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Abstract. The author studies probabilistic inventory models of multi-period with
discrete demand, in which a method is shown to get an optimal policy and the influence
of demand distribution on the optimal policy has also been investigated. On the other
hand we have developed the theory of probabilistic inventory models with a piecewise
cost function under continuous demand. A lot of properties of an optimal policy in
its inventory system are obtained. As this application a method is presented in this
paper to get an approximation of an economic order quantity in multi-period inventory
problems provided the demand subjects to a continuous distribution. For that sake we
assume some conditions on the total cost function of single period. The amount of an
economic order quantity depends heavily on the properties of a demand distribution
and we shall show it numerically in the inventory examples.

1 Introduction. Probabilistic inventory models of multi-period have been developed in
[1], [2], [3] and [4], in which some conditions are searched to help getting an optimal policy
provided that the total cost function of single period is known very well. Standard inventory
models with continuous demand are constructed and they are converted into mathematical
models in order to make an analysis of the functions Fn−1(z) that are useful to decide the
amount of order on a problem of n-period. Though we obtain a lot of result and study the
economic order quantity in many examples, it is difficult in essence to capture the precise
value of the economic order quantity because demand is a continuous random variable.

Recently a fundamental theory of a probabilistic mathematical model of multi-period
with discrete demand is shown in [5] and its applications in inventory models are stated in
[6] and a method to get an optimal policy is presented in [7] that are all a generalization
of the former one. It is not so difficult in this case to decide the economic order quantity
and a consideration how much the values of the purchasing cost, the holding cost and the
shortage cost influence our decision is given in [8].

The concept of [8] is attempted to generalize to the case demand is a continuous random
variable B in this paper. There are elaborate results in [1] how to get the economic order
quantity (EOQ) with a given demand distribution. We present another method to catch
the optimal policy in the dynamic inventory problem. Let x be the amount on hand before
an order is placed and let h and p be the holding cost, the shortage costs per unit per
period respectively. Let c be the purchasing cost per unit and let denote by z the amount
on hand in initial period after an order is received, which means that the initial regular
order is z − x. Put κ = (p− c)/(h + p). Our main tool is the function wn(z) (n = 1, 2, . . . )
that is constructed inductively and our aim is achieved by solving an equation

wn(z) = κ +
αc

h + p
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where α (0 < α < 1) is the discount factor. Numerical results are shown for solving this
equation by a computer soft Mathematica in some examples with a particular distribution.
However it is not so easy to find a solution and a secondary method to support the method
should be studied. The decision criterion is the minimization of expected costs which include
the ordering, holding, and shortage costs. That is, let C(B, z) be total cost per period where
B is a demand random variable. Then the expectation of total cost E{C(B, z)} is

E{C(B, z)} = c · {purchasing quantity} + hE{holding quantity} + pE{shortage quantity}

and our purpose is to obtain a value z at which E{C(B, z)} is minimized.
In section 2 the inventory model which is searched will be shown and some fundamental

results including an analysis of a mathematical model of dynamic inventory problems are
reviewed. A method to seek the optimum policy is gotten in section 3. Some examples and
numerical results are discussed in section 5 and 6.

2 Inventory model. The following inventory model is studied in this article. That is a
probabilistic multi-period inventory model with zero delivery lag, backlogging of demand.

2.1 Model and notations.

1. The multi-period model with backlogging of demand will be investigated under general
demand without setup cost. The stock replenishment occurs instantaneously.

2. Regular ordering takes at the beginning of each period, purchasing cost per unit c
is charged and the period length is t. Let x be the initial stock level and let z be
the amount on hand in initial period after an order is received. That means that the
amount of a regular order is z − x.

3. Let h and p be the holding and shortage costs per unit per period, respectively. We
assume c < p.

4. Demand B in each period is a non-negative continuous random variable with a known
distribution Φ(b) and its probability density function φ(b) with φ(b) = 0 (b < 0). The
functions Φ(b) and φ(b) remain unchanged from period to period and demand in each
period are independent.

5. Let b be demand during the period t. Demand occurs according to a general function
g(T/t)b at time T (0 ≤ T ≤ t), where g(x) is a real valued function such that
g(x) = 0, g(1) = 1 and g(x) has a continuous derivative on [0, 1] with dg(x)/dx >
0 (0 ≤ x ≤ 1). That is, we assume that the amount in inventory at time T is
z − g(T/t)b (0 ≤ T ≤ t).

