A NOTE ON AN OPERATOR TRANSFORM $S(T)$

S.M. PATEL, K. TANAHASHI ${ }^{1}$ AND A. UCHIYAMA

Received March 2, 2005; revised August 9, 2005

Abstract

In the present article, we introduce a new operator transform of a bounded linear operator on a complex Hilbert space, the definition of which is parallel to that of the Aluthge transform. Also we study the relationship between this new transform and several classes of non-hyponormal operators.

1. Introduction

Let $B(\mathcal{H})$ be the Banach algebra of bounded linear operators acting on a complex Hilbert space \mathcal{H}. For $T \in B(\mathcal{H})$, we shall use the notations $\sigma(T), W(T), r(T)$ and $w(T)$ to denote the spectrum, the numerical range, the spectral radius, and the numerical radius of T. An operator $T \in B(\mathcal{H})$ is said to be p-hyponormal if $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$, where $p>0$; log-hyponormal if T is invertible and $\log |T| \geq \log \left|T^{*}\right|$; class $A(s, t)$ operator if $\left(\left|T^{*}\right|^{t}|T|^{2 s}\left|T^{*}\right|^{t}\right)^{t /(s+t)} \geq\left|T^{*}\right|^{2 t}$ where $s, t>0$; convexoid if conv $\sigma(T)$ (convex hull of $\sigma(T)$) coincides with the closure of $W(T)$, and normaloid if $r(T)=\|T\|$. It is known that classes of p-hyponormal operators and log-hyponormal operators are subclasses of class $A(s, t)$ operators, and if T is a class $A(s, t)$ operator with $s \leq s^{\prime}, t \leq t^{\prime}$, then T is a class $A\left(s^{\prime}, t^{\prime}\right)$ operator (see [6], [10], [14], [15], [18], [19]). Also a class $A(s, t)$ operator is normaloid([7]). In [1], Aluthge studied p-hyponormal operators by elegantly using the operator transform $\tilde{T}=|T|^{1 / 2} U|T|^{1 / 2}$ of $T \in B(\mathcal{H})$, where $T=U|T|$ is the polar decomposition. Named after Aluthge, the transform \tilde{T} is known as the Aluthge transform in the literature. A further extension of \tilde{T} called the generalized Aluthge transform is defined as $T(s, t)=|T|^{s} U|T|^{t}$. Both the transforms have been proved to be powerful tools in introducing and exploring the properties of several classes of non-hyponormal operators ([2], [5], [6], [7], [12], [16], [17], [18]). By interchanging U with $|T|^{1 / 2}$ in the Aluthge transform, we define below a new transform.

Definition. Let $T \in B(\mathcal{H})$ with the polar decomposition $T=U|T|$. Then the transform $S(T)$ of T is defined as

$$
S(T)=U|T|^{1 / 2} U
$$

In Section 2, we establish some basic properties of $S(T)$. Section 3 is devoted to obtaining some conditions on $S(T)$ implying the normality of T. In Section 4, we focus on conditions on $S(T)$ under which T is k-hyponormal or a selfadjoint partial isometry or a projection operator. Section 5 deals with the polar decomposition of $S(T)$.

[^0]
2. BASIC PROPERTIES

First we list some elementary properties of the transform $S(T)$.
Theorem 2.1. For an operator $T \in B(\mathcal{H})$, the following assertions hold.
(i) $\|S(T)\|^{2} \leq\|T\|$.
(ii) $\operatorname{ker} S(T)=\operatorname{ker} U^{2}$.
(iii) $S\left(T^{*}\right)=|T|^{1 / 2} U^{* 2}$.
(iv) $\operatorname{ker} S(T) \subset \operatorname{ker} S(T)^{*} \cap \operatorname{ker} S\left(T^{*}\right)$ if $\operatorname{ker} T \subset \operatorname{ker} T^{*}$.
(v) $\operatorname{ker} S(T)^{*} \cap \operatorname{ker} S\left(T^{*}\right) \subset \operatorname{ker} S(T)$ if $\operatorname{ker} T^{*} \subset \operatorname{ker} T$.
(vi) $\sigma\left(S\left(T^{*}\right)\right)=\sigma\left(S(T)^{*}\right)$.

Proof. Assertions (i) and (ii) are obvious. Assertion (iii) follows from the fact that $T^{*}=$ $U^{*}\left|T^{*}\right|$ is the polar decomposition of T^{*}.
(iv) Suppose $S(T) x=0$. Then $|T|^{1 / 2} U x=0$ implying $U x \in \operatorname{ker} U \subset \operatorname{ker} U^{*}$. Hence $U x=0$ and so $U^{*} x=0$ by the kernel condition. Hence $S(T)^{*} x=0$ and $S\left(T^{*}\right) x=0$. This proves (iv).
(v) If $S(T)^{*} x=0$, then $|T|^{1 / 2} U^{*} x \subset \operatorname{ker} U^{*}=\operatorname{ker} T^{*} \subset \operatorname{ker} T=\operatorname{ker} U$. This gives $U|T|^{1 / 2} U^{*} x=0$ or $|T|^{1 / 2} U^{*} x=0$. Hence $U^{*} x=0$ and $U x=0$ as $\operatorname{ker} U^{*} \subset \operatorname{ker} U$. From the hypothesis, we have $x \in \operatorname{ker} T=\operatorname{ker} U$. Hence $S(T) x=0$. If $S\left(T^{*}\right) x=0$, then $U^{* 2} x=0$. Hence $U^{*} x \in \operatorname{ker} U^{*} \subset \operatorname{ker} U$ by the kernel condition. Hence $U^{*} x=0$ and $T^{*} x=0$. Again $S(T) x=0$. This proves (v).
(vi) Note that $\sigma(S(T)) \backslash\{0\}=\sigma\left(S\left(T^{*}\right)^{*}\right) \backslash\{0\}$. Also $S(T)$ is invertible if and only if U and $|T|$ are invertible if and only if $S\left(T^{*}\right)$ is invertible. Therefore $\sigma(S(T))=\sigma\left(S\left(T^{*}\right)^{*}\right)$ or $\sigma\left(S(T)^{*}\right)=\sigma\left(S\left(T^{*}\right)\right)$.

Theorem 2.2. Let T be a p-hyponormal operator with $0<p \leq 1$.
(i) If $0<p \leq 1 / 2$, then $S(T)$ is $2 p$-hyponormal.
(ii) If $1 / 2<p \leq 1$, then $S(T)$ is hyponormal.

Proof.
(i) Note that $S(T)^{*} S(T)=U^{*}|T| U$ and

$$
S(T) S(T)^{*}=U|T|^{1 / 2} U U^{*}|T|^{1 / 2} U^{*} \leq U|T| U^{*}
$$

Since T is p-hyponormal and $U|T|^{q} U^{*}=\left|T^{*}\right|^{q}$ for $0<q$,

$$
\begin{aligned}
\left(S(T)^{*} S(T)\right)^{2 p} & =\left(U^{*}|T| U\right)^{2 p} \\
& \geq U^{*}|T|^{2 p} U \quad \text { (by Hensen's inequality[8]) } \\
& \geq|T|^{2 p} \geq U|T|^{2 p} U^{*}=\left(U|T| U^{*}\right)^{2 p} \\
& \geq\left(S(T) S(T)^{*}\right)^{2 p} \text { (by Lower-Heinz's inequality [9], [11]). }
\end{aligned}
$$

(ii) If $1 / 2<p \leq 1$, then T is semi-hyponormal. Hence, by (i), it follows that $S(T)$ is hyponormal.

Remark. The proof of Theorem 2.2 indicates that for a p-hyponormal T with $0<p \leq 1 / 2$, the following inequalities hold:

$$
|S(T)|^{4 p} \geq|T|^{2 p} \geq\left|S(T)^{*}\right|^{4 p}
$$

A fairly natural question presents itself: Does this inequality implies T is p-hyponormal? In case T satisfies the kernel condition $\operatorname{ker} T^{*} \subset \operatorname{ker} T$ then the question has an affirmative
answer. Because $\operatorname{ker} T^{*} \subset \operatorname{ker} T$ implies $U^{*} U \leq U U^{*}$, hence

$$
\begin{aligned}
|T|^{2 p} & \geq\left|S(T)^{*}\right|^{4 p}=\left(U|T|^{1 / 2} U U^{*}|T|^{1 / 2} U^{*}\right)^{2 p} \\
& =\left(U|T| U^{*}\right)^{2 p}=\left|T^{*}\right|^{2 p}
\end{aligned}
$$

For $p=1 / 2$, it is not difficult to verify that operators satisfying above inequality are w-hyponormal operators. However, the question is still remains unanswered.

Theorem 2.3. If T is a log-hyponormal operator, then so is $S(T)$.
Proof. Since T is invertible, $\left|S(T)^{*}\right|^{2}=U|T| U^{*}$ and $|S(T)|^{2}=U^{*}|T| U$. Therefore

$$
\begin{aligned}
2 \log |S(T)| & =\log \left(U^{*}|T| U\right)=U^{*}(\log |T|) U \\
& \geq U^{*}\left(\log \left|T^{*}\right|\right) U=\log |T| \geq \log \left|T^{*}\right| \\
& =\log \left(U|T| U^{*}\right)=U(\log |T|) U^{*}=2 \log \left|S(T)^{*}\right|
\end{aligned}
$$

This proves the result.
Next, we relate the approximate point spectra of an operator T and $S(T)$ when T is either p-hyponormal or log-hyponormal.we first prove a couple of theorems that shall be needed.

