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Abstract. In the present article, we introduce a new operator transform of a bounded
linear operator on a complex Hilbert space, the definition of which is parallel to that of
the Aluthge transform. Also we study the relationship between this new transform and
several classes of non-hyponormal operators.

1. Introduction

Let B(H) be the Banach algebra of bounded linear operators acting on a complex Hilbert
space H. For T ∈ B(H), we shall use the notations σ(T ),W (T ), r(T ) and w(T ) to de-
note the spectrum, the numerical range, the spectral radius, and the numerical radius
of T . An operator T ∈ B(H) is said to be p-hyponormal if (T ∗T )p ≥ (TT ∗)p, where
p > 0; log-hyponormal if T is invertible and log |T | ≥ log |T ∗|; class A(s, t) operator if
(|T ∗|t|T |2s|T ∗|t)t/(s+t) ≥ |T ∗|2t where s, t > 0; convexoid if conv σ(T ) (convex hull of σ(T ))
coincides with the closure of W (T ), and normaloid if r(T ) = ‖T ‖. It is known that classes
of p-hyponormal operators and log-hyponormal operators are subclasses of class A(s, t) op-
erators, and if T is a class A(s, t) operator with s ≤ s′, t ≤ t′, then T is a class A(s′, t′)
operator (see [6], [10], [14], [15], [18], [19]). Also a class A(s, t) operator is normaloid([7]).
In [1], Aluthge studied p-hyponormal operators by elegantly using the operator transform
T̃ = |T |1/2U |T |1/2 of T ∈ B(H), where T = U |T | is the polar decomposition. Named after
Aluthge, the transform T̃ is known as the Aluthge transform in the literature. A further
extension of T̃ called the generalized Aluthge transform is defined as T (s, t) = |T |sU |T |t.
Both the transforms have been proved to be powerful tools in introducing and exploring
the properties of several classes of non-hyponormal operators ([2], [5], [6], [7], [12], [16], [17],
[18]). By interchanging U with |T |1/2 in the Aluthge transform, we define below a new
transform.

Definition. Let T ∈ B(H) with the polar decomposition T = U |T |. Then the transform
S(T ) of T is defined as

S(T ) = U |T |1/2U.

In Section 2, we establish some basic properties of S(T ). Section 3 is devoted to obtaining
some conditions on S(T ) implying the normality of T . In Section 4, we focus on conditions
on S(T ) under which T is k-hyponormal or a selfadjoint partial isometry or a projection
operator. Section 5 deals with the polar decomposition of S(T ).
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2. BASIC PROPERTIES

First we list some elementary properties of the transform S(T ).

Theorem 2.1. For an operator T ∈ B(H), the following assertions hold.
(i) ‖S(T )‖2 ≤ ‖T ‖.
(ii) kerS(T ) = kerU2.
(iii) S(T ∗) = |T |1/2U∗2.
(iv) kerS(T ) ⊂ kerS(T )∗ ∩ kerS(T ∗) if kerT ⊂ kerT ∗.
(v) kerS(T )∗ ∩ kerS(T ∗) ⊂ kerS(T ) if kerT ∗ ⊂ kerT .
(vi) σ(S(T ∗)) = σ(S(T )∗).

Proof. Assertions (i) and (ii) are obvious. Assertion (iii) follows from the fact that T ∗ =
U∗|T ∗| is the polar decomposition of T ∗.

(iv) Suppose S(T )x = 0. Then |T |1/2Ux = 0 implying Ux ∈ kerU ⊂ kerU∗. Hence
Ux = 0 and so U∗x = 0 by the kernel condition. Hence S(T )∗x = 0 and S(T ∗)x = 0. This
proves (iv).

(v) If S(T )∗x = 0, then |T |1/2U∗x ⊂ kerU∗ = kerT ∗ ⊂ kerT = kerU . This gives
U |T |1/2U∗x = 0 or |T |1/2U∗x = 0. Hence U∗x = 0 and Ux = 0 as kerU∗ ⊂ kerU . From
the hypothesis, we have x ∈ kerT = kerU . Hence S(T )x = 0. If S(T ∗)x = 0, then
U∗2x = 0. Hence U∗x ∈ kerU∗ ⊂ kerU by the kernel condition. Hence U∗x = 0 and
T ∗x = 0. Again S(T )x = 0. This proves (v).

(vi) Note that σ(S(T )) \ {0} = σ(S(T ∗)∗) \ {0}. Also S(T ) is invertible if and only if U
and |T | are invertible if and only if S(T ∗) is invertible. Therefore σ(S(T )) = σ(S(T ∗)∗) or
σ(S(T )∗) = σ(S(T ∗)).

Theorem 2.2. Let T be a p-hyponormal operator with 0 < p ≤ 1.
(i) If 0 < p ≤ 1/2, then S(T ) is 2p-hyponormal.
(ii) If 1/2 < p ≤ 1, then S(T ) is hyponormal.

Proof.
(i) Note that S(T )∗S(T ) = U∗|T |U and

S(T )S(T )∗ = U |T |1/2UU∗|T |1/2U∗ ≤ U |T |U∗.

Since T is p-hyponormal and U |T |qU∗ = |T ∗|q for 0 < q,

(S(T )∗S(T ))2p = (U∗|T |U)2p

≥ U∗|T |2pU (by Hensen’s inequality[8])

≥ |T |2p ≥ U |T |2pU∗ = (U |T |U∗)2p

≥ (S(T )S(T )∗)2p (by Lower-Heinz’s inequality[9], [11]).

(ii) If 1/2 < p ≤ 1, then T is semi-hyponormal. Hence, by (i), it follows that S(T ) is
hyponormal.

Remark. The proof of Theorem 2.2 indicates that for a p-hyponormal T with 0 < p ≤ 1/2,
the following inequalities hold:

|S(T )|4p ≥ |T |2p ≥ |S(T )∗|4p.

A fairly natural question presents itself: Does this inequality implies T is p-hyponormal?
In case T satisfies the kernel condition kerT ∗ ⊂ kerT then the question has an affirmative
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answer. Because kerT ∗ ⊂ kerT implies U∗U ≤ UU∗, hence

|T |2p ≥ |S(T )∗|4p = (U |T |1/2UU∗|T |1/2U∗)2p

= (U |T |U∗)2p = |T ∗|2p.