6. The total cost is the sum of the purchasing cost, the holding cost and the shortage
cost. We search the amount of a regular order at which the expectation of the total
cost is minimal through N -period.

7. α (0 < α < 1) denotes the discount factor. Let fn(x) be the discount minimal
expected loss for n-period inventory model provided that an optimal policy is used at
each purchasing opportunity, where x is the initial stock level.

Since the unfilled demand is backlogged, it is necessary to investigate in the case when z is
negative.
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Figure 1 Inventory Level.

2.2 Minimal expectation of the total cost. First let us define the function H(z). Let
I1(z, b) be the average inventory per cycle and I2(z, b) the shortage quantity average per
cycle. We let E{C(z, B)} be the expectation of the total cost per period. Then we have

E{C(z, B)} = c(z − x) + hE{I1(z, B)} + pE{I2(z, B)}.(2.1)

The function H(z) is defined by the equality

E{C(z, B)} = −cx + H(z).(2.2)

Let x be an initial stock level and let f(x) be the minimal expectation of the total cost of
single period. Then

f1(x) = min
z≥x

{−cx + H(z)}.(2.3)

Let fn(x) be as one in assumption 7 on H(z). Then

fn(x) = min
z≥x

{
−cx + H(z) + α

∫ ∞

0

fn−1(z − b)φ(b)db

}
.(2.4)

Put functions Fk(z) (k = 1, 2, . . . , N − 1) as follows :

Fk(z) = H(z) + α

∫ ∞

0

fk(z − b)φ(b)db.(2.5)

where f0(x) = 0. Note F0(z) = H(z). By (2.4) and (2.5) we may write

fn(x) = min
z≥x

{−cx + Fn−1(z)}.(2.6)

2.3 Optimal policy. It needs to search properties of the function H(z) in order to get
the optimal policy in our inventory model. In general situation some assumptions are made
on the function H(z) and the optimal policy of inventory models are discussed as follows
in [4].

Assumption on H(z):

1. H(z) is a piecewise continuous function on R and H(z) has a minimal value at z = x̄1.
More precisely if z < x̄1, then H(z) > H(x̄1), and if z ≥ x̄1 then H(z) ≥ H(x̄1).
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2. Let R1, . . . , Rm be a sequence of real numbers such that R1 < · · · < Rm and
R1 < x̄1 < R2. There are real valued functions Hi(z) (1 ≤ i ≤ m − 1) defined on
[Ri, Ri+1] and Hm(z) defined on [Rm, ∞). We suppose that Hi(z) (1 ≤ i ≤ m) has
a continuous derivative on [Ri, Ri+1] and we assume that

H(z) = Hi(z) if z ∈ [Ri, Ri+1] (1 ≤ i ≤ m),

which leads us that H(z) is continuous on [R1,∞).

3. H ′(z) is non-decreasing on [R1, ∞).

4. We have limz→∞ H ′(z) > c.

Calculating the function H(z) in a lot of natural inventory models we are able to find a
sequence R1, . . . , Rm. Under these assumptions it is shown that

x̄1 = inf{ z | H ′
+(z) ≥ 0} = inf{ z | F ′

0+(z) ≥ 0 }(2.7)

since F0(z) = H(z). Moreover by these assumptions the following fundamental results are
obtained.

Theorem 2.1 (Theorem 1.8 and Theorem 1.9 in [4]) There is a number x̄n+1 such
that x̄n+1 = inf{ z | F ′

n+(z) ≥ 0 }. The optimal policy in the inventory problem of N -period
is that if the initial stock x is less than x̄N , then order x̄N − x and otherwise do not order.

2.4 Function H(z). Assume that the inventory model is one in 2.1. We shall check the
conditions on H(z) above. First put G(y) =

∫ ∞
0 if 0 ≤ y ≤ 1 and let m be the mean of the

distribution Φ(b). The following proposition holds in [1].

Proposition 2.2 If z ≤ 0, then H(z) = (c − p)z + pG(1)m. If z > 0, then

H(z) =(c − p)z + (h + p)
{

z

∫ z

0

φ(b)db + z

∫ ∞

z

g−1(z/b)φ(b)db

−
∫ ∞

z

bG
(
g−1(z/b)

)
φ(b)db − G(1)

∫ z

0

bφ(b)db

}
+ pG(1)m.

We obtain a derivative of the function H(z).