Theorem 2.4. Let $T=U|T|$ be p-hyponormal with $0<p \leq 1$. Let $X=U^{2}|T|^{1 / 2}$. Then $X=U^{2}|T|^{1 / 2}$ is the polar decomposition of X and the following assertions hold.
(i) If $0<p \leq 1 / 2$, then X is $2 p$-hyponormal.
(ii) If $1 / 2<p \leq 1$, then X is hyponormal.

Proof. Since T is p-hyponormal, $\operatorname{ker} T \subset \operatorname{ker} T^{*}$. Hence $U^{*} U^{2}=U$ and $U^{2} U^{* 2} U^{2}=$ $U^{2} U^{*} U=U^{2}$. Also, $\operatorname{ker} U^{2}=\operatorname{ker} U=\operatorname{ker}|T|^{1 / 2}$. This implies $X=U^{2}|T|^{1 / 2}$ is the polar decomposition of X.

If $0<p<1 / 2$, then

$$
\begin{aligned}
\left(X^{*} X\right)^{2 p} & =|T|^{2 p} \geq\left|T^{*}\right|^{2 p} \\
& =U|T|^{2 p} U^{*} \geq U^{2}|T|^{2 p} U^{* 2}
\end{aligned}
$$

Since

$$
\left(U^{2}|T|^{2 p} U^{* 2}\right)\left(U^{2}|T|^{2 p} U^{* 2}\right)=U^{2}|T|^{4 p} U^{* 2}
$$

we have $f\left(U^{2}|T|^{2 p} U^{* 2}\right)=U^{2} f(|T|) U^{* 2}$ for any polynomial $f(x)$ with $f(0)=0$. Hence

$$
\left(X^{*} X\right)^{2 p} \geq U^{2}|T|^{2 p} U^{* 2}=\left(U^{2}|T| U^{* 2}\right)^{2 p}=\left(X X^{*}\right)^{2 p}
$$

If $1 / 2 \leq p \leq 1$, then T is semi-hyponormal. Hence, by (i), it follows that X is hyponormal.

Theorem 2.5. Let $T=U|T|$ be log-hyponormal. Then $X=U^{2}|T|^{1 / 2}$ is the polar decomposition of X and X is log-hyponormal.

Proof. That X is invertible and $X=U^{2}|T|^{1 / 2}$ is the polar decomposition should be fairly apparent. To show that X is log-hyponormal, observe first that $|X|=|T|^{1 / 2}$ and $\left|X^{*}\right|=$ $U\left|T^{*}\right|{ }^{1 / 2} U^{*}$. Since T is log-hyponormal, we find

$$
\begin{aligned}
\log |X| & =\frac{1}{2} \log |T| \geq \frac{1}{2} \log \left|T^{*}\right|=\frac{1}{2} U(\log |T|) U^{*} \\
& \geq U\left(\log \left|T^{*}\right|\right) U^{*}=\log \left(U\left|T^{*}\right|^{1 / 2} U^{*}\right)=\log \left|X^{*}\right|
\end{aligned}
$$

Hence X is log-hyponormal.

The approximate point spectrum of T is definded by

$$
\sigma_{a}(T)=\left\{z \in \mathbb{C} \mid \exists \text { unit vectors } x_{n},(T-z) x_{n} \rightarrow 0\right\}
$$

It is known ([3]) that if T is p-hyponormal, then

$$
\sigma_{a}(T)=\sigma_{n a}(T)=\left\{z \in \mathbb{C} \mid \exists \text { unit vectors } x_{n},(T-z) x_{n},(T-z)^{*} x_{n} \rightarrow 0\right\}
$$

Theorem 2.6. Let $T=U|T|$ be either p-hyponormal or log-hyponormal, then

$$
\sigma_{a}\left(U^{2}|T|^{1 / 2}\right)=\left\{r^{1 / 2} e^{2 i \theta} \mid r e^{i \theta} \in \sigma_{a}(T)\right\}=\sigma_{a}(S(T))
$$

Proof. Let T be p-hyponormal and $0 \neq r e^{i \theta} \in \sigma_{a}(T)$. Then there exist unit vectors x_{n} such that

$$
(|T|-r) x_{n} \rightarrow 0,\left(U-e^{i \theta}\right) x_{n} \rightarrow 0
$$

Hence $\left(U^{2}|T|^{1 / 2}-r^{1 / 2} e^{2 i \theta}\right) x_{n} \rightarrow 0$. If $0 \in \sigma_{a}(T)$, then there exist unit vectors x_{n} such that $|T| x_{n} \rightarrow 0$. Hence $U^{2}|T|^{1 / 2} x_{n} \rightarrow 0$.

Conversely, let $0 \neq \rho e^{2 i \phi} \in \sigma_{a}\left(U^{2}|T|^{1 / 2}\right)$. Since $U^{2}|T|^{1 / 2}$ is the polar decomposition of $2 p$-hyponormal operator by Theorem 2.4, there exist unit vectors x_{n} such that

$$
\left(U^{2}|T|^{1 / 2}-\rho e^{2 i \phi}\right) x_{n} \rightarrow 0,\left(U^{2}|T|^{1 / 2}-\rho e^{2 i \phi}\right)^{*} x_{n} \rightarrow 0
$$

Hence

$$
\left(|T|^{1 / 2}-\rho\right) x_{n} \rightarrow 0,\left(U^{2}|T|^{1 / 2} U^{* 2}-\rho\right) x_{n} \rightarrow 0
$$

and

$$
\left(U^{2}-e^{2 i \phi}\right) x_{n}=\left(U+e^{i \phi}\right)\left(U-e^{i \phi}\right) x_{n} \rightarrow 0
$$

If there exists a subsequence $x_{n_{k}}$ such that $\left(U-e^{i \phi}\right) x_{n_{k}} \rightarrow 0$, then $\left(T-\rho^{2} e^{i \phi}\right) x_{n_{k}} \rightarrow 0$. Hence $\rho^{2} e^{i \phi} \in \sigma_{a}(T)$.

Suppose there is no such subsequence. For a sequence u_{n} of unit vectors and $|z|=1$, it is known that $(U-z I) u_{n} \rightarrow 0$ if and only if $(U-z I)^{*} u_{n} \rightarrow 0$. Hence we may assume that $\left\|\left(U-e^{i \phi}\right)^{*} x_{n}\right\| \geq \varepsilon$ for some $\varepsilon>0$. We show $\left(\left|T^{*}\right|^{1 / 2}-\rho\right) x_{n} \rightarrow 0$. Since $\left(|T|^{1 / 2}-\rho\right) x_{n} \rightarrow$ $0,\left(U^{2}|T|^{1 / 2} U^{* 2}-\rho\right) x_{n} \rightarrow 0$, we have

$$
\left(|T|^{p}-\rho^{2 p}\right) x_{n} \rightarrow 0,\left(U^{2}|T|^{p} U^{* 2}-\rho^{2 p}\right) x_{n} \rightarrow 0
$$

T is p-hyponormal, hence

$$
|T|^{2 p} \geq U|T|^{2 p} U^{*} \geq U^{2}|T|^{2 p} U^{2 *}
$$

and

$$
|T|^{p} \geq U|T|^{p} U^{*} \geq U^{2}|T|^{p} U^{2 *}
$$

Then

$$
\left.\left\|U|T|^{p} U^{*} x_{n}\right\| \rightarrow \rho^{2 p},\left.\langle U| T\right|^{p} U^{*} x_{n}, x_{n}\right\rangle \rightarrow \rho^{2 p}
$$

Therefore

$$
\begin{aligned}
& \left\|\left(\left|T^{*}\right|^{p}-\rho^{2 p}\right) x_{n}\right\|^{2} \\
& \left.\quad=\left\|U|T|^{p} U^{*} x_{n}\right\|^{2}-\left.2 \rho^{2 p}\langle U| T\right|^{p} U^{*} x_{n}, x_{n}\right\rangle+\rho^{4 p} \rightarrow 0
\end{aligned}
$$

Hence $\left(\left|T^{*}\right|^{p}-\rho^{2 p}\right) x_{n} \rightarrow 0$ and $\left(\left|T^{*}\right|^{1 / 2}-\rho\right) x_{n} \rightarrow 0$.
Set

$$
y_{n}=\left(U-e^{i \phi}\right)^{*} x_{n} /\left\|\left(U-e^{-i \phi}\right)^{*} x_{n}\right\| .
$$

Since $\left(U^{2}-e^{2 i \phi}\right) x_{n} \rightarrow 0$, we have $\left(U+e^{i \phi}\right)^{*} y_{n} \rightarrow 0$ and $\left(U+e^{i \phi}\right) y_{n} \rightarrow 0$. Now

$$
\left(\left|T^{*}\right|^{1 / 2}-\rho\right) x_{n}=\left(U|T|^{1 / 2} U^{*}-\rho\right) x_{n} \rightarrow 0
$$

implies $\left(|T|^{1 / 2}-\rho\right) U^{*} x_{n} \rightarrow 0$. Consequently,

$$
\begin{aligned}
& \left(|T|^{1 / 2}-\rho\right)\left(U-e^{i \phi}\right)^{*} x_{n} \\
& \quad=\left(|T|^{1 / 2}-\rho\right) U^{*} x_{n}-e^{-i \phi}\left(|T|^{1 / 2}-\rho\right) x_{n} \rightarrow 0
\end{aligned}
$$

and $\left(|T|^{1 / 2}-\rho\right) y_{n} \rightarrow 0$. Thus $\left(T+\rho^{2} e^{i \phi}\right) y_{n}=\left(T-\rho^{2} e^{i(\phi+\pi)}\right) y_{n} \rightarrow 0$ and $\rho^{2} e^{i(\phi+\pi)} \in \sigma_{a}(T)$. If $0 \in \sigma_{a}\left(U^{2}|T|^{1 / 2}\right)$, then there exist unit vectors x_{n} such that $|T|^{1 / 2} x_{n} \rightarrow 0$ or $T x_{n} \rightarrow 0$.
Now assume that T is log-hyponormal. Then the similar reasoning will lead to the desired conclusion.

