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ABSTRACT. In the present article, we introduce a new operator transform of a bounded
linear operator on a complex Hilbert space, the definition of which is parallel to that of
the Aluthge transform. Also we study the relationship between this new transform and
several classes of non-hyponormal operators.

1. INTRODUCTION

Let B(H) be the Banach algebra of bounded linear operators acting on a complex Hilbert
space H. For T' € B(H), we shall use the notations o(T"), W(T'),r(T) and w(T) to de-
note the spectrum, the numerical range, the spectral radius, and the numerical radius
of T. An operator T € B(H) is said to be p-hyponormal if (T*T)? > (TT*)P, where
p > 0; log-hyponormal if T is invertible and log|T| > log|T*|; class A(s,t) operator if
(|T*[¢|T %5\ T*|")t/ (s+8) > |T*|?* where s,t > 0; convexoid if conv ¢(T) (convex hull of o(T'))
coincides with the closure of W(T'), and normaloid if »(T') = ||T||. Tt is known that classes
of p-hyponormal operators and log-hyponormal operators are subclasses of class A(s,t) op-
erators, and if T is a class A(s,t) operator with s < 't < t/, then T is a class A(s',1)
operator (see [6], [10], [14], [15], [18], [19]). Also a class A(s,t) operator is normaloid([7]).
In [1], Aluthge studied p-hyponormal operators by elegantly using the operator transform
T = |T|"2U|T)"/? of T € B(H), where T = U|T| is the polar decomposition. Named after
Aluthge, the transform T is known as the Aluthge transform in the literature. A further
extension of T called the generalized Aluthge transform is defined as T'(s,t) = |T|*U|T]".
Both the transforms have been proved to be powerful tools in introducing and exploring
the properties of several classes of non-hyponormal operators ([2], [5], [6], [7], [12], [16], [17],
[18]). By interchanging U with |T'|'/? in the Aluthge transform, we define below a new
transform.

Definition. Let T' € B(H) with the polar decomposition 7' = U|T|. Then the transform
S(T) of T is defined as

S(T) = U|T|*?U.

In Section 2, we establish some basic properties of S(7T'). Section 3 is devoted to obtaining
some conditions on S(7T') implying the normality of 7. In Section 4, we focus on conditions
on S(T) under which T is k-hyponormal or a selfadjoint partial isometry or a projection
operator. Section 5 deals with the polar decomposition of S(7T').
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2. BASIC PROPERTIES

First we list some elementary properties of the transform S(7').

Theorem 2.1. For an operator T € B(H), the following assertions hold.
(@) [1S(D)* < (|-
(ii) ker S(T') = ker U2.
(iii) S(T*) = |T|'/*U*.
(iv) ker S(T') C ker S(T')* Nker S(T*) if ker T' C ker T™*.
(v) ker S(T)* Nker S(T*) C ker S(T") if ker T* C kerT.
(vi

vi) o(S(T7)) = o (S(T)")-

Proof. Assertions (i) and (ii) are obvious. Assertion (iii) follows from the fact that 7" =
U*|T*| is the polar decomposition of T*.

(iv) Suppose S(T)x = 0. Then |T|/2Uz = 0 implying Uz € kerU C kerU*. Hence
Uz =0 and so U*x = 0 by the kernel condition. Hence S(T")*x = 0 and S(T*)x = 0. This
proves (iv).

(v) If S(T)*z = 0, then |T|"?U*x C kerU* = kerT* C kerT = kerU. This gives
UIT|"?U*x = 0 or |T|Y/2U*z = 0. Hence U*z = 0 and Uz = 0 as ker U* C ker U. From
the hypothesis, we have z € kerT = kerU. Hence S(T)z = 0. If S(T*)z = 0, then
U*2z = 0. Hence U*z € kerU* C kerU by the kernel condition. Hence U*xz = 0 and
T*xz = 0. Again S(T)xz = 0. This proves (v).

(vi) Note that o(S(T)) \ {0} = o (S(T™*)*) \ {0}. Also S(T) is invertible if and only if U
and |T| are invertible if and only if S(7*) is invertible. Therefore o(S(T)) = o(S(T*)*) or
o(S(T)") = o(S(T7)). -

Theorem 2.2. Let T be a p-hyponormal operator with 0 < p < 1.
(i) If 0 < p < 1/2, then S(T) is 2p-hyponormal.
(ii) If1/2 < p <1, then S(T') is hyponormal.

Proof.
(i) Note that S(T)*S(T) = U*|T|U and

S(T)S(T)* = U|T|"*uu*|T|"?U* < U|T|U*.
Since T is p-hyponormal and U|T|1U* = |T*|? for 0 < ¢,
(S(T)"S(T))* = (U*|T|U)*
> U*|T|*’U (by Hensen’s inequality[8])
> TP > UIT|*U* = (U|T|U*)*
> (S(T)S(T)*)?" (by Lower-Heinz’s inequality[9], [11]).

(ii) If 1/2 < p < 1, then T is semi-hyponormal. Hence, by (i), it follows that S(T) is
hyponormal. O

Remark. The proof of Theorem 2.2 indicates that for a p-hyponormal T with 0 < p < 1/2,
the following inequalities hold:

[S(T)[* = TP > |S(T)*[*.