For p = 1/2, it is not difficult to verify that operators satisfying above inequality are
w-hyponormal operators. However, the question is still remains unanswered.

Theorem 2.3. If T is a log-hyponormal operator, then so is S(T ).

Proof. Since T is invertible, |S(T )∗|2 = U |T |U∗ and |S(T )|2 = U∗|T |U . Therefore

2 log |S(T )| = log(U∗|T |U) = U∗(log |T |)U
≥ U∗(log |T ∗|)U = log |T | ≥ log |T ∗|
= log(U |T |U∗) = U(log |T |)U∗ = 2 log |S(T )∗|.

This proves the result.

Next, we relate the approximate point spectra of an operator T and S(T ) when T is
either p-hyponormal or log-hyponormal.we first prove a couple of theorems that shall be
needed.

Theorem 2.4. Let T = U |T | be p-hyponormal with 0 < p ≤ 1. Let X = U2|T |1/2. Then
X = U2|T |1/2 is the polar decomposition of X and the following assertions hold.

(i) If 0 < p ≤ 1/2, then X is 2p-hyponormal.
(ii) If 1/2 < p ≤ 1, then X is hyponormal.

Proof. Since T is p-hyponormal, kerT ⊂ kerT ∗. Hence U∗U2 = U and U2U∗2U2 =
U2U∗U = U2. Also, kerU2 = kerU = ker |T |1/2. This implies X = U2|T |1/2 is the
polar decomposition of X .

If 0 < p < 1/2, then

(X∗X)2p = |T |2p ≥ |T ∗|2p

= U |T |2pU∗ ≥ U2|T |2pU∗2.

Since
(U2|T |2pU∗2)(U2|T |2pU∗2) = U2|T |4pU∗2,

we have f(U2|T |2pU∗2) = U2f(|T |)U∗2 for any polynomial f(x) with f(0) = 0. Hence

(X∗X)2p ≥ U2|T |2pU∗2 = (U2|T |U∗2)2p = (XX∗)2p.

If 1/2 ≤ p ≤ 1, then T is semi-hyponormal. Hence, by (i), it follows that X is hyponormal.

Theorem 2.5. Let T = U |T | be log-hyponormal. Then X = U2|T |1/2 is the polar decom-
position of X and X is log-hyponormal.

Proof. That X is invertible and X = U2|T |1/2 is the polar decomposition should be fairly
apparent. To show that X is log-hyponormal, observe first that |X | = |T |1/2 and |X∗| =
U |T ∗|1/2U∗. Since T is log-hyponormal, we find

log |X | =
1
2

log |T | ≥ 1
2

log |T ∗| =
1
2
U(log |T |)U∗

≥ U(log |T ∗|)U∗ = log(U |T ∗|1/2U∗) = log |X∗|.
Hence X is log-hyponormal.
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The approximate point spectrum of T is definded by

σa(T ) = {z ∈ C |∃unit vectors xn, (T − z)xn → 0}.
It is known ([3]) that if T is p-hyponormal, then

σa(T ) = σna(T ) = {z ∈ C |∃unit vectors xn, (T − z)xn, (T − z)∗xn → 0}.
Theorem 2.6. Let T = U |T | be either p-hyponormal or log-hyponormal, then

σa(U2|T |1/2) = {r1/2e2iθ|reiθ ∈ σa(T )} = σa(S(T )).

Proof. Let T be p-hyponormal and 0 	= reiθ ∈ σa(T ). Then there exist unit vectors xn such
that

(|T | − r)xn → 0, (U − eiθ)xn → 0.

Hence (U2|T |1/2− r1/2e2iθ)xn → 0. If 0 ∈ σa(T ), then there exist unit vectors xn such that
|T |xn → 0. Hence U2|T |1/2xn → 0.

Conversely, let 0 	= ρe2iφ ∈ σa(U2|T |1/2). Since U2|T |1/2 is the polar decomposition of
2p-hyponormal operator by Theorem 2.4, there exist unit vectors xn such that

(U2|T |1/2 − ρe2iφ)xn → 0, (U2|T |1/2 − ρe2iφ)∗xn → 0.

Hence
(|T |1/2 − ρ)xn → 0, (U2|T |1/2U∗2 − ρ)xn → 0

and
(U2 − e2iφ)xn = (U + eiφ)(U − eiφ)xn → 0.

If there exists a subsequence xnk
such that (U − eiφ)xnk

→ 0, then (T − ρ2eiφ)xnk
→ 0.

Hence ρ2eiφ ∈ σa(T ).
Suppose there is no such subsequence. For a sequence un of unit vectors and |z| = 1, it

is known that (U − zI)un → 0 if and only if (U − zI)∗un → 0. Hence we may assume that
‖(U − eiφ)∗xn‖ ≥ ε for some ε > 0. We show (|T ∗|1/2 − ρ)xn → 0. Since (|T |1/2 − ρ)xn →
0, (U2|T |1/2U∗2 − ρ)xn → 0, we have

(|T |p − ρ2p)xn → 0, (U2|T |pU∗2 − ρ2p)xn → 0.

T is p-hyponormal, hence

|T |2p ≥ U |T |2pU∗ ≥ U2|T |2pU2∗

and
|T |p ≥ U |T |pU∗ ≥ U2|T |pU2∗.

Then
‖U |T |pU∗xn‖ → ρ2p, 〈U |T |pU∗xn, xn〉 → ρ2p.

Therefore

‖(|T ∗|p − ρ2p)xn‖2

= ‖U |T |pU∗xn‖2 − 2ρ2p〈U |T |pU∗xn, xn〉 + ρ4p → 0.