3. NORMALITY

In [12], the first author proved that a p-hyponormal operator is normal if its Aluthge transform is normal. More generally the result is found to be true for w-hyponormal operators by [2], those are class $A(1 / 2,1 / 2)$ operators by [6]. As a further extension, it has been shown that a class $A(s, t)$ operator is normal provided its generalized Aluthge transform $T(s, t)$ is normal. That this result holds if we assume the normality of $S(T)$ instead of the normality of $T(s, t)$ will follow as a corollary to the following theorem.

Theorem 3.1. Let $T(s, s)=|T|^{s} U|T|^{s}$. If $S(T)$ is normal and $\operatorname{ker} S(T)=\operatorname{ker} T$, then $T(s, s)$ is normal.

Proof. First we show that

$$
\begin{equation*}
\operatorname{ker} T^{*} \subset \operatorname{ker} T \tag{3.1}
\end{equation*}
$$

Since $S(T)$ is normal, we have

$$
\begin{equation*}
U^{*}|T| U=U|T|^{1 / 2} U U^{*}|T|^{1 / 2} U^{*} \tag{3.2}
\end{equation*}
$$

Suppose $T^{*} x=0$. Then $U^{*} x=0$. And therefore (3.2) implies $U^{*}|T| U x=\left(|T|^{1 / 2} U\right)^{*}|T|^{1 / 2} U x=$ 0 or $|T|^{1 / 2} U x=0$. This in turn gives $S(T) x=0$ and so by the kernel condition, $T x=0$, which establishes (3.1). Note that by (3.1), $\operatorname{ker} U U^{*} \subset \operatorname{ker} U^{*} U$. Hence $U U^{*}|T|^{1 / 2}=|T|^{1 / 2}$. Then (3.2) reduces to

$$
\begin{equation*}
U^{*}|T| U=U|T| U^{*} \tag{3.3}
\end{equation*}
$$

If $T x=0$, then $U x=0$ and so $U^{*} x=0$ or $T^{*} x=0$ by (3.3). Thus by (3.1), $\operatorname{ker} T^{*}=$ $\operatorname{ker} U^{*}=\operatorname{ker} U=\operatorname{ker} T$. Clearly U is normal. Then (3.3) implies $U^{*}|T|{ }^{s} U=U|T|^{s} U^{*}$. Now the normality of $T(s, s)$ is immediate.

Some consequences of Theorem 3.1 are of particular interest and list them below as corollaries.

Corollary 3.2. Let T be a class $A(s, t)$ operator. If $S(T)$ is normal, then T is normal.
Proof. We may assume $t \leq s$. Then T is of class $A(s, s)$. First, we show that $T(s, s)$ is normal. This will follow from Theorem 3.1 once we show that $\operatorname{ker} S(T)=\operatorname{ker} T$. Suppose $S(T) x=0$. Then $|T|^{1 / 2} U x=0$. Choose $z \in\left[\operatorname{ran}|T|^{s}\right]$ and $y \in \operatorname{ker}|T|^{s}$ such that $x=z+y$, where $\left[\operatorname{ran}|T|^{s}\right]$ denotes the closure of $\operatorname{ran}|T|^{s}$. Then

$$
\begin{equation*}
|T|^{s} U z=0 \tag{3.4}
\end{equation*}
$$

Select a sequence x_{n} of vectors from \mathcal{H} such that $|T|^{s} x_{n} \rightarrow z$. By (3.4), $T(s, s) x_{n} \rightarrow 0$. Since T is of class $A(s, s),|T|^{s} x_{n} \rightarrow 0$ and hence $z=0$. Thus $x=y \in \operatorname{ker}|T|^{s}=\operatorname{ker} T$. This shows that $\operatorname{ker} S(T) \subset \operatorname{ker} T$. Since the reverse inclusion is obvious, we have $\operatorname{ker} S(T)=$ ker T and hence $T(s, s)$ is normal. By [13, Corollary 2.2], we conclude that T is normal.

Corollary 3.3. If T is a class $A(s, t)$ operator and if $S(T)$ is a positive operator, then T is selfadjoint.

Proof. By Corollary 3.2, T is normal. Therefore if $\lambda \in \sigma(T)$, then $|\lambda|^{1 / 2} e^{2 i \theta} \in \sigma(S(T)) \subset$ $\{x \in \mathbb{R}: x \geq 0\}$. This shows that $\sigma(T) \subset \mathbb{R}$. Hence T is selfadjoint.

Example 1. Let $T=\left(\begin{array}{cc}1 & 0 \\ 0 & i\end{array}\right)$. Then T is normal and $S(T)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Hence if we relax the condition " $S(T)$ is a positive operator" by assuming " $S(T)$ is a selfadjoint operator ", then the result is invalid.

Corollary 3.4.
(i) If $S\left(T^{*}\right)$ is normal and $\operatorname{ker} S(T)=\operatorname{ker} T$, then $T(s, s)$ is normal.
(ii) If T is a class $A(s, t)$ operator for which $S\left(T^{*}\right)$ is normal, then T is normal.

Proof.
(i) First we show that $\operatorname{ker} S\left(T^{*}\right)=\operatorname{ker} T^{*}$. Suppose $T^{*} x=0$. Then it is obvious that $S\left(T^{*}\right) x=0$. Let $S\left(T^{*}\right) x=0$. By the normality of $S\left(T^{*}\right)$, we have $0=S\left(T^{*}\right)^{*} x=$ $U^{2}|T|^{1 / 2} x$. This means that $U|T|^{1 / 2} x \in \operatorname{ker} T=\operatorname{ker} S(T)$. Hence $S(T)|T|^{1 / 2} x=U|T|^{1 / 2} U|T|^{1 / 2} x=$ 0 Then $|T|^{1 / 2} x \in \operatorname{ker} S(T)=\operatorname{ker} T=\operatorname{ker}|T|$, and hence we obtain $|T|^{3 / 2} x=0$ or $T x=0$. Thus we have

$$
\begin{equation*}
\operatorname{ker} T^{*} \subset \operatorname{ker} S\left(T^{*}\right) \subset \operatorname{ker} T \tag{3.5}
\end{equation*}
$$

On the other hand, if $x \in \operatorname{ker} T$, then $S\left(T^{*}\right)^{*} U\left|T^{*}\right|^{1 / 2} U x=0$. Since $S\left(T^{*}\right)$ is normal,

$$
0=S\left(T^{*}\right) x=|T|^{1 / 2} U^{* 2} x
$$

or $U^{* 2} x=0$. From (3.5), it will follow that $U^{*} x \in \operatorname{ker} U^{*} \subset \operatorname{ker} T=\operatorname{ker} U$ or $U^{*} x=0$. This proves $\operatorname{ker} T \subset \operatorname{ker} U^{*}=\operatorname{ker} T^{*}$. Combining this inclusion with (3.5) gives $\operatorname{ker} S\left(T^{*}\right)=$ $\operatorname{ker} T^{*}$. By Theorem 3.1, $T^{*}(s, s)$ is normal. Since $T^{*}(s, s)=U T(s, s)^{*} U^{*}$, the normality of $T(s, s)$ is immediate.
(ii) The assertion follows from (i) as T being a class $A(s, t)$ operator, $\operatorname{ker} S(T)=\operatorname{ker} T$ (refer the proof of Corollary 3.2).

Theorem 3.5. If $\operatorname{ker} T^{*}=\operatorname{ker} T$, then the following assertions hold.
(i) $W\left(S\left(T^{*}\right)\right)=W\left(S(T)^{*}\right)$.
(ii) $\|S(T)\|^{2}=\|T\|=\left\|S\left(T^{*}\right)\right\|^{2}$.

