COMMON FIXED POINT THEOREMS IN SMALL SELF DISTANCE QUASI-SYMMETRIC DISLOCATED METRIC SPACE

F. M. Zeyada, M. R. A. Moubarak* and A. H. Soliman ${ }^{1}$

Received April 5, 2005; revised May 20, 2005

Abstract

In this paper we introduce common fixed point theorems in a new type of generalized metric space so called a small self distance quasi-symmetric dislocated metric space (ssd-q-s-d-metric space for short). Our results are generalizations of Theorem 2.1 [1] due to Mohamed Aamri and Driss El Moutawakil.

1 Introduction and Preliminaries There have been a number of generalizations of metric space. One such generalization is symmetric space. M. Aamri and D. El Moutawakil [1] introduced the following theorem in symmetric space.

Theorem 2.1. Let d be a symmetric for X that satisfies (W.3) and $\left(H_{E}\right)$. Let A and B be two weakly compatible selfmappings of (X, d) such that $(1) d(A x, A y) \leq \phi(\max \{d(B x, B y)$, $d(B x, A y), d(A y, B y)\})$ for all $(x, y) \in X^{2},(2) A$ and B satisfy the property $(E . A)$, and (3) $A X \subseteq B X$. If the range of A or B is a complete subspace of X, then A and B have a unique common fixed point.

The aim of the present paper is to give generalizations of Theorem 2.1 [1] in a type of generalized metric space weaker than symmetric space so called small self distance quasisymmetric dislocated metric space

Let X be a nonempty set and let $d: X \times X \rightarrow[0, \infty)$ be a function, called a distance function. The pair (X, d) is called a distance space [3].
We need the following conditions:
$\left(d_{1}\right) \forall x \in X, d(x, x)=0$,
$\left(d_{2}\right) \forall x, y \in X, d(x, y)=0 \Rightarrow x=y$,
$\left(d_{2}\right)^{\prime} \forall x, y \in X, d(x, y)=d(y, x)=0 \Rightarrow x=y$,
$\left(d_{3}\right) \forall x, y \in X, d(x, y)=d(y, x)$,
$\left(d_{4}\right) \forall x, y, z \in X, d(x, y) \leq d(x, z)+d(z, y)$.
$\left(d_{5}\right) \forall x, y \in X . d(x, x) \leq \min \{d(x, y), d(y, x)\}$
for all $x, y, z \in X$. If d satisfies conditions $\left(d_{1}\right)-\left(d_{4}\right)$, then (X, d) is called a metric space. If it satisfies conditions $\left(d_{2}\right)-\left(d_{4}\right)$, then (X, d) is called a dislocated metric space [3]. Also (X, d) is called a symmetric space if satisfies $\left(d_{1}\right)-\left(d_{3}\right)$.

Definition 1.2 [2]. Let A and B be two selfmappings of a metric space (X, d). We say that A and B satisfy the property (E.A) if there exists a sequence $\left(x_{n}\right)$ such that

$$
\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} B x_{n}=t
$$

for some $t \in X$.

[^0]2 Main results Definition 2.1. A distance space (X, d) is called a small self distance quasi-symmetric-dislocated metric space (ssd-q-s-d-metric space, for short) if d satisfies $\left(d_{2}\right)^{\prime}$ and $\left(d_{5}\right)$.

Example 2.1. Let X be a nonempty set and $d: X \times X \rightarrow[0, \infty)$ defined by $d(x, y)=\frac{1}{3}$ if $x=y$ and $d(x, y)=1$ if $x \neq y$. Then (X, d) is a small self distance quasi-symmetricdislocated metric space.

Definition 2.2. Let (X, d) be a ssd quasi-symmetric dislocated metric space and let $Y \subset X$. Y said to be l-closed (resp. r-closed) if $d(x, Y)=0($ resp. $d(Y, x)=0)$, then $x \in Y$.

Definition 2.3. Two selfmapping A and B of ssd-q-s-d-metric X are said to be weakly compatible if they commute at there coicidence points; i.e., if $B u=A u$ for some $u \in X$, then $B A u=A B u$.

Definition 2.4. Let (X, d) a ssd-q-sd-metric space. Then (X, d) satisfies ($\ell w 3)$ if for every sequence $\left(x_{n}\right)$ in X and $x, y \in X$, if $\lim _{n \rightarrow \infty} d\left(x, x_{n}\right)=\lim _{n \rightarrow \infty} d\left(y, x_{n}\right)=0$, then $x=y$; and satisfies (rw3) if for every sequence $\left(x_{n}\right)$ in X and $x, y \in X, \lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=$ $\lim _{n \rightarrow \infty} d\left(x_{n}, y\right)=0$, then $x=y$.

Definition 2.5. Let (X, d) be a ssd-q-s-d-metric space. Two self mappings A and B of (X, d) are said to have the property $\left(\ell-E . A-H_{E}\right)$ if
(a) $A X \subseteq B X$,
(b) there exists a sequence $\left(x_{n}\right)$ such that
$\lim _{n \rightarrow \infty} d\left(t, A x_{n}\right)=\lim _{n \rightarrow \infty} d\left(t, B x_{n}\right)=\lim _{n \rightarrow \infty} d\left(B x_{n}, A x_{n}\right)=0$ for some $t \in X$.
Also, A and B are said to have the property $\left(r-E . A-H_{E}\right)$ if
(a) $A X \subseteq B X$,
$\left(b^{\prime}\right)$ there exists a sequence $\left(x_{n}\right)$ such that
$\lim _{n \rightarrow \infty} d\left(A x_{n}, t\right)=\lim _{n \rightarrow \infty} d\left(B x_{n}, t\right)=\lim _{n \rightarrow \infty} d\left(B x_{n}, A x_{n}\right)=0$ for some $t \in X$.
In the sequel, we need a function $\phi: R^{+} \rightarrow R^{+}$satisfying the condition $0<\phi(t)<t$ for each $t>0$.