Proposition 2.3 We have

H ′(z) =

⎧⎨
⎩

c − p if z < 0,

c − p + (h + p)
{∫ z

0

φ(b)db +
∫ ∞

z

g−1(z/b)φ(b)db

}
if z > 0.

Proposition 2.4 We have

H ′′(z) =

⎧⎨
⎩

0 if z < 0,

(h + p)
∫ ∞

z

φ(b)
bg′(z/b)

db if z > 0.

By proposition 2.3 it is shown that

lim
z→∞H ′(z) = c + h.(2.8)
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It is clear H ′
−(0) = c − p. If we could prove the existence of H ′

+(0) = c − p and
assumption 3, then the conditions on H(z) hold by setting m = 1 and R1 = 0, and we
may use Theorem 2.1. It follows from Corollary to Theorem 1.10 in [4] that if a number
R2 satisfies H ′

+(R2) ≥ αc, then x̄n ≤ R2. By (2.8) it could be able to find a number R2

with H ′
+(R2) ≥ αc, and the examples we are going to search in this paper follows theses

conditions. Therefore we add new assumptions on H(z) as the way in [8].
Assumption on H(z):

5. Let R1 = 0. There is a number R2 such that 0 < R2 and H ′
+(R2) ≥ αc.

6. H ′
+(0) exists.

Then the following theorem holds.

Theorem 2.5 (Theorem 2.6 in [2] and Theorem 1.8 in [4]) Under the assumptions
on H(z) we have the following statements in the model 2.1.

1. 0 < x̄1 ≤ x̄2 ≤ · · · ≤ x̄n ≤ · · · ≤ R2.

2. F ′
n+(0) = H+(0) (n = 1, 2, . . . , N − 1).

3. F ′
n(z) = H ′(z) − αc for z < x̄n (n = 1, 2, . . . , N − 1).

4. F ′
n(z) = H ′(z)−αc+α

∫ z−x̄n

0

F ′
n−1(z−b)φ(b)db for x̄n ≤ z (n = 1, 2, . . . , N−1).

3 Approximation of EOQ

3.1 Method. Under the assumptions on H(z) we present a method to seek an approxi-
mation of x̄n. For the simplicity let introduce a function w(z) as follows :

w(z) =
∫ z

0

φ(b)db +
∫ ∞

z

g−1(z/b)φ(b)db(3.1)

If z > 0, then w′(z) =
∫ ∞

z

φ(b)
bg′(z/b)

db ≥ 0, and assumption 5 of 2.1 leads us

lim
z→∞ w(z) = 1.(3.2)

It is known by Proposition 2.3 that if z > 0, then

H ′(z) = c − p + (h + p)w(z).(3.3)

Set

κ =
p − c

h + p
.(3.4)

Then 0 < κ < 1 and we see that H ′(z) ≥ 0 if and only if w(z) ≥ κ. Thus

x̄1 = inf{ z | w(z) ≥ κ}.(3.5)

It is also shown that H ′(z) ≥ αc if and only if w(z) � κ+αc/(h+p). Since 0 < κ+αc/(h+
p) < 1, it is sufficient to find the positive number R2 which satisfies the inequality

w(R2) ≥ κ +
αc

h + p
.(3.6)
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Next in order to get x̄n (n = 2, 3, . . . , N) we need another expression of F ′
n(z) that is

able by Theorem 2.5. Define functions wi(z) (i = 1, 2, . . . , N − 1) as follows:

wi(z) = w(z) + α

∫ z

x̄i

(
wi−1(b) − κ − αc

h + p

)
φ(z − b)db(3.7)

where w0(z) = w(z) + αc/(h + p).

Proposition 3.1 If z ≥ x̄n, then

F ′
n(z) = c − p − αc + (h + p)wn(z).

Proof. In fact these equalities may be proved by induction. We see by Theorem 2.5, (3.3)
and (3.7) that

F ′
1(z) =H ′(z) − αc + α

∫ z−x̄1

0

H ′(z − b)φ(b)db

=c − p + (h + p)w(z) − αc + α

∫ z−x̄1

0

(c − p + (h + p)w(z − b))φ(b)db

=c − p − αc + (h + p)
{

w(z) + α

∫ z

x̄1

(w(b) − κ) φ(z − b)db

}
=c − p − αc + (h + p)w1(z).

