ B.

Subcase (1a). cf(µ) �= cf(ν). Put B′ = B ∩ (ν0, ν]. For each δ ∈ B′, define a map
fδ : {1, 2} → [µ0, µ] by

fδ(i) = sup{γ : µ0 < γ < µ and X ∩ ((µ0, γ] × (ν0, δ]) ⊆ Ui}
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for i ∈ {1, 2}, where the supremum is taken in [µ0, µ], thus sup(∅) = µ0. Since A ∩ µ is
unbounded in µ, by (5), either fδ(1) = µ or fδ(2) = µ. Hence, there exist an unbounded
set D(δ) in µ and i(δ) ∈ {1, 2} satisfying

X ∩ ((µ0, γ] × (ν0, δ]) ⊆ Ui(δ) for each γ ∈ D(δ).

This implies that X ∩ ((µ0, µ]× (ν0, δ]) ⊆ Ui(δ). Since B ∩ ν is unbounded in ν, there exist
i0 ∈ {1, 2} and B′′ ⊆ B′ such that B′′ is unbounded in ν and i(δ) = i0 for each δ ∈ B′′.
Thus, X ∩ ((µ0, µ] × (ν0, ν]) ⊆ Ui0 .

Subcase (1b). cf(µ) = cf(ν) and M−1(A) ∩ N−1(B) is stationary in cf(µ). Choose
α0 < cf(µ) with µ0 < M(α0) and ν0 < N(α0). Define a map g : {1, 2} → [α0, cf(µ)] by

g(i) = sup{α : α0 < α < cf(µ) and X ∩ ((µ0,M(α)] × (ν0, N(α)]) ⊆ Ui}
for i ∈ {1, 2}, where the supremum is taken in [α0, cf(µ)], thus sup(∅) = α0. By (5), there
exists i0 ∈ {1, 2} such that g(i0) = cf(µ). Hence, X ∩ ((µ0, µ] × (ν0, ν]) ⊆ Ui0 .

Case 2. µ ∈ A and ν /∈ B. In this case, it follows from (1) and (3) that cf(ν) ≥ ω1,
A ∩ µ is unbounded in µ and B ∩ ν is stationary in ν. Since A × B is normal, we have
cf(µ) �= cf(ν) by Lemma 4.5. Since (2) in Lemma 4.4 holds, there exist µ0 < µ and ν0 < ν
satisfying the condition (5) in the proof of Case 1 above. We may assume that µ0 ∈ A and
ν0 ∈ B. Define h : {1, 2} → [ν0, ν] by

h(i) = sup{δ : ν0 < δ < ν and X ∩ ((µ0, µ] × (ν0, δ]) ⊆ Ui}
for i ∈ {1, 2}, where the supremum is taken in [ν0, ν], thus sup(∅) = ν0. By (5), there exists
i0 ∈ {1, 2} such that h(i0) = ν. This means that µ0, ν0 and i0 satisfy (4).

Case 3. µ /∈ A and ν ∈ B. The proof of this case is similar to that of Case 2.

Case 4. µ ∈ A and ν ∈ B. In this case, it is obvious that (4) is satisfied by some
µ0 ∈ A ∩ µ, ν0 ∈ B ∩ ν and i0 ∈ {1, 2}.

The proof is complete.

5 Base-normality of subspaces of ω1
2 By Theorem 2.1, not every normal subspace

of (ω1 + 1)2 is base-normal. By contrast, we show the following Theorem 5.1.

Theorem 5.1. For X ⊆ ω1
2, X is base-normal if and only if X is normal.

To prove Theorem 5.1, we need Lemma 5.2 below.
Let X ⊆ ω1

2, α ∈ ω1 and β ∈ ω1. Put Vα(X) = {γ < ω1 : 〈α, γ〉 ∈ X}, Hβ(X) = {γ <
ω1 : 〈γ, β〉 ∈ X} and ∆(X) = {γ < ω1 : 〈γ, γ〉 ∈ X}. For subsets C and D of ω1 + 1, put
XC = X ∩ (C × ω1), XD = X ∩ (ω1 ×D) and XD

C = X ∩ (C ×D). Disjoint closed sets E
and F of a space Y are said to be separated if there exist disjoint open sets U and V of Y
such that E ⊆ U and F ⊆ V .

Lemma 5.2 (N. Kemoto, T. Nogura, Kerry D. Smith and Y. Yajima, [5]). Let X ⊆
ω1

2. Then X is normal if and only if the following conditions hold:

(1) If α is a limit ordinal in ω1 and Vα(X) is not stationary in ω1, then there is a cub set
D in ω1 such that X{α} and XD are separated.