Proof.
(i) The kernel condition implies that $|T|^{1 / 2} U U^{*}=|T|^{1 / 2}$. Let x be a unit vector. Then

$$
\begin{aligned}
\left\langle S\left(T^{*}\right) x, x\right\rangle & \left.\left.=\left.\langle | T\right|^{1 / 2} U^{* 2} x, x\right\rangle=\left.\left\langle x, U^{2}\right| T\right|^{1 / 2} U U^{*} x\right\rangle \\
& \left.=\left.\left\langle U^{*} x, U\right| T\right|^{1 / 2} U U^{*} x\right\rangle \\
& =\left\langle U^{*} x /\left\|U^{*} x\right\|, S(T)\left(U^{*} x\right) /\left\|U^{*} x\right\|\right\rangle\left\|U^{*} x\right\|^{2}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left\langle S\left(T^{*}\right) x, x\right\rangle=\left\langle S(T)^{*} U^{*} x /\left\|U^{*} x\right\|, U^{*} x /\left\|U^{*} x\right\|\right\rangle\left\|U^{*} x\right\|^{2} . \tag{3.6}
\end{equation*}
$$

If $0 \in W\left(S(T)^{*}\right)$, then the right hand side (3.6) belongs to $W\left(S(T)^{*}\right)$ as $W\left(S(T)^{*}\right)$ is convex and $\left\|U^{*} x\right\| \leq 1$. Suppose $0 \in W\left(S(T)^{*}\right)$. Then $S(T)$ and hence T is injective. Therefore the kernel condition shows that T^{*} is injective. Thus $U U^{*}=I$. Again the right hand side is in $W\left(S(T)^{*}\right)$, proving $W\left(S\left(T^{*}\right)\right) \subset W\left(S(T)^{*}\right)$. Replacing T by T^{*}, we obtain the reverse inclusion.
(ii) Note

Then, by the kernel condition,

$$
\begin{aligned}
\left\|S\left(T^{*}\right)\right\| & =\left\||T|^{1 / 2} U^{* 2}\right\|=\left\|U U^{*}|T|^{1 / 2} U^{* 2}\right\| \\
& =\left\|U S(T)^{*} U^{*}\right\| \leq\|S(T)\| .
\end{aligned}
$$

Replacing T by T^{*}, we get the reverse inequality.
Example 2. Let T be the unilateral weighted shift operator on $\mathcal{H}=l^{2}$ with weights $\{25,1,1,1,1, \cdots\}$. Then for a vector $\left(x_{0}, x_{1}, x_{2}, \cdots\right) \in \mathcal{H}$, a computation shows that

$$
S(T)\left(x_{0}, x_{1}, x_{2}, \cdots\right)=\left(0,0, x_{0}, x_{1}, x_{2}, \cdots\right)
$$

and

$$
S\left(T^{*}\right)\left(x_{0}, x_{1}, x_{2}, \cdots\right)=\left(5 x_{2}, x_{3}, x_{4}, \cdots\right)
$$

Note that $\operatorname{ker} T=\{0\} \subset \operatorname{ker} T^{*}$. Let $x=(1 / \sqrt{2}, 0,1 / \sqrt{2}, 0,0, \cdots)$. Then $\left\langle S\left(T^{*}\right) x, x\right\rangle=5 / 2$, hence we find $5 / 2 \in W\left(S\left(T^{*}\right)\right)$. However, as $w\left(S(T)^{*}\right) \leq\|S(T)\|=1$, it follows that $5 / 2 \notin W\left(S(T)^{*}\right)$. Hence Theorem 3.5 does not holds if the underlying kernel condition is replaced by the weaker conditions like " $\operatorname{ker} T^{*} \subset \operatorname{ker} T "$ and $" \operatorname{ker} T \subset \operatorname{ker} T^{*}$.

Corollary 3.6. Suppose $\operatorname{ker} T^{*}=\operatorname{ker} T$. Then
(i) $S(T)$ is convexoid if and only if $S\left(T^{*}\right)$ is convexoid.
(ii) $S(T)$ is normaloid if and only if $S\left(T^{*}\right)$ is normaloid.

Proof. Note that $\sigma(S(T)) \backslash\{0\}=\sigma\left(S\left(T^{*}\right)^{*}\right) \backslash\{0\}$. Also $S(T)$ is invertible if and only if U and $|T|$ are invertible if and only if $S\left(T^{*}\right)$ is invertible. Therefore $\sigma(S(T))=\sigma\left(S\left(T^{*}\right)^{*}\right)$ or $\sigma\left(S(T)^{*}\right)=\sigma\left(S\left(T^{*}\right)\right)$. Now the result follows from Theorem 3.5.

Theorem 3.7. If $S(T)^{2}=T$ and $\operatorname{ker} T \subset \operatorname{ker} T^{*}$, then T is normal.
Proof. The condition $S(T)^{2}=T$ means $U|T|^{1 / 2} U^{2}|T|^{1 / 2} U=U|T|$. Hence $|T|^{1 / 2} U^{2}|T|^{1 / 2} U=$ $|T|$ and $U^{3}|T|^{1 / 2} U=U|T|^{1 / 2}$ as $\operatorname{ker} U=\operatorname{ker}|T|^{1 / 2}$. Note that $U^{*} U^{2}=U$ as $\operatorname{ker} T \subset \operatorname{ker} T^{*}$. Therefore

$$
\begin{equation*}
|T|^{1 / 2}=U^{*} U^{3}|T|^{1 / 2} U=U^{2}|T|^{1 / 2} U \tag{3.7}
\end{equation*}
$$

or $U^{*}|T|^{1 / 2} U^{* 2}=|T|^{1 / 2}$ implying $\operatorname{ker} U^{*} \subset \operatorname{ker} U$. This together with the kernel condition gives $\operatorname{ker} U=\operatorname{ker} U^{*}$ and $U^{*} U=U U^{*}$. Hence

$$
\left|T^{*}\right|^{1 / 2}=U|T|^{1 / 2} U^{*}=U^{*} U^{2}|T|^{1 / 2} U^{*}=U^{*}|T|^{1 / 2} U^{* 2}=|T|^{1 / 2}
$$

Thus T is normal.
Corollary 3.8. If $S\left(T^{*}\right)^{2}=T^{*}$ and $\operatorname{ker} T \subset \operatorname{ker} T^{*}$, then T is normal.
Proof. The condition $S\left(T^{*}\right)^{2}=T^{*}$ means $|T|^{1 / 2} U^{* 2}|T|^{1 / 2} U^{* 2}=|T| U^{*}$. Since ker $|T|^{1 / 2}=$ $\operatorname{ker} U$, we find $U U^{* 2}|T|^{1 / 2} U^{* 2}=U|T|^{1 / 2} U^{*}$. Hence $U^{* 2}|T|^{1 / 2} U^{* 2}=U^{*} U U^{* 2}|T|^{1 / 2} U^{* 2}=$ $|T|^{1 / 2} U^{*}$ or $U|T|^{1 / 2}=U^{2}|T|^{1 / 2} U^{2}$. Since $\operatorname{ker} U \subset \operatorname{ker} U^{*}$, one can see that $U^{*} U^{2}=U$ and so the last equation reduces to

$$
\begin{equation*}
|T|^{1 / 2}=U^{*} U|T|^{1 / 2}=U^{*} U^{2}|T|^{1 / 2} U^{2}=U|T|^{1 / 2} U^{2} \tag{3.8}
\end{equation*}
$$

Now multiplying (3.8) on the left by $U U^{*}$, we find $U U^{*}|T|^{1 / 2}=U|T|^{1 / 2} U^{2}=|T|^{1 / 2}$ or $|T|^{1 / 2}=|T|^{1 / 2} U U^{*}$. Especially, $\operatorname{ker} T^{*} \subset \operatorname{ker} T$ and hence by the hypothesis, $\operatorname{ker} T=$ $\operatorname{ker} T^{*}$. Clearly, then U is normal. Now (3.8) along with the normality of U yields
$U^{*}|T|^{1 / 2} U^{*}=|T|^{1 / 2} U^{2} U^{*}=|T|^{1 / 2} U$. Hence $U^{*}|T|^{1 / 2}=U|T|^{1 / 2} U$ and $U^{*}|T|^{1 / 2} U=$ $U|T|^{1 / 2} U^{2}=|T|^{1 / 2}$. This implies $U|T|^{1 / 2}=U U^{*}|T|^{1 / 2} U=|T|^{1 / 2} U$. But then $S\left(T^{*}\right)=$ $|T|^{1 / 2} U^{* 2}=U^{*}|T|^{1 / 2} U^{*}=S(T)^{*}$. Then, by our hypothesis, it follows that $S(T)^{2}=T$. Now the result follows from Theorem 3.7.

Theorem 3.9. $T \in B(\mathcal{H})$ is normal if any one of the following conditions holds.
(i) $\left|S(T)^{*}\right|^{2}=|T|$.
(ii) $\left|S\left(T^{*}\right)\right|^{2}=|T|$, where T is a class $A(s, t)$ operator.
(iii) $|S(T)|^{2}=|T|$, where T is a class $A(s, t)$ operator.