A fairly natural question presents itself: Does this inequality implies T is p-hyponormal?
In case T satisfies the kernel condition ker T* C ker T then the question has an affirmative
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answer. Because ker 7" C ker T implies U*U < UU*, hence
(TP > |S(T)* | = (UIT200" 1T]/20")
= (U|T\U*)* = |T*|*.

For p = 1/2, it is not difficult to verify that operators satisfying above inequality are
w-hyponormal operators. However, the question is still remains unanswered.

Theorem 2.3. If T is a log-hyponormal operator, then so is S(T).
Proof. Since T is invertible, |S(T)*|? = U|T|U* and |S(T)|*> = U*|T|U. Therefore
2log |S(T)| = log(U* [T|U) = U* (log [T)U
> U*(log |T*)U = log |T| > log |T"|
=log(U|T|\U*) = U(log|T|)U* = 2log |S(T)*|.
This proves the result. O

Next, we relate the approximate point spectra of an operator 7' and S(T') when T is
either p-hyponormal or log-hyponormal.we first prove a couple of theorems that shall be
needed.

Theorem 2.4. Let T = U|T| be p-hyponormal with 0 < p < 1. Let X = U?T|*/2. Then
X = U2|T|1/2 1s the polar decomposition of X and the following assertions hold.

(i) If 0 < p < 1/2, then X is 2p-hyponormal.

(ii) If 1/2 < p < 1, then X is hyponormal.

Proof. Since T is p-hyponormal, kerT C kerT*. Hence U*U? = U and U?U*?U? =
UU*U = U?. Also, kerU? = kerU = ker|T|'/2. This implies X = U?|T|'/? is the
polar decomposition of X.

If 0 < p<1/2, then

(X" X)% = |T[P > |7
=U|T|**U* > U?|T|**U*,
Since
(U2|T2PU*2) (U2 |T|?U*2) = U|T|*U*2,
we have f(U?|T|?PU*?) = U?f(|T|)U*? for any polynomial f(z) with f(0) = 0. Hence
(X*X)2 > U2T|?U*2 = (U T|U2)? = (X X*)2P.

If 1/2 < p < 1, then T is semi-hyponormal. Hence, by (i), it follows that X is hyponormal.
O

Theorem 2.5. Let T = U|T| be log-hyponormal. Then X = U?|T|'/? is the polar decom-
position of X and X is log-hyponormal.

Proof. That X is invertible and X = U 2|T|1/ 2 is the polar decomposition should be fairly
apparent. To show that X is log-hyponormal, observe first that |X| = |T|'/2? and | X*| =
U|T*|'/?2U*. Since T is log-hyponormal, we find

1 1 1
log | X| = 5 log [T >  log |T*| = 3 U(log | T|)U"
> U(log |[T*|)U* = log(U|T*|*2U*) = log | X*|.
Hence X is log-hyponormal. O
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The approximate point spectrum of T' is definded by
0a(T) = {z € C |Junit vectors z, (T — z)z,, — 0}.
It is known ([3]) that if T is p-hyponormal, then
0a(T) = 0po(T) = {z € C |Junit vectors zy, (T — z)an, (T — 2)*z, — 0}.
Theorem 2.6. Let T = U|T)| be either p-hyponormal or log-hyponormal, then
0o (U?|T|V?) = {r'/2e%®|re' € 0,(T)} = 0,(S(T)).

Proof. Let T be p-hyponormal and 0 # e’ € o,(T). Then there exist unit vectors x,, such
that

(IT| = r)zn —0,(U = e®)an — 0.
Hence (U?|T|Y/2 —¢1/2e29) g, — 0. If 0 € 04(T), then there exist unit vectors z,, such that
|T |2, — 0. Hence U?|T|'/2x,, — 0.

Conversely, let 0 # pe?® € o, (U?|T|"/?). Since U?|T|'/? is the polar decomposition of

2p-hyponormal operator by Theorem 2.4, there exist unit vectors x, such that
(U2|T|1/2 . p€2i¢)1’n -0, (U2|T|1/2 . p62i¢)*xn 0.

Hence

(1712 = p)an — 0,(UP|T[V2U™ = p)a, — 0
and

(U? — %)z, = (U + ') (U — )2, — 0.
If there exists a subsequence z,,, such that (U — e*®)z,, — 0, then (T — p%e!®)z,, — 0.
Hence p?e'® € o,(T).

Suppose there is no such subsequence. For a sequence u,, of unit vectors and |z| = 1, it
is known that (U — zI)u, — 0 if and only if (U — zI)*u, — 0. Hence we may assume that
(U = e®)*x,|| > ¢ for some € > 0. We show (|T*|'/? — p)z,, — 0. Since (|T|*/? — p)z, —
0, (U?|T|Y?U*? - p)x, — 0, we have

(TP = ) — 0, (UATPU* = pP)ay — 0.
T is p-hyponormal, hence

|T|2p Z UlTlQpU* Z U2|T|2pU2*

and
IT|P > U|T|PU* > U?|T|PU>.
Then
[UITPU* x| — p?* (U|T[PU T, ) — p?*.
Therefore