(2) If β is a limit ordinal in ω1 and Hβ(X) is not stationary in ω1, then there is a cub
set C in ω1 such that X{β} and XC are separated.
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(3) If ∆(X) is not stationary in ω1, then there is a cub set C in ω1 such that XC and
XC are separated.

Proof of Theorem 5.1. Assume that X is normal. If w(X) ≤ ω, then X is metrizable
and therefore is base-normal (see Theorem 3.3 in [9] and Corollary 2.3 in [10]). Suppose
w(X) = ω1 and X is not base-normal. Then X is not ω1-base-normal. Let

µ = min{ξ ≤ ω1 : Xξ+1 is not ω1-base-normal}

and
ν = min{η ≤ ω1 : Xη+1

µ+1 is not ω1-base-normal}.
Note that Xν+1

µ+1 is normal and not ω1-base-normal, but for each µ′ < µ and ν′ < ν, Xν+1
µ′+1

and Xν′+1
µ+1 are ω1-base-normal. Let Y = Xν+1

µ+1 . Then, for each µ′ < µ and ν′ < ν,
Yµ′+1 = Xν+1

µ′+1 and Y ν′+1 = Xν′+1
µ+1 . For each µ′ < µ and ν′ < ν, let G(µ′) be a base

for Yµ′+1 witnessing ω1-base-normality of Yµ′+1, and H(ν′) a base for Y ν′+1 witnessing
ω1-base-normality of Y ν′+1. Let

B =

⎛
⎝ ⋃

µ′<µ

G(µ′)

⎞
⎠ ∪

( ⋃
ν′<ν

H(ν′)

)
∪ {Y ∩ ((µ′, µ] × (ν′, ν]) : µ′ < µ, ν′ < ν}.

Then B is a base for Y and |B| ≤ ω1. Since Y is normal and not ω1-base-normal, by Lemma
3.1(2), there exists a binary open cover U = {U1, U2} of Y admitting no locally finite re-
finement B′ by members of B. Similar to the proof of Theorem 4.3, µ and ν are limit ordinals.

Claim 1. 〈µ, ν〉 �∈ Y .

Proof of Claim 1. Suppose 〈µ, ν〉 ∈ Y . Then there exist µ′ < µ, ν′ < ν and i0 ∈ {1, 2}
such that Y ∩ ((µ′, µ] × (ν′, ν]) ⊆ Ui0 . Take a subcollection G′ ⊆ G(µ′) such that G′ is
a locally finite (in Yµ′+1) refinement of {U1 ∩ Yµ′+1, U2 ∩ Yµ′+1}, and H′ ⊆ H(ν′) such
that H′ is a locally finite (in Y ν′+1) refinement of {U1 ∩ Y ν′+1, U2 ∩ Y ν′+1}. Put B′ =
G′ ∪ H′ ∪ {Y ∩ ((µ′, µ] × (ν′, ν])}. Then B′ is a locally finite refinement of U , which is a
contradiction.

Claim 2. µ = ω1 and ν = ω1.

Proof of Claim 2. Suppose that it does not hold. We distinguish the following three cases
(i), (ii) and (iii).

Case (i). µ < ω1 and ν < ω1. In this case, Y is metrizable. Hence, Y is base-normal
and ω1-base-normal, which is a contradiction.

Case (ii). µ < ω1 and ν = ω1. Since µ is a limit ordinal and µ < ω1, cf(µ) = ω. If
V{µ}(Y ) is stationary in ω1, then by the PDL, there exist µ0 < µ, ν0 < ω1 and i0 ∈ {1, 2}
such that Y ∩((µ0, µ]×(ν0, ω1)) ⊆ Ui0 . Since Y \Ui0 ⊆ (Yµ0+1∪Y ν0+1), U has a locally finite
refinement B′ ⊆ B. This is a contradiction. If V{µ}(Y ) is not stationary in ω1, then there
exists a cub set D in ω1 such that D∩V{µ}(Y ) = ∅. Hence, ω1 \D =

⊕
γ∈Succ(D)(pD(γ), γ].

Thus, Y can be represented as the union

Y =

(⊕
i<ω

Y(M(i−1),M(i)]

)
∪
⎛
⎝ ⊕

γ∈Succ(D)

Y (pD(γ),γ]

⎞
⎠ ,
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where M : ω → µ is a normal function. By Lemma 3.1(1) and Proposition 3.4, Y is
ω1-base-normal, which is a contradiction.

Case (iii). µ = ω1 and ν < ω1. The proof of this case is similar to that of Case (ii).
The proof of Claim 2 is complete.

By Claim 2, we have Y = X . To complete the proof, it suffices to consider the following
two cases:

Case 1. ∆(X) is stationary. In this case, by the PDL, there exist µ′ < ω1, ν′ < ω1 and
i′ ∈ {1, 2} such that X ∩ ((µ′, ω1) × (ν′, ω1)) ⊆ Ui′ . This implies that U has a locally finite
refinement B′ ⊆ B, which is a contradiction.