Assume the equality

Fi(z) = c − p − αc + (h + p)wi(z)

holds. Then it follows that

F ′
i+1(z) = H ′(z) − αc + α

∫ z−x̄i+1

0

F ′
i (z − b)φ(b)db

=c − p + (h + p)w(z) − αc + α

∫ z

x̄i+1

F ′
i (z)φ(z − b)db

=c − p + (h + p)w(z) − αc + α

∫ z

x̄i+1

(c − p − αc + (h + p)wi(z))φ(z − b)db

=c − p − αc + (h + p)

{
w(z) + α

∫ z

x̄i+1

(
wi(z) − κ − αc

h + p

)
φ(z − b)db

}

=c − p − αc + (h + p)wi+1(z).

We complete the proof.

By Proposition 3.1, F ′
n(x̄n+1) = 0 if and only if

wn(x̄n+1) = κ +
αc

h + p
.(3.8)

It is also seen that

x̄n+1 = inf
{

z | wn(z) ≥ κ +
αc

h + p

}
.(3.9)
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Proposition 3.2 Assume that w′(z) > 0 for 0 < z < R2. Then we have w′
n(z) > 0 for

x̄n < z < R2.

Proof. This is also proved by induction. Suppose x̄n < z < R2. Because 0 < b < z − x̄ if
and only if x̄n < z − b < z, we see that w′

n−1(z − b) > 0 for 0 < b < z − x̄n by induction
hypothesis. The equation (3.7) implies that

wn(z) = w(z) + α

∫ z−x̄n

0

(
wn−1(z − b) − κ − αc

h + p

)
φ(b)db

and hence

w′
n(z) = w′(z) + α

∫ z−x̄n

0

w′
n−1(z − b)φ(b)db + α

(
wn−1(x̄n) − κ − αc

h + p

)
φ(z − x̄n).

It follows from (3.9) that wn−1(x̄n) − κ − αc/(h + p) ≥ 0 and therefore w′
n(z) > 0. We

complete the proof.

Suppose that w′(z) > 0 for 0 < z < R2. Then it follows from Proposition 3.2 that a
number R2 is obtain by solving the equation

w(z) = κ +
αc

h + p
(3.10)

and (3.9) is stated as following. x̄n+1 is an solution of equation

wn(z) = κ +
αc

h + p
(3.11)

which is in [0, R2].

3.2 Algorithm. Suppose that w′(z) > 0 for 0 < z < R2. Summarizing the steps to get
x̄1, x̄2, . . . , x̄N we have:

1. Solve the equation w(z) = κ and its root in [0, R2] is x̄1.

2. Let i = 1.

3. Put w0(z) = w(z) +
αc

h + p
.

4. Calculate wi(z) by the equation

wi(z) = w(z) + α

∫ z

x̄i

(
wi−1(b) − κ − αc

h + p

)
φ(z − b)db

5. Solve the equation wi(z) = κ +
αc

h + p
and its root in [0, R2] is x̄i+1.

6. If i < N − 1, set i = i + 1 and go to 4. Otherwise stop.

4 Demand distribution. We make use of the following two distributions in examples
of the inventory system.
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4.1 Uniform distribution. Let d be a positive number and let φ(b) be

φ(b) =

⎧⎪⎨
⎪⎩

1
d

if 0 ≤ b ≤ d,

0 otherwise.
(4.1)

4.2 Exponential distribution. Let demand B subject to an exponential disribution
with mean 1/λ. That is

φ(b) =

{
λe−λb if b ≥ 0,

0 if b < 0.
(4.2)

5 Example 1. Our various inventory models are created by fixing a demand pattern
function g(x) and the probabilistic density function φ(b) of a demand distribution. We first
consider in the case g(x) = x.

O

z − b

z

x

2tt

Inventory
level

Time(T )

z − g(T/t)b

Figure 2. The case g(x) = x.

Then g−1(x) = x and G(x) = 1
2x2. It follows from (3.1) that

w(z) =
∫ z

0

φ(b)db + z

∫ ∞

z

φ(b)
b

db(5.1)

Since z − g(T/t)b = −(b/t)T + z (0 ≤ T ≤ t), the inventory level is shown in the Figure 2.