Hence (|T ∗|p − ρ2p)xn → 0 and (|T ∗|1/2 − ρ)xn → 0.
Set

yn = (U − eiφ)∗xn/‖(U − e−iφ)∗xn‖.
Since (U2 − e2iφ)xn → 0, we have (U + eiφ)∗yn → 0 and (U + eiφ)yn → 0. Now

(|T ∗|1/2 − ρ)xn = (U |T |1/2U∗ − ρ)xn → 0
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implies (|T |1/2 − ρ)U∗xn → 0. Consequently,

(|T |1/2 − ρ)(U − eiφ)∗xn

= (|T |1/2 − ρ)U∗xn − e−iφ(|T |1/2 − ρ)xn → 0

and (|T |1/2−ρ)yn → 0. Thus (T +ρ2eiφ)yn = (T −ρ2ei(φ+π))yn → 0 and ρ2ei(φ+π) ∈ σa(T ).
If 0 ∈ σa(U2|T |1/2), then there exist unit vectors xn such that |T |1/2xn → 0 or Txn → 0.
Now assume that T is log-hyponormal. Then the similar reasoning will lead to the desired

conclusion.

3. NORMALITY

In [12], the first author proved that a p-hyponormal operator is normal if its Aluthge
transform is normal. More generally the result is found to be true for w-hyponormal opera-
tors by [2], those are class A(1/2, 1/2) operators by [6]. As a further extension, it has been
shown that a class A(s, t) operator is normal provided its generalized Aluthge transform
T (s, t) is normal. That this result holds if we assume the normality of S(T ) instead of the
normality of T (s, t) will follow as a corollary to the following theorem.

Theorem 3.1. Let T (s, s) = |T |sU |T |s. If S(T ) is normal and kerS(T ) = kerT , then
T (s, s) is normal.

Proof. First we show that

kerT ∗ ⊂ kerT.(3.1)

Since S(T ) is normal, we have

U∗|T |U = U |T |1/2UU∗|T |1/2U∗.(3.2)

Suppose T ∗x = 0. Then U∗x = 0. And therefore (3.2) implies U∗|T |Ux = (|T |1/2U)∗|T |1/2Ux =
0 or |T |1/2Ux = 0. This in turn gives S(T )x = 0 and so by the kernel condition, Tx = 0,
which establishes (3.1). Note that by (3.1), kerUU∗ ⊂ kerU∗U . Hence UU∗|T |1/2 = |T |1/2.
Then (3.2) reduces to

U∗|T |U = U |T |U∗.(3.3)

If Tx = 0, then Ux = 0 and so U∗x = 0 or T ∗x = 0 by (3.3). Thus by (3.1), kerT ∗ =
kerU∗ = kerU = kerT . Clearly U is normal. Then (3.3) implies U∗|T |sU = U |T |sU∗. Now
the normality of T (s, s) is immediate.

Some consequences of Theorem 3.1 are of particular interest and list them below as
corollaries.

Corollary 3.2. Let T be a class A(s, t) operator. If S(T ) is normal, then T is normal.

Proof. We may assume t ≤ s. Then T is of class A(s, s). First, we show that T (s, s) is
normal. This will follow from Theorem 3.1 once we show that kerS(T ) = kerT . Suppose
S(T )x = 0. Then |T |1/2Ux = 0. Choose z ∈ [ran|T |s] and y ∈ ker |T |s such that x = z + y,
where [ran|T |s] denotes the closure of ran|T |s. Then

|T |sUz = 0.(3.4)

Select a sequence xn of vectors from H such that |T |sxn → z. By (3.4), T (s, s)xn → 0.
Since T is of class A(s, s), |T |sxn → 0 and hence z = 0. Thus x = y ∈ ker |T |s = kerT . This
shows that kerS(T ) ⊂ kerT . Since the reverse inclusion is obvious, we have kerS(T ) =
kerT and hence T (s, s) is normal. By [13, Corollary 2.2], we conclude that T is normal.
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Corollary 3.3. If T is a class A(s, t) operator and if S(T ) is a positive operator, then T
is selfadjoint.

Proof. By Corollary 3.2, T is normal. Therefore if λ ∈ σ(T ), then |λ|1/2e2iθ ∈ σ(S(T )) ⊂
{x ∈ R : x ≥ 0}. This shows that σ(T ) ⊂ R. Hence T is selfadjoint.

Example 1. Let T =
(

1 0
0 i

)
. Then T is normal and S(T ) =

(
1 0
0 −1

)
. Hence if we relax

the condition ” S(T ) is a positive operator” by assuming ”S(T ) is a selfadjoint operator ”,
then the result is invalid.

Corollary 3.4.
(i) If S(T ∗) is normal and kerS(T ) = kerT , then T (s, s) is normal.
(ii) If T is a class A(s, t) operator for which S(T ∗) is normal, then T is normal.

Proof.
(i) First we show that kerS(T ∗) = kerT ∗. Suppose T ∗x = 0. Then it is obvious

that S(T ∗)x = 0. Let S(T ∗)x = 0. By the normality of S(T ∗), we have 0 = S(T ∗)∗x =
U2|T |1/2x. This means that U |T |1/2x ∈ kerT = kerS(T ). Hence S(T )|T |1/2x = U |T |1/2U |T |1/2x =
0 Then |T |1/2x ∈ kerS(T ) = kerT = ker |T |, and hence we obtain |T |3/2x = 0 or Tx = 0.
Thus we have

kerT ∗ ⊂ kerS(T ∗) ⊂ kerT.(3.5)

On the other hand, if x ∈ kerT , then S(T ∗)∗U |T ∗|1/2Ux = 0. Since S(T ∗) is normal,

0 = S(T ∗)x = |T |1/2U∗2x

or U∗2x = 0. From (3.5), it will follow that U∗x ∈ kerU∗ ⊂ kerT = kerU or U∗x = 0.
This proves kerT ⊂ kerU∗ = kerT ∗. Combining this inclusion with (3.5) gives kerS(T ∗) =
kerT ∗. By Theorem 3.1, T ∗(s, s) is normal. Since T ∗(s, s) = UT (s, s)∗U∗, the normality
of T (s, s) is immediate.

(ii) The assertion follows from (i) as T being a class A(s, t) operator, kerS(T ) = kerT
(refer the proof of Corollary 3.2).

Theorem 3.5. If kerT ∗ = kerT , then the following assertions hold.
(i) W (S(T ∗)) = W (S(T )∗).
(ii) ‖S(T )‖2 = ‖T ‖ = ‖S(T ∗)‖2.