Case 2. ∆(X) is not stationary. By Lemma 5.2, there is a cub set C in ω1 such that
XC ∩XC = ∅. Since Y can be represented as the union

Y =

⎛
⎝ ⊕

γ∈Succ(C)

Y(pC(γ),γ]

⎞
⎠ ∪

⎛
⎝ ⊕

γ∈Succ(C)

Y (pC(γ),γ]

⎞
⎠ ,

it follows from Lemma 3.1(1) and Proposition 3.4 that Y is ω1-base-normal, which is a
contradiction. The proof is complete.

6 Total paracompactness of subspaces of products of two ordinals J. E. Porter
[9] called a space X base-paracompact if there is an open base B for X with |B| = w(X)
such that every open cover of X has a locally finite refinement by members of B. Obviously,
every totally paracompact space is base-paracompact and every base-paracompact space
is paracompact. It remains unsolved whether or not every paracompact space is base-
paracompact. Porter [9] proved that all metrizable spaces and all Lindelöf spaces are base-
paracompact. Yamazaki [10] proved that a space is base-paracompact if and only if it is
base-normal and paracompact. Gruenhage [4] proved that every paracompact GO-space is
base-paracompact. In this section, we show that for a subspace of products of two ordinals,
total paracompactness, base-paracompactness and paracompactness coincide.

We call a space X locally totally paracompact if each point x of X has an open neigh-
borhood Ox such that clXOx is totally paracompact.

The following Lemma seems to be known, but I could not find a suitable reference.

Lemma 6.1. Paracompact, locally totally paracompact spaces are totally paracompact.

Proof. Let X be paracompact and locally totally paracompact. For each x ∈ X , take an
open neighborhood Ox of x such that clXOx is totally paracompact. Since X is paracom-
pact, the open cover {Ox : x ∈ X} has a locally finite open refinement U = {Uα : α ∈ Ω}.
Let V = {Vα : α ∈ Ω} be an open cover of X such that clXVα ⊆ Uα for each α ∈ Ω. Let B
be an arbitrary open base for X . For each α ∈ Ω, let Cα = {B ∈ B : B ⊆ Uα}∪{B∩clXUα :
B ∈ B and B ∩ clXVα = ∅}. Then Cα is an open base for clXUα. Since total paracom-
pactness is hereditary to closed subspaces, clXUα is totally paracompact. Hence, there
exists a subcollection C′

α ⊆ Cα such that C′
α is a locally finite open cover of clXUα. Put

B′
α = {C ∈ C′

α : C ∩ Vα �= ∅}. Clearly, B′
α covers Vα and B′

α ⊆ B. Let B′ =
⋃

α∈Ω B′
α. Then

B′ is a locally finite cover of X by members of B. Hence, X is totally paracompact.

The following Lemma 6.2 follows directly from Lemma 6.1.

Lemma 6.2. If paracompact space X is the union of two totally paracompact open sub-
spaces of X, then X is totally paracompact.
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Lemma 6.3 (N. Kemoto, K. Tamano and Y. Yajima, [7], Lemma 2.2). Let X be
a subspace of an ordinal λ. Then X is paracompact if and only if for every µ ∈ (λ+ 1) \X
with cf(µ) ≥ ω1, X ∩ µ is not stationary in µ.

Proposition 6.4. For a subspace X of an ordinal λ, the following are equivalent:

(a) X is totally paracompact.

(b) X is base-paracompact.

(c) X is paracompact.

Proof. It suffices to show that (c) implies (a). The proof is similar to that of Lemma 2.2 in
[7]. Suppose (c) holds and X is not totally paracompact. Put

µ = {ξ ≤ λ : X ∩ (ξ + 1) is not totally paracompact}.
It follows from the minimality of µ that µ is a limit ordinal. Note that X ∩ (µ+ 1) is not
totally paracompact, and X ∩ (µ′ + 1) is totally paracompact for each µ′ < µ. Now we
show that µ /∈ X . Suppose µ ∈ X . Then for any open base B of X ∩ (µ + 1), there exists
µ′ < µ and B′ ∈ B such that (µ′, µ] ∩X ⊆ B′. Since X ∩ (µ′ + 1) is totally paracompact
and B′ = {B ∈ B : B ⊆ µ′ + 1} is an open base for X ∩ (µ′ + 1), there exists a subcollection
B′′ ⊆ B′ such that B′′ is a locally finite open cover of X ∩ (µ′ + 1). Hence, B′′ ∪ {B′} is
a locally finite subcover of B, which contradicts the fact that X ∩ (µ + 1) is not totally
paracompact. Thus µ /∈ X . Let M : cf(µ) → µ be a normal function for µ.