(TP = p*P)an|?
= |UITPU* 2, )|* = 20* (U|TPU 2, 20) + p*? — 0.
Hence (|T*|P — p**)x,, — 0 and (|T*|"/? — p)z,, — 0.
Set
yn = (U =)V an/||(U =€) 2.
Since (U? — €2®)x,, — 0, we have (U + €'*)*y,, — 0 and (U + €'*)y,, — 0. Now
(T*["/? = p)an = (UIT'?U* = p)an — 0
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implies (|T|*/? — p)U*x,, — 0. Consequently,
(T2 = p)(U = &)y,
= (T2 = U™z — e~ 9(|T|Y2 = p) — 0

and (|T|"/2 = p)y, — 0. Thus (T+ p2e'?)y, = (T —p?>e" ™))y, — 0 and p2e’ ¢+ € g, (T).
If 0 € 0,(U?|T|*/?), then there exist unit vectors z,, such that |T|*/2x,, — 0 or Tz, — 0.
Now assume that T is log-hyponormal. Then the similar reasoning will lead to the desired

conclusion. O

3. NORMALITY

In [12], the first author proved that a p-hyponormal operator is normal if its Aluthge
transform is normal. More generally the result is found to be true for w-hyponormal opera-
tors by [2], those are class A(1/2,1/2) operators by [6]. As a further extension, it has been
shown that a class A(s,t) operator is normal provided its generalized Aluthge transform
T(s,t) is normal. That this result holds if we assume the normality of S(T") instead of the
normality of T'(s,t) will follow as a corollary to the following theorem.

Theorem 3.1. Let T(s,s) = |T|*U|T|°. If S(T') is normal and ker S(T) = kerT, then
T(s,s) is normal.

Proof. First we show that

(3.1) ker T C ker T

Since S(T') is normal, we have

(3.2) U*|T|U = U|T|"?*vU~|T|*/?U*.

Suppose T*z = 0. Then U*z = 0. And therefore (3.2) implies U*|T|Uxz = (|T|*/2U)*|T|"/?Uz =
0 or |T|*2Ux = 0. This in turn gives S(T)x = 0 and so by the kernel condition, T2 = 0,
which establishes (3.1). Note that by (3.1), ker UU* C ker U*U. Hence UU*|T|'/? = |T|/2.
Then (3.2) reduces to

(3.3) U*|T|U = U|T|U*.

If Ta = 0, then Uz = 0 and so U*z = 0 or T*z = 0 by (3.3). Thus by (3.1), ker T* =
kerU* = ker U = ker T'. Clearly U is normal. Then (3.3) implies U*|T|*U = U|T|*U*. Now
the normality of T'(s, s) is immediate. O

Some consequences of Theorem 3.1 are of particular interest and list them below as
corollaries.

Corollary 3.2. Let T be a class A(s,t) operator. If S(T) is normal, then T is normal.

Proof. We may assume t < s. Then T is of class A(s,s). First, we show that T'(s,s) is
normal. This will follow from Theorem 3.1 once we show that ker S(T") = kerT. Suppose
S(T)z = 0. Then |T|*/?Uz = 0. Choose z € [ran|T|*] and y € ker |T|* such that = = z +y,
where [ran|T'|*] denotes the closure of ran|T'|°. Then

(3.4) IT|*Uz = 0.

Select a sequence x,, of vectors from H such that |T|*x,, — z. By (3.4), T(s, s)z, — 0.
Since T is of class A(s, s), |T'|°z, — 0 and hence z = 0. Thus x =y € ker |T'|°* = ker T". This
shows that ker S(T') C kerT. Since the reverse inclusion is obvious, we have ker S(T') =
ker T' and hence T'(s, s) is normal. By [13, Corollary 2.2], we conclude that T is normal. [
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Corollary 3.3. If T is a class A(s,t) operator and if S(T') is a positive operator, then T
is selfadjoint.

Proof. By Corollary 3.2, T is normal. Therefore if A € o(T), then |\['/2e% € ¢(S(T)) C
{z € R:z > 0}. This shows that ¢(T") C R. Hence T is selfadjoint. O
10 . 1 0 .

0 il Then T is normal and S(T) = 0 1) Hence if we relax
the condition ” S(T") is a positive operator” by assuming ”S(T) is a selfadjoint operator ”,
then the result is invalid.

Example 1. Let T =

Corollary 3.4.
(i) If S(T*) is normal and ker S(T') = ker T, then T(s, s) is normal.
(ii) If T is a class A(s,t) operator for which S(T*) is normal, then T is normal.

Proof.

(i) First we show that ker S(T*) = kerT*. Suppose T*xz = 0. Then it is obvious
that S(T*)z = 0. Let S(T")x = 0. By the normality of S(T*), we have 0 = S(T%)*z =
U?|T|*/2z. This means that U|T|*/2z € ker T = ker S(T'). Hence S(T)|T|"/?x = U|T|"/?U|T|"/?x =
0 Then |T|"/?2 € ker S(T) = ker T = ker |T|, and hence we obtain |T|*/?2 = 0 or Tz = 0.
Thus we have

(3.5) ker T* C ker S(T™) C kerT.
On the other hand, if = € ker T, then S(T*)*U|T*|'/2Uz = 0. Since S(T*) is normal,
0=S(T*)x = |T|"?U*?x

or U*2x = 0. From (3.5), it will follow that U*x € kerU* C kerT = kerU or U*z = 0.
This proves ker T C ker U* = ker T*. Combining this inclusion with (3.5) gives ker S(T%) =
ker T*. By Theorem 3.1, T*(s,s) is normal. Since T*(s,s) = UT'(s,s)*U™*, the normality
of T'(s, s) is immediate.
(ii) The assertion follows from (i) as T being a class A(s,t) operator, ker S(T') = ker T
(refer the proof of Corollary 3.2).
(]

Theorem 3.5. If kerT* = ker T, then the following assertions hold.
() W(S(T") = W(S(@)).
(i) (SO = Nl = I1S(T)]*-

Pr??)f'The kernel condition implies that |T|/2UU* = |T|'/2. Let x be a unit vector. Then
(S(T*)x, ) = (|T|M2U* %2, ) = (x, U?|T|V2UU*z)
= (U*z, U|T|"?UU*z)
= (U /| U], S(T)(U*2)/ U |)|U*=]*.
Thus
(3.6) (S(T")a,w) = (S(T)U*a/IlU* ), U/ |U* 2l U™ .