Proof.
(i) Note that $\left|S(T)^{*}\right|^{2}=|T|$ implies

$$
|T|=U|T|^{1 / 2} U U^{*}|T|^{1 / 2} U^{*} \leq U|T| U^{*}
$$

Then clearly $\operatorname{ker} U^{*} \subset \operatorname{ker} U$ or $U^{*} U \leq U U^{*}$. This in turn shows that $|T|=\left|S(T)^{*}\right|^{2}=$ $U|T| U^{*}=\left|T^{*}\right|$. Hence T is normal.
(ii) The condition $\left|S\left(T^{*}\right)\right|^{2}=|T|$ implies $U^{2}|T| U^{* 2}=|T|$. Hence $\operatorname{ker} T^{*} \subset \operatorname{ker} T$. On the other hand if $T x=0$, then it follows from the equation $U^{2}|T| U^{* 2}=|T|$ that $|T|^{1 / 2} U^{* 2} x=0$ or $U^{* 2} x=0$. Then $U^{*} x \in \operatorname{ker} T^{*} \subset \operatorname{ker} T$. Hence $T U^{*} x=0$ or $U|T| U^{*} x=0$, which is the same as $T^{*} x=0$. Thus $\operatorname{ker} T=\operatorname{ker} T^{*}$ or U is normal. Therefore the equation $U^{2}|T| U^{* 2}=|T|$ implies $U|T| U^{*}=U^{*} U^{2}|T| U^{* 2} U=U^{*}|T| U$. Now it is easy to show that $S(T)$ is normal. By Corollary 3.2, we conclude that T is normal.
(iii) Notice that the underlying condition is equivalent to $U|T| U^{*}=U^{*}|T| U$. Therefore if $U x=0$, then $U|T| U^{*} x=0$ or $T^{*} x=0$, giving $\operatorname{ker} U \subset \operatorname{ker} U^{*}$. On the other hand if $U^{*} x=0$, then $U^{*}|T| U x=0$ implying $|T|^{1 / 2} U x=0$ or equivalently, $U^{2} x=0$. Since $\operatorname{ker} U \subset \operatorname{ker} U^{*}$, we find $U^{*} U x=0$ or $U x=0$. Therefore $\operatorname{ker} U=\operatorname{ker} U^{*}$, which shows that U is normal. Hence

$$
S(T)^{*} S(T)=U^{*}|T| U=U|T| U^{*}=S(T) S(T)^{*}
$$

Then $S(T)$ is normal and T is normal by Corollary 3.2.

4. PARTIAL ISOMETRY, PROJECTION

Theorem 4.1. If T is normaloid, then $S(T)$ is normaloid and $\|T\|=\|S(T)\|^{2}$.
Proof. First we observe that $\|S(T)\|^{2} \leq\||T|\|=\|T\|$ for any operator T. Since T is normaloid, $\|T\|=|z|$ for some $z \in \sigma(T)$. Then there exists a sequence $\left\{x_{n}\right\}$ of unit vectors such that $(T-z) x_{n} \rightarrow 0$ and $(T-z)^{*} x_{n} \rightarrow 0$. If $z=|z| e^{i \theta}$, then $\left(|T|^{1 / 2}-|z|^{1 / 2}\right) x_{n} \rightarrow 0$ and $\left(U-e^{i \theta}\right) x_{n} \rightarrow 0$. Consequently, $\left(S(T)-|z|^{1 / 2} e^{2 i \theta}\right) x_{n} \rightarrow 0$ and therefore $|z|^{1 / 2} \leq r(S(T)) \leq$ $\|S(T)\|$. Hence

$$
r(T)=\|T\| \leq r(S(T))^{2} \leq\|S(T)\|^{2} \leq\|T\|
$$

Thus

$$
r(T)=\|T\|=r(S(T))^{2}=\|S(T)\|^{2}
$$

Example 3. Let $T=\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right)$. Clearly $T^{2}=I$. If $T=U|T|$, then $U|T| U=|T|^{-1}$. Define $A=U|T|^{2}$. Then $S(A)=U|A|^{1 / 2} U=U|T| U=|T|^{-1}$. This shows that $S(A)$ is a positive invertible operator. Clearly $\|S(A)\|^{2}=\|A\|$. We assert A is not normaloid. Suppose to the contrary that A is normaloid. Since a normaloid operator on a two-dimensional space
is normal, it will follow that U commutes with $|T|^{2}$ and hence with $|T|$. But then T will be normal, which is not true. Hence the converse of Therorem 4.1 is not true.

Definition. Let $T \in B(\mathcal{H})$ with the polar decomposition $T=U|T|$. For each positive integer n, the n-th Aluthge transform $\tilde{T}(n)$ of T is defined as the Aluthge transform of $\tilde{T}(n-1)$ and $\tilde{T}(1)=\tilde{T}=|T|^{1 / 2} U|T|^{1 / 2}$. It is known that $r(T)=\lim \|\tilde{T}(n)\|([17])$.

Theorem 4.2. Let T be a p-hyponormal operator. If $S(T)$ is a partial isometry, then the following assertions hold.
(i) T^{n} is a k-hyponormal operator for each positive integer n and each $k>0$.
(ii) The n-th Aluthge transform $\tilde{T}(n)$ has the polar decomposition given by $\tilde{T}(n)=$ $U|T|^{1 / r(n)}$ where $r(n)=2^{n}$ and $\tilde{T}(n)$ converges strongly to U.

Proof.
(i) We may assume that $s \geq t$. Now T being a class $A(s, t)$ operator, it must be normaloid by [7]. By Theorem 4.1, $\|T\|=\|S(T)\|^{2}$. Since $S(T)$ is a partial isometry, it is a contraction. Therefore

$$
\begin{equation*}
\|T\| \leq 1 \tag{4.1}
\end{equation*}
$$

Next we show that ker $U=\operatorname{ker}|T|^{1 / 2} U$. Suppose $|T|^{1 / 2} U x=0$. Then $U x \in \operatorname{ker}|T|^{1 / 2}=$ $\operatorname{ker} T$. Since T is p-hyponormal, $\operatorname{ker} T \subset \operatorname{ker} T^{*}$. Hence $U x \in \operatorname{ker} T^{*}=\operatorname{ker} U^{*}$. Then $U^{*} U x=0$ or $U x=0$. Hence $\operatorname{ker}|T|^{1 / 2} U=\operatorname{ker}|T|$. Since $S(T)$ is a partial isometry, $S(T)^{*} S(T)=\left(|T|^{1 / 2} U\right)^{*}\left(|T|^{1 / 2} U\right)$ is a projection or $|T|^{1 / 2} U$ is a partial isometry. This in combination with the relation $\operatorname{ker}|T|^{1 / 2} U=\operatorname{ker}|T|=\operatorname{ker} U$ implies $|T|^{1 / 2} U$ and U are isometries on $[\operatorname{ran}|T|]$. Therefore we have

$$
\begin{equation*}
\|x\|=\left\||T|^{1 / 2} U x\right\|=\|U x\| \tag{4.2}
\end{equation*}
$$

for $x \in[\operatorname{ran}|T|]$, and then $|T|^{1 / 2} U x=U x$ as $0 \leq|T|^{1 / 2} \leq 1$ (see [12]). Hence

$$
\begin{equation*}
|T|^{1 / 2} U=U \tag{4.3}
\end{equation*}
$$

and

$$
|T| U U^{*}=|T|^{1 / 2} U U^{*}=U U^{*}
$$

Then $|T|^{2 m} U U^{*}=U U^{*}$ for every positive integer m. Hence the inequality $U U^{*} \leq I$ implies

$$
\begin{equation*}
|T|^{2 m} \geq|T|^{m} U U^{*}|T|^{m}=U U^{*} \tag{4.4}
\end{equation*}
$$

An application of (4.3) will show that

$$
T^{n}=U(|T| U)^{n-1}|T|=U^{n}|T|
$$

Since by (4.4), $\operatorname{ker} T \subset \operatorname{ker} T^{*}$. Then it follows that U is quasinormal and so, in particular, $U^{* n} U^{n}=U^{*} U$. Clearly this shows that U^{n} is a partial isometry with $\operatorname{ker} U^{n}=\operatorname{ker} U=$ $\operatorname{ker}|T|$. Therefore $\left|T^{n}\right|=|T|$ and $T^{n}=U^{n}|T|$ is the polar decomposition of T^{n}. Now by (4.4), we have

$$
\left|T^{n}\right|^{2 m}=|T|^{2 m} \geq U U^{*} \geq U^{n} U^{* n}
$$

and hence (4.1) will imply $\left|T^{n}\right|^{2 m} \geq U^{n}|T|^{2 m} U^{* n}=\left|T^{* n}\right|^{2 m}$ or T^{n} is m-hyponormal for every positive integers m and n. Invoking the Lowner-Heinz Inequality, we conclude that T^{n} is k-hyponormal for every positive integer n and any positive real number k.
(ii) First, we note that (4.1) and (4.2) imply

$$
\begin{aligned}
\|x\| & =\|U x\|=\left\||T|^{1 / 2} U x\right\| \leq\left\||T|^{1 / 4} U x\right\| \leq \\
& \cdots \leq\left\||T|^{1 / r(n)} U x\right\| \leq\left\||T|^{1 / r(n+1)} U x\right\| \leq\|U x\|
\end{aligned}
$$

and hence $|T|^{1 / r(n)} U x=U x$ for all $x \in\left[\operatorname{ran}|T|^{1 / r(n)}\right]=[\operatorname{ran}|T|]$. Euivalently, we have $|T|^{1 / r(n)} U|T|^{1 / r(n)}=U|T|^{1 / r(n)}$ for each positive integer n. Clearly $U|T|^{1 / r(n)}$ is the polar decomposition of $|T|^{1 / r(n)} U|T|^{1 / r(n)}$. As a consequence of this, we find $\tilde{T}(1)=\tilde{T}=U|T|^{1 / 2}$ and hence $\tilde{T}(2)=|T|^{1 / 4} U|T|^{1 / 4}=U|T|^{1 / 4}$. An induction argument shows that $\tilde{T}(n)=$ $|T|^{1 / r(n)} U|T|^{1 / r(n)}=U|T|^{1 / r(n)}$. Since $|T|^{1 / r(n)} \rightarrow U^{*} U$ strongly, it follows that $\tilde{T}(n) \rightarrow$ $U^{*} U U U^{*} U=U$ strongly.