If cf(µ) = ω, then X ∩ (µ+ 1) can be represented as the sum

X ∩ (µ+ 1) =
⊕
i<ω

(X ∩ (M(i− 1),M(i)])

of totally paracompact subspaces. Hence, X ∩ (µ + 1) is totally paracompact, which is a
contradiction.

If cf(µ) ≥ ω1, then by Lemma 6.3, X ∩ µ is not stationary in µ. Hence, there exists a
cub set C in cf(µ) such that M(C) ∩X = ∅. Since X ∩ (µ + 1) can be represented as the
sum

X ∩ (µ+ 1) =
⊕

γ∈Succ(C)

(X ∩ (M(pC(γ)),M(γ)])

of totally paracompact subspaces, it is totally paracompact. This is a contradiction.

Lemma 6.5 (N. Kemoto, K. Tamano and Y. Yajima, [7], Theorem 3.3). Let X be
subspace of λ2 for some ordinal λ. Then X is paracompact if and only if for each 〈µ, ν〉 ∈
(λ+ 1)2 \X,

(1) if cf(µ) ≥ ω1, then there is a cub set C in cf(µ) such that X{ν} and XM(C)∪{µ} are
separated,

(2) if cf(ν) ≥ ω1, then there is a cub set D in cf(ν) such that X{µ} and XN(D)∪{ν} are
separated,

(3) if cf(µ) ≥ ω1 and cf(ν) ≥ ω1, then there are two cub sets C in cf(µ) and D in
cf(ν) such that XM(C)∪{µ} and XN(D)∪{ν} are separated, where M : cf(µ) → µ and
N : cf(ν) → ν are normal functions.

Theorem 6.6. Let X be a subspace of λ2 for some ordinal λ. Then the following are
equivalent:
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(a) X is totally paracompact.

(b) X is base-paracompact.

(c) X is paracompact.

Proof. It suffices to show that (c) implies (a). Suppose (c) holds and X is not totally
paracompact. Let

µ = min{ξ ≤ λ : Xξ+1 is not totally paracomapct}
and

ν = min{η ≤ λ : Xη+1
µ+1 is not totally paracompact}.

Note that Xν+1
µ+1 is paracompact and not totally paracompact, but Xν+1

µ′+1 and Xν′+1
µ+1 are

totally paracompact for each µ′ < µ and ν′ < ν. It follows from Proposition 6.4 and the def-
initions of µ and ν that µ and ν are limit ordinals. Let Y = Xν+1

µ+1 . we show that 〈µ, ν〉 �∈ Y .
Suppose 〈µ, ν〉 ∈ Y . Let B be an arbitrary open base for Y . Then there exist µ′ < µ, ν′ < ν
and B ∈ B such that 〈µ, ν〉 ∈ (µ′, µ] × (ν′, ν] ⊆ B. Since Yµ′+1 and Y ν′+1are totally para-
compact, this implies that B has a locally finite subcover, which contradicts the fact that Y
is not totally paracompact. Let M : cf(µ) → µ and N : cf(ν) → ν be fixed normal functions.

To complete the proof, we only need to consider the following four cases.

Case 1. cf(µ) = ω and cf(ν) = ω. In this case, Y can be represented as the union

Y =

(⊕
i<ω

Y(M(i−1),M(i)]

)
∪
(⊕

i<ω

Y (N(i−1),N(i)]

)

of two open subspaces which are the sum of totally paracompact subspaces. By Lemma
6.2, Y is totally paracompact, which is a contradiction.

Case 2. cf(µ) ≥ ω1 and cf(ν) = ω. In this case, by Lemma 6.5, there is a cub set C in
cf(µ) such that Y {ν} ∩ YM(C)∪{µ} = ∅. Since Y can be represented as the union

Y =

⎛
⎝ ⊕

γ∈Succ(C)

Y(M(pC(γ)),M(γ)]

⎞
⎠ ∪

(⊕
i<ω

Y (N(i−1),N(i)]

)
,

Y is totally paracompact, which is a contradiction.

Case 3. cf(µ) = ω and cf(ν) ≥ ω1. The proof of this case is quite similar to that of
Case 2.

Case 4. cf(µ) ≥ ω1 and cf(ν) ≥ ω1. In this case, by Lemma 6.5, there are two cub
sets C in cf(µ) and D in cf(ν) such that YM(C)∪{µ} ∩ Y N(D)∪{ν} = ∅. Since Y can be
represented as the union

Y =

⎛
⎝ ⊕

γ∈Succ(C)

Y(M(pC(γ)),M(γ)]

⎞
⎠ ∪

⎛
⎝ ⊕

δ∈Succ(D)

Y (N(pD(δ)),N(δ)]

⎞
⎠ ,

Y is totally paracompact, which is a contradiction. The proof is complete.
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