If 0 € W(S(T)*), then the right hand side (3.6) belongs to W (S(T')*) as W (S(T")*) is convex
and |[U*z| < 1. Suppose 0 € W(S(T)*). Then S(T) and hence T is injective. Therefore
the kernel condition shows that T* is injective. Thus UU* = I. Again the right hand side
is in W(S(T)*), proving W(S(T*)) C W(S(T)*). Replacing T by T™*, we obtain the reverse
inclusion.
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(ii) Note
IS(D)|1? = [lU|T["?U|? = |IT|"2U|* = |U*|T|"/?))?
= I 2uu T2 = (T = |1 T
Then, by the kernel condition,
IS(T*)|| = |1T'2U*2| = |uU*|T|/2U*2)
= [UST) U < IS(M)].
Replacing T by T*, we get the reverse inequality. O

Example 2. Let T be the unilateral weighted shift operator on H = [? with weights
{25,1,1,1,1,---}. Then for a vector (zg,x1,x2, ) € H, a computation shows that
S(T)(x07$1,$2, o ) = (07071‘0)1‘1)1‘2) o )
and
S(T*)(xO) T1,T2, " ) = (5.1'2, T3, T4, " )
Note that ker T' = {0} C ker T*. Let z = (1//2,0,1/4/2,0,0,---). Then (S(T*)z,z) = 5/2,
hence we find 5/2 € W(S(T*)). However, as w(S(T)*) < ||S(T)|| = 1, it follows that

5/2 ¢ W(S(T)*). Hence Theorem 3.5 does not holds if the underlying kernel condition is
replaced by the weaker conditions like ” ker 7" C ker T” and ” ker T C ker T"*”.

Corollary 3.6. Suppose kerT* =kerT. Then

(1) S(T) is convezoid if and only if S(T*) is convezoid.

(ii) S(T) is normaloid if and only if S(T*) is normaloid.
Proof. Note that o(S(T)) \ {0} = o(S(T*)*) \ {0}. Also S(T') is invertible if and only if U
and |T| are invertible if and only if S(7*) is invertible. Therefore o(S(T)) = o(S(T*)*) or
o(S(T)*) = o(S(T™*)). Now the result follows from Theorem 3.5. O
Theorem 3.7. If S(T)?> =T and ker T C ker T*, then T is normal.

Proof. The condition S(T)? = T means U|T|*/2U?|T|'/2U = U|T|. Hence |T|*/?U?|T|'/?U =
|T| and U3|T|"/2U = U|T|'/? as ker U = ker |T|*/2. Note that U*U? = U as ker T’ C ker T*.
Therefore
(3.7) T2 = U U3 TV 20 = U?|T|V?U
or U*|T|*/?2U*? = |T|'/? implying ker U* C ker U. This together with the kernel condition
gives ker U = ker U* and U*U = UU*. Hence

|T*|1/2 U|T|1/2U* _ U*U2|T|1/2U* _ U*|T|1/2U*2 |T|1/2
Thus T is normal. O
Corollary 3.8. If S(T*)?> =T* and ker T C ker T*, then T is normal.
Proof. The condition S(T*)? = T* means |T|'/2U*?|T|'/?U*? = |T|U*. Since ker |T|*/? =
kerU, we find UU*?|T|'/2U*? = U|T|"/?U*. Hence U*?|T|\/2U*? = U*UU*|T|'/?U*? =
|T|1/2U* or U|T|'/? = UIT|*/?U?. Since ker U C ker U*, one can see that U*U? = U and
so the last equation reduces to
(3.8) \T|'/? = UrU|T|*/? = U*U?|T|V?U? = U|T|/?U*

Now multiplying (3.8) on the left by UU*, we find UU*|T|*/? = U|T|'/?U? = |T|'/? or
|T|'/? = |T|"2UU*. Especially, ker T* C kerT and hence by the hypothesis, ker T =
kerT*. Clearly, then U is normal. Now (3.8) along with the normality of U yields
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U*|T|V2U* = |T|M?UU* = |T|"?U. Hence U*|T|'/? = U|T|"?U and U*|T|Y/?U =
U|T|'/?U? = |T|'/2. This implies U|T|*/? = UU*|T|'/?U = |T|*/?U. But then S(T*)
|T|Y/2U*? = U*|T|'/2U* = S(T)*. Then, by our hypothesis, it follows that S(T)? =
Now the result follows from Theorem 3.7.

mRe]

Theorem 3.9. T € B(H) is normal if any one of the following conditions holds.

(1) |S(T)*? = |T.
(ii) |S(T*)|? = |T|, where T is a class A(s,t) operator.
(iii) |S(T)|> = |T|, where T is a class A(s,t) operator.