Proof.
(i) The kernel condition implies that |T |1/2UU∗ = |T |1/2. Let x be a unit vector. Then

〈S(T ∗)x, x〉 = 〈|T |1/2U∗2x, x〉 = 〈x,U2|T |1/2UU∗x〉
= 〈U∗x,U |T |1/2UU∗x〉
= 〈U∗x/‖U∗x‖, S(T )(U∗x)/‖U∗x‖〉‖U∗x‖2.

Thus

〈S(T ∗)x, x〉 = 〈S(T )∗U∗x/‖U∗x‖, U∗x/‖U∗x‖〉‖U∗x‖2.(3.6)

If 0 ∈ W (S(T )∗), then the right hand side (3.6) belongs to W (S(T )∗) as W (S(T )∗) is convex
and ‖U∗x‖ ≤ 1. Suppose 0 ∈ W (S(T )∗). Then S(T ) and hence T is injective. Therefore
the kernel condition shows that T ∗ is injective. Thus UU∗ = I. Again the right hand side
is in W (S(T )∗), proving W (S(T ∗)) ⊂ W (S(T )∗). Replacing T by T ∗, we obtain the reverse
inclusion.
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(ii) Note

‖S(T )‖2 = ‖U |T |1/2U‖2 = ‖|T |1/2U‖2 = ‖U∗|T |1/2‖2

= ‖|T |1/2UU∗|T |1/2‖ = ‖|T |‖ = ‖T ‖.
Then, by the kernel condition,

‖S(T ∗)‖ = ‖|T |1/2U∗2‖ = ‖UU∗|T |1/2U∗2‖
= ‖US(T )∗U∗‖ ≤ ‖S(T )‖.

Replacing T by T ∗, we get the reverse inequality.

Example 2. Let T be the unilateral weighted shift operator on H = l2 with weights
{25, 1, 1, 1, 1, · · ·}. Then for a vector (x0, x1, x2, · · · ) ∈ H, a computation shows that

S(T )(x0, x1, x2, · · · ) = (0, 0, x0, x1, x2, · · · )
and

S(T ∗)(x0, x1, x2, · · · ) = (5x2, x3, x4, · · · ).
Note that kerT = {0} ⊂ kerT ∗. Let x = (1/

√
2, 0, 1/

√
2, 0, 0, · · · ). Then 〈S(T ∗)x, x〉 = 5/2,

hence we find 5/2 ∈ W (S(T ∗)). However, as w(S(T )∗) ≤ ‖S(T )‖ = 1, it follows that
5/2 	∈ W (S(T )∗). Hence Theorem 3.5 does not holds if the underlying kernel condition is
replaced by the weaker conditions like ” kerT ∗ ⊂ kerT ” and ” kerT ⊂ kerT ∗”.

Corollary 3.6. Suppose kerT ∗ = kerT . Then
(i) S(T ) is convexoid if and only if S(T ∗) is convexoid.
(ii) S(T ) is normaloid if and only if S(T ∗) is normaloid.

Proof. Note that σ(S(T )) \ {0} = σ(S(T ∗)∗) \ {0}. Also S(T ) is invertible if and only if U
and |T | are invertible if and only if S(T ∗) is invertible. Therefore σ(S(T )) = σ(S(T ∗)∗) or
σ(S(T )∗) = σ(S(T ∗)). Now the result follows from Theorem 3.5.

Theorem 3.7. If S(T )2 = T and kerT ⊂ kerT ∗, then T is normal.

Proof. The condition S(T )2 = T means U |T |1/2U2|T |1/2U = U |T |. Hence |T |1/2U2|T |1/2U =
|T | and U3|T |1/2U = U |T |1/2 as kerU = ker |T |1/2. Note that U∗U2 = U as kerT ⊂ kerT ∗.
Therefore

|T |1/2 = U∗U3|T |1/2U = U2|T |1/2U(3.7)

or U∗|T |1/2U∗2 = |T |1/2 implying kerU∗ ⊂ kerU . This together with the kernel condition
gives kerU = kerU∗ and U∗U = UU∗. Hence

|T ∗|1/2 = U |T |1/2U∗ = U∗U2|T |1/2U∗ = U∗|T |1/2U∗2 = |T |1/2.

Thus T is normal.

Corollary 3.8. If S(T ∗)2 = T ∗ and kerT ⊂ kerT ∗, then T is normal.

Proof. The condition S(T ∗)2 = T ∗ means |T |1/2U∗2|T |1/2U∗2 = |T |U∗. Since ker |T |1/2 =
kerU , we find UU∗2|T |1/2U∗2 = U |T |1/2U∗. Hence U∗2|T |1/2U∗2 = U∗UU∗2|T |1/2U∗2 =
|T |1/2U∗ or U |T |1/2 = U2|T |1/2U2. Since kerU ⊂ kerU∗, one can see that U∗U2 = U and
so the last equation reduces to

|T |1/2 = U∗U |T |1/2 = U∗U2|T |1/2U2 = U |T |1/2U2.(3.8)

Now multiplying (3.8) on the left by UU∗, we find UU∗|T |1/2 = U |T |1/2U2 = |T |1/2 or
|T |1/2 = |T |1/2UU∗. Especially, kerT ∗ ⊂ kerT and hence by the hypothesis, kerT =
kerT ∗. Clearly, then U is normal. Now (3.8) along with the normality of U yields
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U∗|T |1/2U∗ = |T |1/2U2U∗ = |T |1/2U . Hence U∗|T |1/2 = U |T |1/2U and U∗|T |1/2U =
U |T |1/2U2 = |T |1/2. This implies U |T |1/2 = UU∗|T |1/2U = |T |1/2U . But then S(T ∗) =
|T |1/2U∗2 = U∗|T |1/2U∗ = S(T )∗. Then, by our hypothesis, it follows that S(T )2 = T .
Now the result follows from Theorem 3.7.

Theorem 3.9. T ∈ B(H) is normal if any one of the following conditions holds.

(i) |S(T )∗|2 = |T |.
(ii) |S(T ∗)|2 = |T |, where T is a class A(s, t) operator.
(iii) |S(T )|2 = |T |, where T is a class A(s, t) operator.