Example 4. Let T to be a unilateral weighted shift with weights $\{1 / 2,1,1,1, \cdots\}$. Then one can check that T is a non-quasinormal hyponormal operator for which $S(T)$ is an isometry. Hence if we put a stronger condition on $S(T)$ by assuming it to be an isometry, we may not get a stronger conclusion like T is quasinormal.
T is said to be paranormal if

$$
\|T x\|^{2} \leq\left\|T^{2} x\right\|\|x\|
$$

for all $x \in \mathcal{H}$. It is known that $A(1,1)$ operators are paranormal by [6]. In the next theorem, we extend the above result for paranormal operators with the closed range.
Theorem 4.3. Let T be a paranormal operator with closed range. If $S(T)$ is a partial isometry, then the following assertions hold.
(i) T^{n} is a k-hyponormal operator for each positive integer n and each $k>0$.
(ii) The n-th Aluthge transform $\tilde{T}(n)$ has the polar decomposition given by $\tilde{T}(n)=$ $U|T|^{1 / r(n)}$ where $r(n)=2^{n}$ and $\tilde{T}(n)$ converges strongly to U.

Proof. Since a paranormal operator is normaloid, as argued in Theorem 4.2, we get

$$
\begin{equation*}
\|T\| \leq 1 \tag{4.5}
\end{equation*}
$$

Next, we show that

$$
\begin{equation*}
\operatorname{ker}|T|^{1 / 2} U=\operatorname{ker}|T| \tag{4.6}
\end{equation*}
$$

Suppose $|T|^{1 / 2} U x=0$. Then $U|T| U x=0$. Since ran T and therefore ran $|T|$ is closed, $x=y+z$ with some $y \in \operatorname{ker}|T|$ and $z \in \operatorname{ran}|T|$. Let $z=|T| u$ for some vector $u \in \mathcal{H}$. Then $0=U|T| U x=U|T| U|T| u$ or $T^{2} u=0$. The paranormality of T implies $T u=0$ or $0=|T| u=z$. This leads to $x=y \in \operatorname{ker}|T|$ proving (4.6).

Hence we have $|T|^{1 / 2} U=U$ or $U^{*}|T|^{1 / 2}=U^{*}$ as shown in the proof of Theorem 4.2. In paticular, $\operatorname{ker} T \subset \operatorname{ker} T^{*}$ as $U^{*}=U^{*}|T|$. Now using the same line of argument used in Theorem 4.2, we arrive at the desired conclusion.

Theorem 4.4. If $S(T)$ is an idempotent operator and $\operatorname{ker} T \subset \operatorname{ker} T^{*}$, then T is a selfadjoint partial isometry.
Proof. The hypothesis $S(T)^{2}=S(T)$ means $U|T|^{1 / 2} U^{2}|T|^{1 / 2} U=U|T|^{1 / 2} U$ which gives $|T|^{1 / 2} U^{2}|T|^{1 / 2} U=|T|^{1 / 2} U$ and hence $U^{3}|T|^{1 / 2} U=U^{2}$. Then applying the kernel condition, we obtain $U|T|^{1 / 2} U=U^{*} U$ or $U^{*}|T|^{1 / 2} U^{*}=U^{*} U$. Now it is obvious that ker $U^{*} \subset \operatorname{ker} U$. This along with our hypothesis implies $\operatorname{ker} U=\operatorname{ker} U^{*}$. In particular, U is normal. Since $U|T|^{1 / 2} U=U^{*} U$, the normality of U gives $|T|^{1 / 2}=U^{*} U|T|^{1 / 2} U U^{*}=U^{* 2} U U^{*}=U^{* 2}$ or $|T|^{1 / 2}=U^{2}$. Therefore $U^{*} U=U|T|^{1 / 2} U=U^{4}$ and so $|T|=U^{*} U$. Hence $T=U$. In order to complete the proof, it is enough to show that $U^{*}=U$. Now $U^{2}=|T|^{1 / 2}$ combined with $|T|=U^{*} U$ imply $U^{2}=U^{*} U$ and hence $U^{*}=\left(U^{*} U\right) U^{*}=U^{2} U^{*}=U U^{*} U=U$ as U is normal. This finishes the proof.

Example 5. Let $T=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Then $S(T)=I$. Hence conditions in Theorem 4.4 do not guarantee that T is a projection.

Corollary 4.5. Suppose $S(T)$ is a projection. If $\operatorname{ker} S(T)=\operatorname{ker} T$, then T is a selfadjoint partial isometry.

Proof. First we observe that the condition $\operatorname{ker} S(T)=\operatorname{ker} T$ implies the condition $\operatorname{ker} U=$ $\operatorname{ker} U^{2}$. Since $S(T)$ is normal, we have

$$
\begin{equation*}
U^{*}|T| U=U|T|^{1 / 2} U U^{*}|T|^{1 / 2} U^{*} \leq U|T| U^{*} \tag{4.7}
\end{equation*}
$$

Then $U^{*} x=0$ implies $U^{*}|T| U=\left(|T|^{1 / 2} U\right)^{*}|T|^{1 / 2} U x=0$ which is the same as $U^{2} x=0$. Hence $U x=0$ showing $\operatorname{ker} U^{*} \subset \operatorname{ker} U$. Obviously then $U^{*} U \leq U U^{*}$. Then from (4.7), we derive

$$
\begin{equation*}
U|T| U^{*} \leq U^{*}|T| U \tag{4.8}
\end{equation*}
$$

From (4.7) and (4.8), we have $U^{*}|T| U=U|T| U^{*}$. In particular, $\operatorname{ker} T=\operatorname{ker} U \subset \operatorname{ker} U^{*}=$ $\operatorname{ker} T^{*}$. Consequently, the corollary follows from the Theorem 4.4.

Corollary 4.6. If $S(T)$ is idempotent and if $\operatorname{ker} T^{*} \subset \operatorname{ker} T$, then T is a selfadjoint partial isometry.

Proof. By our hypothesis on $S(T), U^{3}|T|^{1 / 2} U=U^{2}$ or $U^{*}|T|^{1 / 2} U^{* 3}=U^{* 2}$. Therefore, since $\operatorname{ker} T^{*} \subset \operatorname{ker} T$, we obtain

$$
\begin{equation*}
|T|^{1 / 2} U^{* 3}=U U^{*}|T|^{1 / 2} U^{* 3}=U U^{* 2}=U^{*} \tag{4.9}
\end{equation*}
$$

Also by Theorem 2.1, $\operatorname{ker} S(T)^{*} \subset \operatorname{ker} S(T)$ implying $S(T)$ to be a projection. As seen in the proof of Theorem 3.5, the underlying kernel condition indicates

$$
1 \geq\|S(T)\| \geq\left\|S\left(T^{*}\right)\right\|=\left\||T|^{1 / 2} U^{* 2}\right\|
$$

and therefore

$$
\begin{aligned}
& \left\|\left(U^{2}|T|^{1 / 2} U^{*}-U^{*}\right) x\right\|^{2} \\
& \left.\left.=\left\|U^{2}|T|^{1 / 2} U^{*} x\right\|^{2}-\left.\left\langle U^{2}\right| T\right|^{1 / 2} U^{*} x, U^{*} x\right\rangle-\left.\left\langle U^{*} x, U^{2}\right| T\right|^{1 / 2} U^{*} x\right\rangle+\left\|U^{*} x\right\|^{2} \\
& \leq\left\|U^{*} x\right\|^{2}-\left\langle U U^{*} x, x\right\rangle-\left\langle x, U U^{*} x\right\rangle+\left\|U^{*} x\right\|^{2}=0 .
\end{aligned}
$$

Hence $U^{2}|T|^{1 / 2} U^{*}=U^{*}$ or equivalently, $U|T|^{1 / 2} U^{* 2}=U$ and hence $\operatorname{ker} T=\operatorname{ker} U \subset$ $\operatorname{ker} U^{*}=\operatorname{ker} T^{*}$. Invoking Theorem 4.4, we arrive at the desired conclusion.
Corollary 4.7. Suppose the following conditions hold for $T \in B(\mathcal{H})$.
(i) $S(T)$ is idempotent.
(ii) $S\left(T^{*}\right)$ is a contraction.
(iii) $\operatorname{ker} S(T)=\operatorname{ker} T$.