Proof.
(i) Note that |S(T)*|> = |T| implies

\T| = U|T|"?UU*|T|"?U* < U|T|U*.

Then clearly ker U* C kerU or U*U < UU*. This in turn shows that |T'| = |S(T)*|> =
U|T|U* = |T*|. Hence T is normal.

(ii) The condition |S(T*)|* = |T'| implies U?|T|U*? = |T|. Hence ker T* C ker T. On the
other hand if Tz = 0, then it follows from the equation U?|T|U*? = |T| that |T|'/2U*2z = 0
or U*?z = 0. Then U*z € kerT* C kerT. Hence TU*z = 0 or U|T|U*x = 0, which is
the same as T*z = 0. Thus kerT = kerT* or U is normal. Therefore the equation
U2|T|U*? = |T| implies U|T|U* = U*U?|T|U*2U = U*|T|U. Now it is easy to show that
S(T') is normal. By Corollary 3.2, we conclude that T' is normal.

(iii) Notice that the underlying condition is equivalent to U|T|U* = U*|T|U. Therefore
if Uz = 0, then U|T|U*z = 0 or T*z = 0, giving kerU C kerU*. On the other hand
if U*z = 0, then U*|T|Uz = 0 implying |T|"/2Uz = 0 or equivalently, U?z = 0. Since
kerU C ker U*, we find U*Ux = 0 or Ux = 0. Therefore ker U = ker U*, which shows that
U is normal. Hence

S(TYyS(T)=U"T|IU =U|T\U* = S(T)S(T)".
Then S(T') is normal and T is normal by Corollary 3.2. O

4. PARTIAL ISOMETRY, PROJECTION
Theorem 4.1. If T is normaloid, then S(T) is normaloid and |T|| = ||S(T)]|?.

Proof. First we observe that || S(T)||> < ||T||| = ||T|| for any operator T. Since T is
normaloid, ||| = |#| for some z € o(T). Then there exists a sequence {x, } of unit vectors
such that (T — 2)x, — 0 and (T —2)*z, — 0. If z = |z|e®, then (|T|*/? —|2|*/?)x,, — 0 and
(U —e?)x,, — 0. Consequently, (S(T) — |z|*/2¢**)x,, — 0 and therefore |z|'/? < r(S(T)) <
[IS(T)||. Hence
r(T) =T <r(S(T)* < [S(D)I* < |17
Thus
r(T) =T = r(S(T)* = [S(T)|I*.
O

1
0
A =U|T]?. Then S(A) = U|A|'/?U = U|T|U = |T|~'. This shows that S(A) is a positive
invertible operator. Clearly ||S(A)||? = ||A|. We assert A is not normaloid. Suppose to
the contrary that A is normaloid. Since a normaloid operator on a two-dimensional space

Example 3. Let T' = ( _11> Clearly T? = I. If T = U|T|, then U|T|U = |T|~!. Define
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is normal, it will follow that U commutes with |T'|? and hence with |T|. But then T will be
normal, which is not true. Hence the converse of Therorem 4.1 is not true.

Definition. Let 7' € B(H) with the polar decomposition 7' = U|T|. For each positive
integer n, the n-th A1~uthge transform T'(n) of T is defined as the A1~uthge transform of
T(n—1) and T(1) =T = |T|Y/2U|T|"/2. Tt is known that 7(T) = lim | T(n)| ([17]).

Theorem 4.2. Let T be a p-hyponormal operator. If S(T) is a partial isometry, then the
following assertions hold.

(i) T™ is a k-hyponormal operator for each positive integer n and each k > 0.

(ii) The n-th Aluthge transform T(n) has the polar decomposition given by T(n) =
U|T[Y/"(") where r(n) = 2" and T(n) converges strongly to U.

Proof.

(i) We may assume that s > ¢. Now T being a class A(s,t) operator, it must be normaloid
by [7]. By Theorem 4.1, |T|| = ||S(T)||?. Since S(T) is a partial isometry, it is a contraction.
Therefore

(4.1) (1T < 1.

Next we show that ker U = ker |T'|'/2U. Suppose |T'|*/?Uz = 0. Then Uz € ker |T|'/? =
kerT. Since T is p-hyponormal, kerT C kerT*. Hence Uz € kerT* = kerU*. Then
U*Uz = 0 or Uz = 0. Hence ker|T|'/2U = ker|T|. Since S(T) is a partial isometry,
S(T)*S(T) = (|T|"?U)*(|T|*/?U) is a projection or |T|*/2U is a partial isometry. This
in combination with the relation ker |T'|*/2U = ker |T| = ker U implies |T|'/2U and U are
isometries on [ran|T|]. Therefore we have

(4.2) lz]l = I|IT1V*Uz] = |Ux|

for 2 € [ran|T|], and then |T|"/?Uz = Uz as 0 < |T|*/? < 1(see [12]). Hence
(4.3) 7|20 =U

and

|T\UU* = |T|V?UU* = UU*.
Then |T|*"UU* = UU* for every positive integer m. Hence the inequality UU* < I implies
(4.4) |T*™ > |T|™UU*|T|™ = UU*.
An application of (4.3) will show that

™ =U(|T|U)" ' T| = U™|T|.