5.1 Demand of uniform distribution. Let demand B subject to uniform distribution
of 4.1. Then it is shown that

w(z) =

⎧⎨
⎩

z

d
(1 + log d − log z) if 0 < z ≤ d,

1 if z > d,
(5.2)

and limz→+0 w(z) = 0. It follows from Proposition 2.2 that

H ′
+(0) = lim

z→+0

[
(c − p) + (h + p)

{∫ z

0

φ(b)db

+z

∫ ∞

z

φ(b)
b

db − z

2

∫ ∞

z

φ(b)
b

db − 1
2z

∫ z

0

bφ(b)db

}]

= c − p + lim
z→+0

[z

d
(log d − log z) − z

4d

]
= c − p.
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In particular the function H(z) implies all assumptions in this case. Since κ+αc/(h+ p) <
1 = w(d), we may set R2 = d by (3.6). If 0 < z < d, then w′(z) = (log d − log z)/d > 0.
Thus it works to use algorithm 3.2. Therefore w(x̄1) = κ and hence

x̄1 = w−1(κ) and 0 < x̄1 < d = R2.(5.3)

O

1

d z

w(z)

Figure 3. Function w(z)

It is obtained by (3.7) that if x̄n ≤ z ≤ R2, then

wn(z) = w(z) +
α

d

∫ z

x̄n

(
wn−1(b) − κ − αc

h + p

)
db.(5.4)

Numerical example. Approximate values of x̄n (1 ≤ n ≤ 4) are gotten by the mathe-
matical soft Mathematica. Let c = 100, p = 200, h = 5 and α = 0.95. Then κ = 20/41
and a solution of the equation w(z) = κ is 1.795 and so x̄1 ≈ 1.795. To get x̄2, x̄3 and x̄4

we use values of functions un(z) := wn(z) − κ − αc/(h + p).

Table 1: Function u1(z) = w1(z) − κ − αc/(h + p)

z 5.416 5.417 5.418 5.419

u1(z) −1.015 × 10−4 −3.508 × 10−6 9.446 × 10−5 1.924 × 10−4

The values of the function u1(z) are calculated by bisection method in Table 1 that shows
x̄2 ≈ 5.418. The approximate value x̄2 is obtained using the Table 2 and which shows
x̄3 ≈ 6.812.

Table 2: Function u2(z) = w2(z) − κ − αc/(h + p)

z 6.810 6.811 6.812 6.813

u2(z) −7.388 × 10−5 −2.360 × 10−5 2.666 × 10−5 7.692 × 10−5

Repeating the same method we observe x̄4 ≈ 7.041 by Table 3.

Table 3: Function u3(z) = w3(z) − κ − αc/(h + p)

z 7.039 7.040 7.041 7.042

u2(z) −4.453 × 10−5 −8.354 × 10−6 2.781 × 10−5 6.397 × 10−5
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5.2 Demand of exponential distribution. Let demand B subject to exponential dis-
tribution of 4.2. In this case if z > 0, then

w(z) =
∫ z

0

λe−λbdb + z

∫ ∞

z

λe−λb

b
db.(5.5)

By the same way in 5.1 we see that H ′
+(0) = c − p, limz→+0 w(z) = 0. If z > 0, then

w′(z) =
∫ ∞

z
λe−λb

b db > 0. Find a number R2 by (3.11) and x̄n (n = 1, 2, . . . , N) are obtained
by algorithm 3.2. It follows from (3.7) that

wn(z) = w(z) + αλ

∫ z

x̄n

(
wn−1(b) − κ − αc

h + p

)
e−λ(z−b)db(5.6)

Numerical example. Let c = 100, p = 200, h = 5 and α = 0.95 as 5.1. Let λ = 1/20.
Since w(36.010) − κ − αc/(h + p) ≈ −2.422 × 10−6 and w(36.011) − κ − αc/(h + p) ≈
8.108 × 10−7, it is adequate to set R2 = 36.011. Then, in view of quite similar method as
before, x̄1 ≈ 5.107, x̄2 ≈ 18.937 and x̄3 ≈ 28.073.

6 Example 2. Let g(x) =
√

x. Then g−1(x) = x2 and it follows from (3.1) that

w(z) =
∫ z

0

φ(b)db + z2

∫ ∞

z

φ(b)
b2

db.(6.1)

Because of z − g(T/t)b = −(b/
√

t)
√

T + z (0 ≤ T ≤ t), the inventory level is indicated as
a graph of Figure 1. Comparing two figures, Figure 1 and Figure 2, it must be that x̄n of
Example 1 is less than one of Example 2. It can be proved and our numeriacl examples
show it.

6.1 Demand of uniform disribution. Assume that demand B subjects to uniform
distribution. Then

w(z) =

⎧⎨
⎩

z

d2
(2d − z) if 0 < z ≤ d,

1 if z > d
(6.2)

and H ′
+(0) = c − p. Set R2 = d by (3.6). If 0 < z < d, then w′(z) = 2(d − z)/d2 > 0.