Then T is a selfadjoint partial isometry.
Proof. As seen earlier, the condition (i) yields $U^{3}|T|^{1 / 2} U=U^{2}$. Then applying (iii) which is equivalent to $\operatorname{ker} U=\operatorname{ker} U^{2}$ gives $U^{2}|T|^{1 / 2} U=U$. Since $\left\|S\left(T^{*}\right)\right\|=\left\||T| U^{* 2}\right\| \leq 1$ by (ii), we have

$$
\begin{aligned}
& \left\|\left(|T|^{1 / 2} U^{* 2} U-U\right) x\right\|^{2} \\
& \left.\left.=\left\||T|^{1 / 2} U^{* 2} U x\right\|^{2}-\left.\langle | T\right|^{1 / 2} U^{* 2} U x, U x\right\rangle-\left.\langle U x,| T\right|^{1 / 2} U^{* 2} U x\right\rangle+\|U x\|^{2} \\
& \leq\|U x\|^{2}-\left\langle U^{*} U x, x\right\rangle-\left\langle x, U^{*} U x\right\rangle+\|U x\|^{2}=0
\end{aligned}
$$

Hence $|T|^{1 / 2} U^{* 2} U=U$ and $|T|^{1 / 2} U^{* 2}=U U^{*}$. Then $U U^{*}=U^{2}|T|^{1 / 2}$, and so ker $T \subset$ $\operatorname{ker} T^{*}$. Hence the result is immediate from Theorem 4.4.

Theorem 4.8. If $S(T)=T$ and $\operatorname{ker} T \subset \operatorname{ker} T^{*}$, then T is a projection.

Proof. Since $U|T|^{1 / 2} U=U|T|,|T|^{1 / 2} U=|T|$. Then $|T|^{1 / 2} U|T|^{1 / 2}=|T|^{3 / 2}$ and $\langle U x, x\rangle \geq 0$ for all $x \in \operatorname{ran}|T|^{1 / 2}$. Also, $\langle U y, y\rangle=0$ for all $y \in \operatorname{ker}|T|^{1 / 2}$. For any $z \in \mathcal{H}$, there exist $x \in\left[\operatorname{ran}|T|^{1 / 2}\right]$ and $y \in \operatorname{ker}|T|^{1 / 2}$ such that $z=x+y$. Therefore

$$
\langle U z, z\rangle=\langle U x, x+y\rangle=\langle U x, x\rangle+\left\langle x, U^{*} y\right\rangle=\langle U x, x\rangle \geq 0
$$

as $\operatorname{ker} T \subset \operatorname{ker} T^{*}$. This shows that U is positive. Since U is also a partial isometry, $U^{*} U=U^{2}$ is a projection. Then $\sigma(U) \subset\{0,1\}$ as U is positive. Hence U is a projection and $U^{*} U=U$. Then $T=U|T|=U^{*} U|T|=|T|$ and $|T|=|T|^{1 / 2} U=|T|^{1 / 2} U^{*} U=|T|^{1 / 2}$. Therefore $|T|$, and hence T is a projection.

Example 6. Let $T=\left(\begin{array}{cc}\frac{1}{2 \sqrt{2}} & 0 \\ \frac{1}{2 \sqrt{2}} & 0\end{array}\right)$. Then the polar decomposition $T=U|T|$ is given by $U=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0\end{array}\right)$ and $|T|=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & 0\end{array}\right)$. Then $S(T)=U|T|^{\frac{1}{2}} U=T$, but T is not a projection. This example shows that Theorem 4.8 does not hold if the underlying kernel condition $\operatorname{ker} T \subset \operatorname{ker} T^{*}$ is replaced even by the weaker condition like $\operatorname{ker} U=\operatorname{ker} U^{2}$.

Corollary 4.9. Let $S(T)=T$. If either (i) T is convexoid or (ii) U is convexoid, then T is a projection.

Proof.
(i) The condition $S(T)=T$ implies $|T|^{1 / 2} U=|T|$. Clearly $\tilde{T}=|T|^{1 / 2} U|T|^{1 / 2}=|T|^{3 / 2}$ and hence $\sigma(\tilde{T})=\sigma(T) \subset\{x: x \geq 0\}$. Since T is convexoid, it follows that T is a positive operator. In particular, $\operatorname{ker} T=\operatorname{ker} T^{*}$. Now the result follows from Theorem 4.8.
(ii) Again as $|T|^{1 / 2} U=|T|$, we have $U U^{*}|T|^{1 / 2}=U|T|$ or $|T|^{1 / 2} U U^{*}=|T| U^{*}$ implying $U^{2} U^{*}=U|T|^{1 / 2} U^{*}$. Since

$$
\sigma(U)=\sigma\left(U U^{*} U\right)=\sigma\left(U U U^{*}\right)
$$

by [3, lemma], we have

$$
\sigma(U)=\sigma\left(U|T|^{1 / 2} U^{*}\right) \subset\{t: t \geq 0\}
$$

Since U is convexoid, it follows that U is a positive operator. Consequently, $\operatorname{ker} T=\operatorname{ker} T^{*}$. Now the result is clear from Theorem 4.8.

Corollary 4.10. If $S(T)=T$ and T is a class $A(s, t)$ operator, then T is a projection.
Proof. We may assume $1 / 2<s$ by [9]. Note that the condition $S(T)=T$ implies $|T|^{1 / 2} U=$ $|T|$. Then $T(s, t)=|T|^{s-1 / 2}\left(|T|^{1 / 2} U\right)|T|^{t}=|T|^{s+t+1 / 2}$. Hence T is normal by [12] and so the result follows from Theorem 4.8.

Example 7. Let $T=\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$. Then $U=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$ and $|T|^{1 / 2}=2^{-\frac{3}{4}}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$. Hence $S(T)=2^{-\frac{3}{4}}\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$ and $S(T)$ is not idempotent. Hence $S(T)$ may not be even idempotent if T is idempotent. It is well known that \tilde{T} is a projection whenever T is idempotent. However, in case T and $S(T)$ are idempotent operators, then both T and $S(T)$ turn out to be projections.

Theorem 4.11. If T and $S(T)$ are idempotent operators, then T is projection and $T=$ $S(T)$.

Proof. Since $U|T|=T=T^{2}=U|T| U|T|$, we have $|T| U|T|=|T|=|T| U^{*}|T|$. Hence $U=U U^{*}|T|$ and $U^{*} U=U^{*} U U^{*}|T|=U^{*}|T|$. Then $|T| U=U^{*} U$ and

$$
\begin{equation*}
\operatorname{ker} U=\operatorname{ker} U^{2} \tag{4.10}
\end{equation*}
$$

Now the condition that $S(T)$ is idempotent yields $U^{3}|T|^{1 / 2} U=U^{2}$. Then

$$
\begin{equation*}
U^{2}|T|^{1 / 2} U=U \tag{4.11}
\end{equation*}
$$

by (4.10). Multiplying (4.11) on the right by U, we obtain $U^{2}|T|^{1 / 2} U^{2}=U^{2}$. By (4.10), it follows that $U|T|^{1 / 2} U^{2}=U$. Hence $|T|^{1 / 2} U^{2}=U^{*} U$ and then $|T| U^{2}=|T|^{1 / 2} U^{*} U=|T|^{1 / 2}$. Since $|T| U=U^{*} U$, we get $|T|^{1 / 2}=(|T| U) U=U^{*} U^{2}$ and so $S(T)=U\left(U^{*} U^{2}\right) U=U^{3}$. Since U^{3} is a contraction and $S(T)$ is idempotent, U^{3} is a projection. Since $\operatorname{ker} U=\operatorname{ker} U^{2}=$ $\operatorname{ker} U^{3}$ by (4.10), $U^{3}=U^{*} U$ or $U^{* 3}=U^{*} U$. Now it is obvious from the last equation that $\operatorname{ker} T^{*}=\operatorname{ker} U^{*} \subset \operatorname{ker} U=\operatorname{ker} T$. Hence T is a projection as T is idempotent. Clearly $S(T)=T$ which finishes the proof.

5. POLAR DECOMPOSITION

Theorem 5.1. If the operator $|T|^{1 / 2} U$ has the polar decomposition given by $|T|^{1 / 2} U=$ $W\left||T|{ }^{1 / 2} U\right|$, then $S(T)=U W|S(T)|$ is the polar decomposition of $S(T)$.

Proof. Clearly $S(T)=U W|S(T)|$. To complete the proof, we must show that $U W$ is a partial isometry with $\operatorname{ker} U W=\operatorname{ker}|S(T)|$.

We show $U W$ is a partial isometry. Suppose $U x=0$ for some $x \in \mathcal{H}$. Then $U^{*}|T|^{1 / 2} x=$ 0 . By our hypothesis, $W^{*} x=0$. Thus $\operatorname{ker} U^{*} U \subset \operatorname{ker} W W^{*}$ or $U^{*} U W W^{*}=W W^{*}$. Therefore

$$
U W(U W)^{*} U W=U W W^{*} U^{*} U W=U W W^{*} W=U W
$$

Next we show $\operatorname{ker} U W=\operatorname{ker} S(T)$. Let $U W x=0$. Then $W x \in \operatorname{ker} U$ and $U^{*}|T|^{1 / 2} W x=$ 0 . Then $W^{*} W x=0$ and $S(T) x=0$. On the other hand if $S(T) x=0$, then $|T|^{1 / 2} U x=$ $U^{*} U|T|^{1 / 2} U x=0$. This implies that $W x=0$ and therefore $U W x=0$.