Since by (4.4), ker T' C ker T*. Then it follows that U is quasinormal and so, in particular,
U*U™ = U*U. Clearly this shows that U™ is a partial isometry with ker U™ = kerU =
ker |T'|. Therefore |T"| = |T'| and T™ = U™|T| is the polar decomposition of T™. Now by
(4.4), we have
|Tn|2m —_ |T|2m > UU* > Uny*n
and hence (4.1) will imply |T"|>™ > U"|T[*™U*™ = |T*"|>™ or T™ is m-hyponormal for
every positive integers m and n. Invoking the Lowner-Heinz Inequality, we conclude that
T™ is k-hyponormal for every positive integer n and any positive real number k.
(ii) First, we note that (4.1) and (4.2) imply

2]l = [Tl = |72Vl < |T1M*Uz] <
<P U| < [TV YU < U,
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and hence |T|V/"™Ux = Uz for all € [ran|T|"/"] = [ran|T|]. Euivalently, we have
||V T = U|T|Y/ (") for each positive integer n. Clearly U|T|*/7(™) is the polar
decomposition of [T/ U|T|V/7(M) . As a consequence of this, we find T'(1) = T = U|T'|*/?
and hence T(2) = |T|"*U|T|"/* = U|T|'/*. An induction argument shows that T'(n) =
|| /™y T |V = U TV, Since [T — U*U strongly, it follows that T(n) —
U*UUU*U = U strongly. O

Example 4. Let T to be a unilateral weighted shift with weights {1/2,1,1,1,---}. Then
one can check that T is a non-quasinormal hyponormal operator for which S(T") is an
isometry. Hence if we put a stronger condition on S(7') by assuming it to be an isometry,
we may not get a stronger conclusion like T' is quasinormal.

T is said to be paranormal if
ITa|* < |7 |||
for all z € H. It is known that A(1, 1) operators are paranormal by [6]. In the next theorem,

we extend the above result for paranormal operators with the closed range.

Theorem 4.3. Let T be a paranormal operator with closed range. If S(T) is a partial
isometry, then the following assertions hold.

(i) T™ is a k-hyponormal operator for each positive integer n and each k > 0.

(ii) The n-th Aluthge transform T(n) has the polar decomposition given by T(n) =
U|T[Y/"(") where r(n) = 2" and T(n) converges strongly to U.

Proof. Since a paranormal operator is normaloid, as argued in Theorem 4.2, we get

(4.5) 17 < 1.
Next, we show that
(4.6) ker |T)/2U = ker |T.

Suppose |T|'/2Uz = 0. Then U|T|Uz = 0. Since ran T and therefore ran |T| is closed,
x =y + z with some y € ker|T| and z € ran |T|. Let z = |T|u for some vector u € H.
Then 0 = U|T|Uz = U|T|U|T|u or T?u = 0. The paranormality of T implies Tu = 0 or
0 = |T|u = z. This leads to = y € ker |T'| proving (4.6).

Hence we have |T|/2U = U or U*|T|'/? = U* as shown in the proof of Theorem 4.2.
In paticular, ker T' C ker T* as U* = U*|T'|. Now using the same line of argument used in
Theorem 4.2, we arrive at the desired conclusion. O

Theorem 4.4. If S(T) is an idempotent operator and ker T C ker T*, then T is a selfad-
joint partial isometry.

Proof. The hypothesis S(T)? = S(T) means U|T|*/2U?T|*/?U = U|T|'/?U which gives
|T|'/2U?|T|"/?U = |T|*/?U and hence U?|T|'/2U = U?. Then applying the kernel condition,
we obtain U|T|'/2U = U*U or U*|T|/?U* = U*U. Now it is obvious that ker U* C kerU.
This along with our hypothesis implies ker U = ker U*. In particular, U is normal. Since
U|T|'/?U = U*U, the normality of U gives |T|'/? = U*U|T|/?UU* = U*2UU* = U*? or
|T|'/?2 = U?. Therefore U*U = U|T|"/?U = U* and so |T| = U*U. Hence T = U. In order
to complete the proof, it is enough to show that U* = U. Now U? = |T|1/2 combined with
|T| = U*U imply U? = U*U and hence U* = (U*U)U* = U?U* = UU*U = U as U is
normal. This finishes the proof. O

1 0
0 —1
guarantee that T is a projection.

Example 5. Let T' = ) Then S(T') = I. Hence conditions in Theorem 4.4 do not
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Corollary 4.5. Suppose S(T) is a projection. If ker S(T') = kerT, then T is a selfadjoint
partial isometry.

Proof. First we observe that the condition ker S(T") = ker T' implies the condition ker U =
ker U2. Since S(T) is normal, we have

(4.7) U*|T|U = U|T|V?Uu~|T|Y*U* < U|T|U*.

Then U*z = 0 implies U*|T|U = (|T|"/2U)*|T|"/?Uz = 0 which is the same as U%z = 0.
Hence Uz = 0 showing ker U* C ker U. Obviously then U*U < UU*. Then from (4.7), we
derive

(4.8) U|lT|\u* <U*|T|U.
From (4.7) and (4.8), we have U*|T|U = U|T|U*. In particular, ker T = ker U C ker U* =
ker T*. Consequently, the corollary follows from the Theorem 4.4. O

Corollary 4.6. If S(T) is idempotent and if ker T* C ker T', then T is a selfadjoint partial
isometry.