Proof.
(i) Note that |S(T )∗|2 = |T | implies

|T | = U |T |1/2UU∗|T |1/2U∗ ≤ U |T |U∗.

Then clearly kerU∗ ⊂ kerU or U∗U ≤ UU∗. This in turn shows that |T | = |S(T )∗|2 =
U |T |U∗ = |T ∗|. Hence T is normal.

(ii) The condition |S(T ∗)|2 = |T | implies U2|T |U∗2 = |T |. Hence ker T ∗ ⊂ kerT . On the
other hand if Tx = 0, then it follows from the equation U2|T |U∗2 = |T | that |T |1/2U∗2x = 0
or U∗2x = 0. Then U∗x ∈ kerT ∗ ⊂ kerT . Hence TU∗x = 0 or U |T |U∗x = 0, which is
the same as T ∗x = 0. Thus kerT = kerT ∗ or U is normal. Therefore the equation
U2|T |U∗2 = |T | implies U |T |U∗ = U∗U2|T |U∗2U = U∗|T |U . Now it is easy to show that
S(T ) is normal. By Corollary 3.2, we conclude that T is normal.

(iii) Notice that the underlying condition is equivalent to U |T |U∗ = U∗|T |U . Therefore
if Ux = 0, then U |T |U∗x = 0 or T ∗x = 0, giving kerU ⊂ kerU∗. On the other hand
if U∗x = 0, then U∗|T |Ux = 0 implying |T |1/2Ux = 0 or equivalently, U2x = 0. Since
kerU ⊂ kerU∗, we find U∗Ux = 0 or Ux = 0. Therefore kerU = kerU∗, which shows that
U is normal. Hence

S(T )∗S(T ) = U∗|T |U = U |T |U∗ = S(T )S(T )∗.

Then S(T ) is normal and T is normal by Corollary 3.2.

4. PARTIAL ISOMETRY, PROJECTION

Theorem 4.1. If T is normaloid, then S(T ) is normaloid and ‖T ‖ = ‖S(T )‖2.

Proof. First we observe that ‖S(T )‖2 ≤ ‖|T |‖ = ‖T ‖ for any operator T . Since T is
normaloid, ‖T ‖ = |z| for some z ∈ σ(T ). Then there exists a sequence {xn} of unit vectors
such that (T −z)xn → 0 and (T −z)∗xn → 0. If z = |z|eiθ, then (|T |1/2−|z|1/2)xn → 0 and
(U −eiθ)xn → 0. Consequently, (S(T )−|z|1/2e2iθ)xn → 0 and therefore |z|1/2 ≤ r(S(T )) ≤
‖S(T )‖. Hence

r(T ) = ‖T ‖ ≤ r(S(T ))2 ≤ ‖S(T )‖2 ≤ ‖T ‖.
Thus

r(T ) = ‖T ‖ = r(S(T ))2 = ‖S(T )‖2.

Example 3. Let T =
(

1 1
0 −1

)
. Clearly T 2 = I. If T = U |T |, then U |T |U = |T |−1. Define

A = U |T |2. Then S(A) = U |A|1/2U = U |T |U = |T |−1. This shows that S(A) is a positive
invertible operator. Clearly ‖S(A)‖2 = ‖A‖. We assert A is not normaloid. Suppose to
the contrary that A is normaloid. Since a normaloid operator on a two-dimensional space
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is normal, it will follow that U commutes with |T |2 and hence with |T |. But then T will be
normal, which is not true. Hence the converse of Therorem 4.1 is not true.

Definition. Let T ∈ B(H) with the polar decomposition T = U |T |. For each positive
integer n, the n-th Aluthge transform T̃ (n) of T is defined as the Aluthge transform of
T̃ (n − 1) and T̃ (1) = T̃ = |T |1/2U |T |1/2. It is known that r(T ) = lim ‖T̃ (n)‖ ([17]).

Theorem 4.2. Let T be a p-hyponormal operator. If S(T ) is a partial isometry, then the
following assertions hold.

(i) T n is a k-hyponormal operator for each positive integer n and each k > 0.
(ii) The n-th Aluthge transform T̃ (n) has the polar decomposition given by T̃ (n) =

U |T |1/r(n) where r(n) = 2n and T̃ (n) converges strongly to U .

Proof.
(i) We may assume that s ≥ t. Now T being a class A(s, t) operator, it must be normaloid

by [7]. By Theorem 4.1, ‖T ‖ = ‖S(T )‖2. Since S(T ) is a partial isometry, it is a contraction.
Therefore

‖T ‖ ≤ 1.(4.1)

Next we show that ker U = ker |T |1/2U. Suppose |T |1/2Ux = 0. Then Ux ∈ ker |T |1/2 =
kerT . Since T is p-hyponormal, kerT ⊂ kerT ∗. Hence Ux ∈ kerT ∗ = kerU∗. Then
U∗Ux = 0 or Ux = 0. Hence ker |T |1/2U = ker |T |. Since S(T ) is a partial isometry,
S(T )∗S(T ) = (|T |1/2U)∗(|T |1/2U) is a projection or |T |1/2U is a partial isometry. This
in combination with the relation ker |T |1/2U = ker |T | = kerU implies |T |1/2U and U are
isometries on [ran|T |]. Therefore we have

‖x‖ = ‖|T |1/2Ux‖ = ‖Ux‖(4.2)

for x ∈ [ran|T |], and then |T |1/2Ux = Ux as 0 ≤ |T |1/2 ≤ 1(see [12]). Hence

|T |1/2U = U(4.3)

and
|T |UU∗ = |T |1/2UU∗ = UU∗.