Whence we get x̄2, x̄3, · · · , x̄N by algorithm 3.2.

Numerical example. Let situations be the same as a numerical example in section 5.1.
We are able to get approximate values of x̄n(1 ≤ n ≤ 4) by solving equation (3.11) because
the equation (6.1) is simple in this case. In fact we have x̄1 ≈ 2.843, x̄2 ≈ 6.484, x̄3 ≈ 7.648
and x̄4 ≈ 7.790.

6.2 Demand of exponential disribution. Let demand subject to exponential distri-
bution. In view of Proposition 2.2 H ′

+(0) = c − p and if z > 0, then

w(z) =
∫ z

0

λe−λbdb + z2

∫ ∞

z

λe−λb

b2
db.(6.3)

The function w(z) is increasing and continuous on [0,∞). Indeed we have that H ′
+(0) =

c − p, limz→+0 w(z) = 0 and if z > 0, then w′(z) =
∫ ∞

z

(
λe−λb/b

)
db > 0. A number R2 is

found by 3.10 and using algorithm 3.2 numbers x̄n (n = 1, 2, . . . , N) are obtained.

Numerical example. Consider the same data in a numerical example of 5.2. That
is c = 100, p = 200, h = 5, α = 0.95 and λ = 1/20. The algorithm 3.2 implies
R2 = 43.412, x̄1 ≈ 8.062, x̄2 ≈ 23.986 and x̄3 ≈ 34.045.
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7 Discussion. The good part of the algorithm given in this article is to restrict the range
where x̄n exists. However it happens to be quitely difficult to get it and the source of the
trouble comes from a demand pattern function g(x) and the probabilistic density function
φ(b). The example 6.1 is only simple one among examples because solving the equation is
praticable by the computer soft Mathematica. In other examples we are forced to use the
method of bisection to get solutions of the equation

wi(z) = κ +
αc

h + p
(7.1)

since it is too complex for Mathematica to deal it when i is more than 2. It needs to find
another way to manage well and we have attempted to do a little change of the function
wi(z) but we now fail in improving our method because dymanic theory is applied to the
algorithm and we must use x̄i to form wi(z). Since a little error of x̄1 transmits a large
error of x̄i, it seems difficult to set it up in general. We only succeed in a special case.

References

[1] Kodama M., Sakaguchi M., 2002, “A study on the dynamic inventory models with piecewise
cost functions” (in Japanese), Monograph series, Institute for Advanced Studies, Hiroshima
Shudo University, Vol. 119.

[2] Sakaguchi M., Kodama M., 2002, “On the dynamic probabilistic inventory problems with
piecewise cost functions which may not be piecewise smooth”, Bulletin of Informatics and
Cybernetics, Research Association of Statistical Sciences, Kyushu University, 34, 75-90.

[3] Sakaguchi M., Kodama M., 2002, “An application of dynamic probabilistic inventory models
with piecewise cost functions”, Journal of Information & Optimizations Sciences, 23, 3, 523-
549.

[4] Sakaguchi M., Kodama M., 2005, “Analysis of the optimum ordeing quantity in daynamic
inventory models”, Journal of Economic Sciences, Hiroshima Shudo University, 8, 2, 21-34.

[5] Sakaguchi M., Kodama M., 2004, “A dynamic inventory model with discrete demand”,
ICIM’2004 Proceedings of the Seventh International Conference on Industial Management,
China Aviation Industry Press, 46-51.

[6] Sakaguchi M., Kodama M., “The optimum ordering policy for a dynamic inventory model
with discrete demand”, to appear in Journal of Statistics & Management Systems.

[7] Sakaguchi M., Kodama M., 2004, “Determination of a replenishment quantity for dynamic in-
ventory models with discrete demand”, Proceedings of PCMM’2004 Eight International Con-
ference on Manufacturing & Management, Operations Management & Advanced Technology
: Integration for Success, 203-210.

[8] Sakaguchi M., Kodama M., “Sensitivity analysis of an economic ordering quantity for dynamic
inventory models with discrete demand”, preprint.

Faculty of Economic Sciences, Hiroshima Shudo University,
1-1 Ozukahigasi-1-choume, Asaminami-ku, Hiroshima-si, 731-3195, Japan
E-mail: sakaguti@shudo-u.ac.jp