Proof. By our hypothesis on S(T), U3|T|"/2U = U? or U*|T|"/?U*3 = U*2. Therefore,
since ker T'* C kerT', we obtain

(4.9) IT|\2U*3 = UU*|T|V?U* = UU*? = U*.

Also by Theorem 2.1, ker S(T)* C ker S(T') implying S(T") to be a projection. As seen in
the proof of Theorem 3.5, the underlying kernel condition indicates

1> |S(D)|| = |S(T)] = IIT]V/2U2|
and therefore
@20 = U*)z|?
= |URIT[V2U"a||* = (UP|T|V2U 2, U ) — (U™, U|T|V2U ) + |U*a||?
< |U*z|)? = (UU*z,x) — (2, UU*z) + [|[U*z||* = 0.

Hence U?|T|/2U* = U* or equivalently, U|T|/?U*? = U and hence kerT = kerU C
ker U* = ker T*. Invoking Theorem 4.4, we arrive at the desired conclusion. O

Corollary 4.7. Suppose the following conditions hold for T € B(H).
(i) S(T) is idempotent.
(if) S(T™*) is a contraction.
(iii) ker S(T') = ker T
Then T is a selfadjoint partial isometry.
Proof. As seen earlier, the condition (i) yields U?|T|'/2U = U?. Then applying (iii) which
is equivalent to ker U = ker U? gives U?|T|'/?U = U. Since ||S(T*)|| = |||T|U*?|| < 1 by
(ii), we have
(T 2U20 = U)a|f?
= ||T)2U2U=|* — (| T|?U**U=,Ux) — (Uz, |T|"*U**Ux) + || Uz
< |Uz|? = (U*Uz,2) — (2, U*Uz) + |Uz|]* = 0.
Hence |T|Y2U*2U = U and |T|'/?U*? = UU*. Then UU* = U?T|*/?, and so ker T C
ker T*. Hence the result is immediate from Theorem 4.4. (]

Theorem 4.8. If S(T) =T and ker T C ker T*, then T is a projection.
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Proof. Since U|T|'/2U = U|T|, |T|*/?U = |T|. Then |T|*/?U|T|/? = |T|*/? and (Uz,z) > 0
for all 2 € ran |T|'/2. Also, (Uy,y) = 0 for all y € ker |T|*/2. For any z € H, there exist
x € [ran |T|'/?] and y € ker |T|'/? such that z = 2 + y. Therefore

Uz, z) = (Uz,z+y) = (Uzx,z) + (x,U*y) = (Ux,x2) >0

as kerT C kerT*. This shows that U is positive. Since U is also a partial isometry,
U*U = U? is a projection. Then o(U) C {0,1} as U is positive. Hence U is a projection
and U*U = U. Then T = U|T| = U*U|T| = |T| and |T| = |T|"/?U = |T|'/?U*U = |T|"/2.
Therefore |T|, and hence T is a projection. O

1

—= 0

Example 6. Let T = <2\(§ 0). Then the polar decomposition T' = U|T| is given by
2v2

1

0 1
and |T| = (2 0). Then S(T) = U|T|2U =T, but T is not a projection.
73 0 0 0

This example shows that Theorem 4.8 does not hold if the underlying kernel condition
ker T' C ker T* is replaced even by the weaker condition like ker U = ker U2.

1
U=(¢

Corollary 4.9. Let S(T) =T. If either (i) T is convezoid or (ii) U is convexoid, then T
1S a projection.

Proof.

(i) The condition S(T) = T implies |T'|'/2U = |T|. Clearly T = |T|/2U|T|"/? = |T|3/?
and hence (T) = o(T) C {x : > 0}. Since T is convexoid, it follows that T is a positive
operator. In particular, ker T = ker T*. Now the result follows from Theorem 4.8.

(ii) Again as |T|Y/2U = |T|, we have UU*|T|*/? = U|T| or |T|'/?UU* = |T|U* implying
U?U* = U|T|/?U*. Since

o(U) = o(UUU) = o(UUU*)
by [3, lemmal, we have
o(U) = o(UT|"?U*) c {t:t > 0}.

Since U is convexoid, it follows that U is a positive operator. Consequently, ker T" = ker T™.

Now the result is clear from Theorem 4.8.
O

Corollary 4.10. If S(T) =T and T is a class A(s,t) operator, then T is a projection.

Proof. We may assume 1/2 < s by [9]. Note that the condition S(T") = T implies |T|'/2U =
|T|. Then T(s,t) = |T|*~Y2(|T|*/?U)|T|* = |T|***+/2. Hence T is normal by [12] and so

the result follows from Theorem 4.8. O
(00 1 (0 0 roea (11
Example 7. Let T = (1 1). Then U = E (1 1) and |T|Y/* =271 1 1) Hence

S(T)=2"1 <(1) ?) and S(T) is not idempotent. Hence S(T") may not be even idempotent

if T is idempotent. It is well known that T is a projection whenever T is idempotent.
However, in case T and S(T') are idempotent operators, then both 7" and S(T) turn out to
be projections.

Theorem 4.11. If T and S(T') are idempotent operators, then T is projection and T =
S(T).
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Proof. Since U|T| = T = T? = U|T|U|T|, we have |T|U|T| = |T| = |T|U*|T|. Hence
U=UU*T| and U*U = U*UU*|T| = U*|T|. Then |T|U = U*U and

(4.10) ker U = ker U?.