Then |T |2mUU∗ = UU∗ for every positive integer m. Hence the inequality UU∗ ≤ I implies

|T |2m ≥ |T |mUU∗|T |m = UU∗.(4.4)

An application of (4.3) will show that

T n = U(|T |U)n−1|T | = Un|T |.
Since by (4.4), kerT ⊂ kerT ∗. Then it follows that U is quasinormal and so, in particular,
U∗nUn = U∗U . Clearly this shows that Un is a partial isometry with kerUn = kerU =
ker |T |. Therefore |T n| = |T | and T n = Un|T | is the polar decomposition of T n. Now by
(4.4), we have

|T n|2m = |T |2m ≥ UU∗ ≥ UnU∗n

and hence (4.1) will imply |T n|2m ≥ Un|T |2mU∗n = |T ∗n|2m or T n is m-hyponormal for
every positive integers m and n. Invoking the Lowner-Heinz Inequality, we conclude that
T n is k-hyponormal for every positive integer n and any positive real number k.

(ii) First, we note that (4.1) and (4.2) imply

‖x‖ = ‖Ux‖ = ‖|T |1/2Ux‖ ≤ ‖|T |1/4Ux‖ ≤
· · · ≤ ‖|T |1/r(n)Ux‖ ≤ ‖|T |1/r(n+1)Ux‖ ≤ ‖Ux‖,
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and hence |T |1/r(n)Ux = Ux for all x ∈ [ran|T |1/r(n)] = [ran|T |]. Euivalently, we have
|T |1/r(n)U |T |1/r(n) = U |T |1/r(n) for each positive integer n. Clearly U |T |1/r(n) is the polar
decomposition of |T |1/r(n)U |T |1/r(n). As a consequence of this, we find T̃ (1) = T̃ = U |T |1/2

and hence T̃ (2) = |T |1/4U |T |1/4 = U |T |1/4. An induction argument shows that T̃ (n) =
|T |1/r(n)U |T |1/r(n) = U |T |1/r(n). Since |T |1/r(n) → U∗U strongly, it follows that T̃ (n) →
U∗UUU∗U = U strongly.

Example 4. Let T to be a unilateral weighted shift with weights {1/2, 1, 1, 1, · · · }. Then
one can check that T is a non-quasinormal hyponormal operator for which S(T ) is an
isometry. Hence if we put a stronger condition on S(T ) by assuming it to be an isometry,
we may not get a stronger conclusion like T is quasinormal.

T is said to be paranormal if

‖Tx‖2 ≤ ‖T 2x‖‖x‖
for all x ∈ H. It is known that A(1, 1) operators are paranormal by [6]. In the next theorem,
we extend the above result for paranormal operators with the closed range.

Theorem 4.3. Let T be a paranormal operator with closed range. If S(T ) is a partial
isometry, then the following assertions hold.

(i) T n is a k-hyponormal operator for each positive integer n and each k > 0.
(ii) The n-th Aluthge transform T̃ (n) has the polar decomposition given by T̃ (n) =

U |T |1/r(n) where r(n) = 2n and T̃ (n) converges strongly to U .

Proof. Since a paranormal operator is normaloid, as argued in Theorem 4.2, we get

‖T ‖ ≤ 1.(4.5)

Next, we show that

ker |T |1/2U = ker |T |.(4.6)

Suppose |T |1/2Ux = 0. Then U |T |Ux = 0. Since ran T and therefore ran |T | is closed,
x = y + z with some y ∈ ker |T | and z ∈ ran |T |. Let z = |T |u for some vector u ∈ H.
Then 0 = U |T |Ux = U |T |U |T |u or T 2u = 0. The paranormality of T implies Tu = 0 or
0 = |T |u = z. This leads to x = y ∈ ker |T | proving (4.6).

Hence we have |T |1/2U = U or U∗|T |1/2 = U∗ as shown in the proof of Theorem 4.2.
In paticular, kerT ⊂ kerT ∗ as U∗ = U∗|T |. Now using the same line of argument used in
Theorem 4.2, we arrive at the desired conclusion.

Theorem 4.4. If S(T ) is an idempotent operator and kerT ⊂ kerT ∗, then T is a selfad-
joint partial isometry.

Proof. The hypothesis S(T )2 = S(T ) means U |T |1/2U2|T |1/2U = U |T |1/2U which gives
|T |1/2U2|T |1/2U = |T |1/2U and hence U3|T |1/2U = U2. Then applying the kernel condition,
we obtain U |T |1/2U = U∗U or U∗|T |1/2U∗ = U∗U . Now it is obvious that kerU∗ ⊂ kerU .
This along with our hypothesis implies kerU = kerU∗. In particular, U is normal. Since
U |T |1/2U = U∗U , the normality of U gives |T |1/2 = U∗U |T |1/2UU∗ = U∗2UU∗ = U∗2 or
|T |1/2 = U2. Therefore U∗U = U |T |1/2U = U4 and so |T | = U∗U . Hence T = U . In order
to complete the proof, it is enough to show that U∗ = U . Now U2 = |T |1/2 combined with
|T | = U∗U imply U2 = U∗U and hence U∗ = (U∗U)U∗ = U2U∗ = UU∗U = U as U is
normal. This finishes the proof.

Example 5. Let T =
(

1 0
0 −1

)
. Then S(T ) = I. Hence conditions in Theorem 4.4 do not

guarantee that T is a projection.
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Corollary 4.5. Suppose S(T ) is a projection. If kerS(T ) = kerT , then T is a selfadjoint
partial isometry.

Proof. First we observe that the condition kerS(T ) = kerT implies the condition kerU =
kerU2. Since S(T ) is normal, we have

U∗|T |U = U |T |1/2UU∗|T |1/2U∗ ≤ U |T |U∗.(4.7)

Then U∗x = 0 implies U∗|T |U = (|T |1/2U)∗|T |1/2Ux = 0 which is the same as U2x = 0.
Hence Ux = 0 showing kerU∗ ⊂ kerU . Obviously then U∗U ≤ UU∗. Then from (4.7), we
derive

U |T |U∗ ≤ U∗|T |U.(4.8)

From (4.7) and (4.8), we have U∗|T |U = U |T |U∗. In particular, kerT = kerU ⊂ kerU∗ =
kerT ∗. Consequently, the corollary follows from the Theorem 4.4.

Corollary 4.6. If S(T ) is idempotent and if kerT ∗ ⊂ kerT , then T is a selfadjoint partial
isometry.