Theorem 5.2. If $S(T)=W|S(T)|$ is the polar decomposition, then the operator $|T|^{1 / 2} U$ has the polar decomposition given by $\left.U^{*} W| | T\right|^{1 / 2} U \mid$.

Proof. By our hypothesis,

$$
|T|^{1 / 2} U=U^{*} W|S(T)|=\left.U^{*} W| | T\right|^{1 / 2} U \mid
$$

We show $\operatorname{ker} U^{*} W=\operatorname{ker} \|\left. T\right|^{1 / 2} U \mid$. If $U^{*} W x=0$, then we find $W x \in \operatorname{ker} U^{*}$. Since $\operatorname{ker} U^{*} \subset \operatorname{ker} W^{*}, W^{*} W x=0$. Then it follows that $W^{*} W x=0$ and hence $x \in \operatorname{ker}|S(T)|=$ ker $\left||T|^{1 / 2} U\right|$. Conversely if $\|\left. T\right|^{1 / 2} U \mid x=0$, then $W x=0$ and so $x \in \operatorname{ker} U^{*} W$.

Next we show $U^{*} W$ is a partial isometry. Since ker $U U^{*} \subset \operatorname{ker} W W^{*}$, we have $W W^{*} U U^{*}=$ $W W^{*}$. Therefore

$$
U^{*} W\left(U^{*} W\right)^{*} U^{*} W=U^{*}\left(W W^{*} U U^{*}\right) W=U^{*} W W^{*} W=U^{*} W
$$

Theorem 5.3. Let T be a binormal operator, i.e., $|T|$ commutes with $\left|T^{*}\right|$. If $S(T)=$ $W|S(T)|$ is the polar decomposition, then the Aluthge transform $\tilde{T}=|T|^{1 / 2} U|T|^{1 / 2}$ has the polar decomposition given by $\tilde{T}=U^{*} W|\tilde{T}|$.

Proof. By Theorem 5.2, $|T|^{1 / 2} U=U^{*} W|S(T)|$ is the polar decomposition. Then

$$
\begin{equation*}
\tilde{T}=U^{*} W|S(T) \| T|^{1 / 2} \tag{5.1}
\end{equation*}
$$

Since $|T|$ commutes with $\left|T^{*}\right|=U|T| U^{*}$, we have

$$
\begin{aligned}
|S(T)|^{2}|T|^{1 / 2} & =\left(U^{*}|T| U\right)|T|^{1 / 2}=U^{*}\left(|T| U|T|^{1 / 2} U^{*}\right) U \\
& =U^{*}\left(U|T|^{1 / 2} U^{*}|T|\right) U \\
& =|T|^{1 / 2} U^{*}|T| U=|T|^{1 / 2}|S(T)|^{2}
\end{aligned}
$$

Thus $|S(T)|$ commutes with $|T|^{1 / 2}$. As a consequence of this fact, we find $\tilde{T}^{*} \tilde{T}=|T|^{1 / 2} U^{*}|T| U|T|^{1 / 2}=$ $|S(T)|^{2}|T|$ or $|\tilde{T}|=|S(T)||T|^{1 / 2}$. Therefore (5.1) implies

$$
\begin{equation*}
\tilde{T}=U^{*} W|\tilde{T}| \tag{5.2}
\end{equation*}
$$

Note that $U^{*} W$ is a partial isometry. In order to complete the proof, we must show that $\operatorname{ker} U^{*} W=\operatorname{ker} \tilde{T}$. Suppose $\tilde{T} x=0$. Then $|S(T)|^{2}|T|^{1 / 2} x=U^{*}|T| U|T|^{1 / 2} x=0$. Since $|S(T)|$ commutes with $|T|^{1 / 2},|T|^{1 / 2} U^{*}|T| U x=0$. Then $U U^{*}|T| U x=0$ or $U^{*}|T| U x=0$. Hence $|T|^{1 / 2} U x=0$ and $S(T) x=0$. Consequently we have $x \in \operatorname{ker} U^{*} W$. On the other hand if $U^{*} W x=0$, then $|\tilde{T}| x=|T|^{1 / 2}|S(T)| x=0$. Thus $x \in \operatorname{ker} \tilde{T}$.

Theorem 5.4. If $S(T)=W|S(T)|$ and $\tilde{T}=U^{*} W|\tilde{T}|$ are polar decompositions, then $|S(T)|,|T|$ and $|\tilde{T}|$ are commuting. Moreover if $\operatorname{ker} T^{*} \subset \operatorname{ker} T$, then T is binormal.

Proof. By Theorem 5.2, $|T|^{1 / 2} U$ has the polar decomposition $U^{*} W|S(T)|$. From this we derive that $\tilde{T}=U^{*} W|S(T)||T|^{1 / 2}$. Therefore

$$
U^{*} W\left|\tilde{T}=U^{*} W\right| S(T) \|\left. T\right|^{1 / 2}
$$

Since $\left(U^{*} W\right)^{*} U^{*} W|S(T)|=|S(T)|$ and $\left(U^{*} W\right)^{*} U^{*} W|\tilde{T}|=|\tilde{T}|$, we obtain $|\tilde{T}|=|S(T)||T|^{1 / 2}$. Thus $|S(T)|,|T|$ and $|\tilde{T}|$ are commuting. Suppose ker $T^{*} \subset \operatorname{ker} T$. Then $U U^{*} U^{*}=U^{*}$. Since $|S(T)|^{2}|T|^{1 / 2}=U^{*}\left(|T| U|T|^{1 / 2} U^{*}\right) U$ and $|T|^{1 / 2}|S(T)|^{2}=U^{*}\left(U|T|^{1 / 2} U^{*}|T|\right) U$, we find $U^{*}\left(|T| U|T|^{1 / 2} U^{*}\right) U=U^{*}\left(U|T|^{1 / 2} U^{*}|T|\right) U$. Now the kernel condition implies that T is binormal.

References

[1] A. Aluthge, On p-hyponormal operators for $0<p<1$, Integr. Equat. Oper. Th., 13(1990), 307-315.
[2] A. Aluthge and D. Wang, w-Hyponormal operators, Integr. Equat. Oper. Th., 36(2000), 1-10.
[3] M. Chō and T. Huruya, p-hyponormal operators $(0<p<1 / 2)$, Commentations Math., 33(1993), 23-29.
[4] M.Chō,T.Huruya, and Y.O.Kim, A note on w-hyponormal operators, J. Inequal. Appl. (to appear).
[5] M. Chō, I.H.Jeon, I.B. Jung, J.I.Lee and K. Tanahashi, Joint spectra of n-tuples of generalized Aluthge transformations, Rev. Roumaine Math. Pures Appl., 46(2001), 725-730.
[6] M. Fujii, D. Jung, S.H. Lee, M.Y. Lee and R. Nakamoto, Some classes of operators related to paranormal and log-hyponormal operators, Math. Japonica, 51 (2000) 395-402.
[7] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of loghyponormal and several classes, Scientiae Mathematicae, 1(1998), 389-403.
[8] F. Hansen, An inequality, Math. Ann., 246(1980), 249-250.
[9] E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann., 123(1951), 415-438.
[10] M. Ito and T. Yamazaki, Relations between two operator inequalities $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq B^{r}$ and $A^{p} \geq$ $\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{p}{p+r}}$ and their applications, Integr. Equat. Oper. Th., 44(2002), 442-450.
[11] K. Löwner, Über monotone Matrixfunktionen, Math. Z., 38(1934), 177-216.
[12] S. M. Patel, A note on p-hyponormal operators for $0<p<1$, Integral Equations and Operator Theory, 21(1995), 498-503.
[13] S. M. Patel, K. Tanahashi, A. Uchiyama and M. Yanagida, Quasinormality, Fuglede-Putnam theorem for $A(s, t)$ operators, preprint.
[14] K. Tanahashi, On log-hyponormal operators, Integr. Equat. Oper. Th., 34(1999), 364-372.
[15] K. Tanahashi, Putnam's inequality for log-hyponormal operators, Integr. Equat. Oper. Th., 48(2004), 103-114.
[16] D. Xia, Spectral theory of hyponormal operators, Birkhäuser, Basel, 1983.
[17] T. Yamazaki, An expression of spectral radius via Aluthge transformation, Proc. Amer. Math. Soc., 130(2001), 1131-1137.
[18] M. Yanagida, Powers of class $w A(s, t)$ operators with generalized Aluthge transformation, J. Inequal. Appl., 7(2002), 143-168.
[19] T. Yoshino, The p-hyponormality of the Aluthge transform, Interdisciplinary Information Sciences, 3(1997), 91-93.

S.M. Patel

Department of Mathematics
Sardar Patel University
Vallabh Vidyanagar 388 120, Gujarat, India
E-mail address: smpatel-32@yahoo.com
Kôtarô Tanahashi
Department of Mathematics
Tohoku Pharmaceutical University
Sendai 981-8558, Japan
E-mail address: tanahasi@tohoku-pharm.ac.jp
Atsushi Uchiyama
Sendai National College of Technology
Sendai 989-3128, Japan
E-mail address: uchiyama@cc.sendai-ct.ac.jp

[^0]: ${ }^{1}$ This research was supported by Grant-in-Aid Research No. 15540180
 2000 Mathematics Subject Classification. 47B20.
 Key words and phrases. p-hyponormal operator, class A operator.