Now the condition that S(7') is idempotent yields U?|T|'/2U = U?. Then

(4.11) U?|T)V2U = U.

by (4.10). Multiplying (4.11) on the right by U, we obtain U?|T|'/2U? = U?. By (4.10), it
follows that U|T|/2U? = U. Hence |T|*/?U? = U*U and then |T|U? = |T|'/2U*U |T|1/2.
Since |T|\U = U*U, we get |T|'/? = (|T|U)U = U*U? and so S(T) = U(U*U?)U = U>.
Since U3 is a contraction and S(T) is idempotent, U3 is a projection. Since ker U = ker U? =
ker U3 by (4.10), U3 = U*U or U*® = U*U. Now it is obvious from the last equation that

kerT* = kerU* C kerU = kerT. Hence T is a projection as T is idempotent. Clearly
S(T') = T which finishes the proof. O

5. POLAR DECOMPOSITION

Theorem 5.1. If the operator |T|'/2U has the polar decomposition given by |T|'/?U =
W||T|"/?U]|, then S(T) = UW|S(T)| is the polar decomposition of S(T).

Proof. Clearly S(T) = UW|S(T)|. To complete the proof, we must show that UW is a
partial isometry with ker UW = ker |S(T)|.
We show UW is a partial isometry. Suppose Uz = 0 for some x € H. Then U*|T|1/2x =
0. By our hypothesis, W*x = 0. Thus kerU*U C ket WW* or U UWW* = WW*.
Therefore
UWUW)YUW =UWW*UUW =UWW*W =UW.

Next we show ker UW = ker S(T'). Let UWx = 0. Then Wz € ker U and U*|T|*/?*Wx =
0. Then W*Wzx = 0 and S(T)z = 0. On the other hand if S(T)z = 0, then |T|'/2Uz =
U*U|T|/?Ux = 0. This implies that Wa = 0 and therefore UWx = 0. O

Theorem 5.2. If S(T) = W|S(T)| is the polar decomposition, then the operator |T|'/?U
has the polar decomposition given by U*W ||T|*/2U].

Proof. By our hypothesis,
|T|2U = U*W|S(T)| = U*W||T|*?U]|.

We show ker U*W = ker ||T|'/2U|. If U*Wz = 0, then we find Wz € kerU*. Since
ker U* C ker W*, W*Wx = 0. Then it follows that W*Wz = 0 and hence z € ker |S(T)| =
ker ||T|'/2U|. Conversely if ||T|'/2U|z = 0, then Wz = 0 and so = € ker U*W .

Next we show U*W is a partial isometry. Since ker UU* C ker WW* we have WW*UU* =
WW*. Therefore

UW(U*W)* U*W = U*(WW*UU)W = U*WW*W = U*W.
O

Theorem 5.3. Let T be a binormal operator, i.e., |T| commutes with |T*|. If S(T) =
W|S(T)| is the polar decomposition, then the Aluthge transform T = |T|'/2U|T|"/? has the
polar decomposition given by T = U*W|T.

Proof. By Theorem 5.2, |T|'/2U = U*W|S(T)| is the polar decomposition. Then

(5.1) T = U*W|S(T)||T|"/2.
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Since |T'| commutes with |T%| = U|T|U*, we have
|S(T)P|TI2 = (U T\U)IT|V? = U(|T\U (T V20U
= U*(U|T|"?U*|T|)U
= |T|"2U°|T|U = |T|"/%|S(T)J.

Thus |S(T)| commutes with |T|'/2. As a consequence of this fact, we find T*T = |T|'/2U*|T|U|T|*/? =
|S(T)2|T| or |T| = |S(T)||T|'/?. Therefore (5.1) implies

(5.2) T =U*WIT)|.

Note that U*W is a partial isometry. In order to complete the proof, we must show that
ker U*W = kerT. Suppose Tz = 0. Then |S(T)]*|T|'/22 = U*|T|U|T|"/?z = 0. Since
|S(T)| commutes with |T|*/2,|T|'/2U*|T|Uz = 0. Then UU*|T|Ux = 0 or U*|T|Ux = 0.
Hence |T|'/2Uz = 0 and S(T)x = 0. Consequently we have x € ker U*W. On the other
hand if U*Wz = 0, then |T|z = |T|"/?|S(T)|z = 0. Thus = € ker T O

Theorem 5.4. If S(T) = WI[S(T)| and T = U*WIT| are polar decompositions, then
|S(T)|, |T| and |T| are commuting. Moreover if ket T* C kerT', then T is binormal.

Proof. By Theorem 5.2, |T|'/2U has the polar decomposition U*W|S(T)|. From this we
derive that T = U*W|S(T)||T|'/?. Therefore

U*W|T = U*W|S(T)||T|"/2.

Since (U*W)*U*W|S(T)| = |S(T)| and (U*W)*U*W|T| = |T|, we obtain |T| = |S(T)||T|*/2.
Thus |S(T)|,|T| and |T| are commuting. Suppose ker T* C kerT. Then UU*U* = U*.
Since |S(T)?|T|Y/? = U*(|T|U|T|Y2U*)U and |T|Y/?|S(T)|?> = U*(U|T|"?U*|T|)U, we
find U*(|T|U|T|Y?U*)U = U*(U|T|"/?U*|T|)U. Now the kernel condition implies that T
is binormal. O
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