Proof. By our hypothesis on S(T ), U3|T |1/2U = U2 or U∗|T |1/2U∗3 = U∗2. Therefore,
since ker T ∗ ⊂ kerT , we obtain

|T |1/2U∗3 = UU∗|T |1/2U∗3 = UU∗2 = U∗.(4.9)

Also by Theorem 2.1, kerS(T )∗ ⊂ kerS(T ) implying S(T ) to be a projection. As seen in
the proof of Theorem 3.5, the underlying kernel condition indicates

1 ≥ ‖S(T )‖ ≥ ‖S(T ∗)‖ = ‖|T |1/2U∗2‖
and therefore

‖(U2|T |1/2U∗ − U∗)x‖2

= ‖U2|T |1/2U∗x‖2 − 〈U2|T |1/2U∗x,U∗x〉 − 〈U∗x,U2|T |1/2U∗x〉 + ‖U∗x‖2

≤ ‖U∗x‖2 − 〈UU∗x, x〉 − 〈x,UU∗x〉 + ‖U∗x‖2 = 0.

Hence U2|T |1/2U∗ = U∗ or equivalently, U |T |1/2U∗2 = U and hence kerT = kerU ⊂
kerU∗ = kerT ∗. Invoking Theorem 4.4, we arrive at the desired conclusion.

Corollary 4.7. Suppose the following conditions hold for T ∈ B(H).
(i) S(T ) is idempotent.
(ii) S(T ∗) is a contraction.
(iii) kerS(T ) = kerT .
Then T is a selfadjoint partial isometry.

Proof. As seen earlier, the condition (i) yields U3|T |1/2U = U2. Then applying (iii) which
is equivalent to kerU = kerU2 gives U2|T |1/2U = U . Since ‖S(T ∗)‖ = ‖|T |U∗2‖ ≤ 1 by
(ii), we have

‖(|T |1/2U∗2U − U)x‖2

= ‖|T |1/2U∗2Ux‖2 − 〈|T |1/2U∗2Ux,Ux〉 − 〈Ux, |T |1/2U∗2Ux〉 + ‖Ux‖2

≤ ‖Ux‖2 − 〈U∗Ux, x〉 − 〈x,U∗Ux〉 + ‖Ux‖2 = 0.

Hence |T |1/2U∗2U = U and |T |1/2U∗2 = UU∗. Then UU∗ = U2|T |1/2, and so kerT ⊂
kerT ∗. Hence the result is immediate from Theorem 4.4.

Theorem 4.8. If S(T ) = T and kerT ⊂ kerT ∗, then T is a projection.
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Proof. Since U |T |1/2U = U |T |, |T |1/2U = |T |. Then |T |1/2U |T |1/2 = |T |3/2 and 〈Ux, x〉 ≥ 0
for all x ∈ ran |T |1/2. Also, 〈Uy, y〉 = 0 for all y ∈ ker |T |1/2. For any z ∈ H, there exist
x ∈ [ran |T |1/2] and y ∈ ker |T |1/2 such that z = x + y. Therefore

〈Uz, z〉 = 〈Ux, x + y〉 = 〈Ux, x〉 + 〈x,U∗y〉 = 〈Ux, x〉 ≥ 0

as kerT ⊂ kerT ∗. This shows that U is positive. Since U is also a partial isometry,
U∗U = U2 is a projection. Then σ(U) ⊂ {0, 1} as U is positive. Hence U is a projection
and U∗U = U . Then T = U |T | = U∗U |T | = |T | and |T | = |T |1/2U = |T |1/2U∗U = |T |1/2.
Therefore |T |, and hence T is a projection.

Example 6. Let T =

(
1

2
√

2
0

1
2
√

2
0

)
. Then the polar decomposition T = U |T | is given by

U =

(
1√
2

0
1√
2

0

)
and |T | =

(
1
2 0
0 0

)
. Then S(T ) = U |T | 12 U = T , but T is not a projection.

This example shows that Theorem 4.8 does not hold if the underlying kernel condition
kerT ⊂ kerT ∗ is replaced even by the weaker condition like kerU = kerU2.

Corollary 4.9. Let S(T ) = T . If either (i) T is convexoid or (ii) U is convexoid, then T
is a projection.

Proof.
(i) The condition S(T ) = T implies |T |1/2U = |T |. Clearly T̃ = |T |1/2U |T |1/2 = |T |3/2

and hence σ(T̃ ) = σ(T ) ⊂ {x : x ≥ 0}. Since T is convexoid, it follows that T is a positive
operator. In particular, kerT = kerT ∗. Now the result follows from Theorem 4.8.

(ii) Again as |T |1/2U = |T |, we have UU∗|T |1/2 = U |T | or |T |1/2UU∗ = |T |U∗ implying
U2U∗ = U |T |1/2U∗. Since

σ(U) = σ(UU∗U) = σ(UUU∗)

by [3, lemma], we have
σ(U) = σ(U |T |1/2U∗) ⊂ {t : t ≥ 0}.

Since U is convexoid, it follows that U is a positive operator. Consequently, kerT = kerT ∗.
Now the result is clear from Theorem 4.8.

Corollary 4.10. If S(T ) = T and T is a class A(s, t) operator, then T is a projection.

Proof. We may assume 1/2 < s by [9]. Note that the condition S(T ) = T implies |T |1/2U =
|T |. Then T (s, t) = |T |s−1/2(|T |1/2U)|T |t = |T |s+t+1/2. Hence T is normal by [12] and so
the result follows from Theorem 4.8.

Example 7. Let T =
(

0 0
1 1

)
. Then U =

1√
2

(
0 0
1 1

)
and |T |1/2 = 2−

3
4

(
1 1
1 1

)
. Hence

S(T ) = 2−
3
4

(
0 0
1 1

)
and S(T ) is not idempotent. Hence S(T ) may not be even idempotent

if T is idempotent. It is well known that T̃ is a projection whenever T is idempotent.
However, in case T and S(T ) are idempotent operators, then both T and S(T ) turn out to
be projections.

Theorem 4.11. If T and S(T ) are idempotent operators, then T is projection and T =
S(T ).
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Proof. Since U |T | = T = T 2 = U |T |U |T |, we have |T |U |T | = |T | = |T |U∗|T |. Hence
U = UU∗|T | and U∗U = U∗UU∗|T | = U∗|T |. Then |T |U = U∗U and

kerU = kerU2.(4.10)

Now the condition that S(T ) is idempotent yields U3|T |1/2U = U2. Then

U2|T |1/2U = U.(4.11)

by (4.10). Multiplying (4.11) on the right by U , we obtain U2|T |1/2U2 = U2. By (4.10), it
follows that U |T |1/2U2 = U . Hence |T |1/2U2 = U∗U and then |T |U2 = |T |1/2U∗U = |T |1/2.
Since |T |U = U∗U , we get |T |1/2 = (|T |U)U = U∗U2 and so S(T ) = U(U∗U2)U = U3.
Since U3 is a contraction and S(T ) is idempotent, U3 is a projection. Since kerU = kerU2 =
kerU3 by (4.10), U3 = U∗U or U∗3 = U∗U . Now it is obvious from the last equation that
kerT ∗ = kerU∗ ⊂ kerU = kerT . Hence T is a projection as T is idempotent. Clearly
S(T ) = T which finishes the proof.

5. POLAR DECOMPOSITION

Theorem 5.1. If the operator |T |1/2U has the polar decomposition given by |T |1/2U =
W ||T |1/2U |, then S(T ) = UW |S(T )| is the polar decomposition of S(T ).

Proof. Clearly S(T ) = UW |S(T )|. To complete the proof, we must show that UW is a
partial isometry with kerUW = ker |S(T )|.

We show UW is a partial isometry. Suppose Ux = 0 for some x ∈ H. Then U∗|T |1/2x =
0. By our hypothesis, W ∗x = 0. Thus kerU∗U ⊂ kerWW ∗ or U∗UWW ∗ = WW ∗.
Therefore

UW (UW )∗UW = UWW ∗U∗UW = UWW ∗W = UW.

Next we show ker UW = kerS(T ). Let UWx = 0. Then Wx ∈ kerU and U∗|T |1/2Wx =
0. Then W ∗Wx = 0 and S(T )x = 0. On the other hand if S(T )x = 0, then |T |1/2Ux =
U∗U |T |1/2Ux = 0. This implies that Wx = 0 and therefore UWx = 0.

Theorem 5.2. If S(T ) = W |S(T )| is the polar decomposition, then the operator |T |1/2U
has the polar decomposition given by U∗W ||T |1/2U |.
Proof. By our hypothesis,

|T |1/2U = U∗W |S(T )| = U∗W ||T |1/2U |.
We show kerU∗W = ker ||T |1/2U |. If U∗Wx = 0, then we find Wx ∈ kerU∗. Since

kerU∗ ⊂ kerW ∗, W ∗Wx = 0. Then it follows that W ∗Wx = 0 and hence x ∈ ker |S(T )| =
ker ||T |1/2U |. Conversely if ||T |1/2U |x = 0, then Wx = 0 and so x ∈ kerU∗W .

Next we show U∗W is a partial isometry. Since kerUU∗ ⊂ kerWW ∗, we have WW ∗UU∗ =
WW ∗. Therefore

U∗W (U∗W )∗U∗W = U∗(WW ∗UU∗)W = U∗WW ∗W = U∗W.

Theorem 5.3. Let T be a binormal operator, i.e., |T | commutes with |T ∗|. If S(T ) =
W |S(T )| is the polar decomposition, then the Aluthge transform T̃ = |T |1/2U |T |1/2 has the
polar decomposition given by T̃ = U∗W |T̃ |.
Proof. By Theorem 5.2, |T |1/2U = U∗W |S(T )| is the polar decomposition. Then

T̃ = U∗W |S(T )||T |1/2.(5.1)
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Since |T | commutes with |T ∗| = U |T |U∗, we have

|S(T )|2|T |1/2 = (U∗|T |U)|T |1/2 = U∗(|T |U |T |1/2U∗)U

= U∗(U |T |1/2U∗|T |)U
= |T |1/2U∗|T |U = |T |1/2|S(T )|2.

Thus |S(T )| commutes with |T |1/2. As a consequence of this fact, we find T̃ ∗T̃ = |T |1/2U∗|T |U |T |1/2 =
|S(T )|2|T | or |T̃ | = |S(T )||T |1/2. Therefore (5.1) implies

T̃ = U∗W |T̃ |.(5.2)

Note that U∗W is a partial isometry. In order to complete the proof, we must show that
kerU∗W = ker T̃ . Suppose T̃ x = 0. Then |S(T )|2|T |1/2x = U∗|T |U |T |1/2x = 0. Since
|S(T )| commutes with |T |1/2, |T |1/2U∗|T |Ux = 0. Then UU∗|T |Ux = 0 or U∗|T |Ux = 0.
Hence |T |1/2Ux = 0 and S(T )x = 0. Consequently we have x ∈ kerU∗W . On the other
hand if U∗Wx = 0, then |T̃ |x = |T |1/2|S(T )|x = 0. Thus x ∈ ker T̃ .

Theorem 5.4. If S(T ) = W |S(T )| and T̃ = U∗W |T̃ | are polar decompositions, then
|S(T )|, |T | and |T̃ | are commuting. Moreover if kerT ∗ ⊂ kerT , then T is binormal.

Proof. By Theorem 5.2, |T |1/2U has the polar decomposition U∗W |S(T )|. From this we
derive that T̃ = U∗W |S(T )||T |1/2. Therefore

U∗W |T̃ = U∗W |S(T )||T |1/2.

Since (U∗W )∗U∗W |S(T )| = |S(T )| and (U∗W )∗U∗W |T̃ | = |T̃ |, we obtain |T̃ | = |S(T )||T |1/2.
Thus |S(T )|, |T | and |T̃ | are commuting. Suppose kerT ∗ ⊂ kerT . Then UU∗U∗ = U∗.
Since |S(T )|2|T |1/2 = U∗(|T |U |T |1/2U∗)U and |T |1/2|S(T )|2 = U∗(U |T |1/2U∗|T |)U , we
find U∗(|T |U |T |1/2U∗)U = U∗(U |T |1/2U∗|T |)U . Now the kernel condition implies that T
is binormal.
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