Theorem 2.1. Let (X, d) be a ssd-q-sd-metric space that satisfies ($\ell w 3)$. Let A and B be two weakly compatible selfmappings of (X, d) such that
(1) $d(A x, A y) \leq \phi(\max \{d(B x, B y), d(B x, A y), d(A y, B y)\}) \forall x, y \in X$;
(2) A and B satisfies $\left(\ell-E . A-H_{E}\right)$. If $A X$ or $B X$ is l-closed. Then A and B have a unique common fixed point.

Proof. From (2), there exists a sequence $\left(x_{n}\right)$ in X such that $\lim _{n \rightarrow \infty} d\left(t, A x_{n}\right)=$ $\lim _{n \rightarrow \infty} d\left(t, B x_{n}\right)=\lim _{n \rightarrow \infty} d\left(B x_{n}, A x_{n}\right)=0$. Since $B X$ is l-closed or $A X$ is l-closed, then $t \in B X$ or $t \in A X$. Thus there exists $u \in X$ such that $B u=t$. Now, we prove that $A u=B u$. If $A u \neq B u$, then from $(\ell w 3), \lim _{n \rightarrow \infty} d\left(A u, A x_{n}\right)=\alpha>0$. Thus for $0<\epsilon<\alpha$, there exists $n_{0}(\epsilon) \in N$ such that $\forall n \geq n_{0}(\epsilon),\left|d\left(A u, A x_{n}\right)-\alpha\right|<\epsilon$, i.e., $\alpha-\epsilon<d\left(A u, A x_{n}\right)<\epsilon+\alpha$. Thus $\forall n \geq n_{0}(\epsilon)$,

$$
\begin{aligned}
d\left(A u, A x_{n}\right) & \leq \phi\left(\max \left\{d\left(B u, B x_{n}\right), d\left(B u, A x_{n}\right), d\left(B x_{n}, A x_{n}\right)\right\}\right) \\
& <\max \left\{d\left(B u, B x_{n}\right), d\left(B u, A x_{n}\right), d\left(B x_{n}, A x_{n}\right)\right\}
\end{aligned}
$$

Letting $n \rightarrow \infty$ we have $\lim _{n \rightarrow \infty} d\left(A u, A x_{n}\right)=0$. So ¿from ($\left.\ell w 3\right), A u=B u$. The weak compatibility of A and B implies that $A B u=B A u$ and then $A A u=A B u=B A u=B B u$. Let us show that $A u$ is a common fixed of A and B. Suppose that $A A u \neq A u$, then
$d(A A u, A u) \neq 0$ or $d(A u, A A u) \neq 0$. First, if $d(A A u, A u) \neq 0$, then

$$
\begin{aligned}
d(A A u, A u) & \leq \phi(\max \{d(B A u, B u), d(B A u, A u), d(A u, B u)\})=\phi(d(A A u, A u)) \\
& <d(A A u, A u)
\end{aligned}
$$

which is a contradiction. Therefore $A u=A A u=B A u=B B u$. Second if $d(A u, A A u) \neq 0$, then

$$
\begin{aligned}
d(A u, A A u) & \leq \phi(\max \{d(B u, B A u), d(B u, A A u), d(B A u, A A u)\})=\phi(d(A u, A A u)) \\
& <d(A u, A A u)
\end{aligned}
$$

which is a contradiction. Therefore $A u=A A u=B A u$. Hence $A u$ is a common fixed point of A and B. Suppose u and v are two fixed points of A and B and $u \neq v$. Then $d(u, v)>0$ or $d(v, u)>0$. If $d(u, v)>0$, then

$$
d(u, v)=d(A u, A v) \leq \phi(\max \{d(B u, B v), d(B u, A v), d(B v, A v)\}=\phi(d(u, v))<d(u, v)
$$

which is a contradiction. Also if $d(v, u)>0$, one can deduce that $d(v, u)<d(v, u)$ which is a contradiction. Therefore $u=v$.

Theorem 2.2. Let (X, d) be a ssd-q-sd-metric space that satisfies $(r-w .3)$. Let A and B be two weakly compatible selfmappings of (X, d) such that
(1) $d(A x, A y) \leq \phi(\max \{d(B x, B y), d(A x, B y), d(B x, A x)\}) \forall x, y \in X$;
(2) A and B satisfies $\left(r-E . A-H_{E}\right)$. If $A X$ or $B X$ is $r-c l o s e d$, then A and B have a unique common fixed point

Proof. From (2), there exists a sequence $\left(x_{n}\right)$ in X such that $\lim _{n \rightarrow \infty} d\left(A x_{n}, t\right)=$ $\lim _{n \rightarrow \infty} d\left(B x_{n}, t\right)=\lim _{n \rightarrow \infty} d\left(B x_{n}, A x_{n}\right)=0$. Since $B X$ is r-closed or $A X$ is r-closed, then $t \in B X$ or $t \in A X$. Thus there exists $u \in X$ such that $B u=t$. Now, we prove that $A u=B u$. If $A u \neq B u$, then from $(r w 3), \lim _{n \rightarrow \infty} d\left(A x_{n}, B u\right)=\alpha>0$. Thus for $0<\epsilon<\alpha$, there exists $n_{0}(\epsilon) \in N$ such that $\forall n \geq n_{0}(\epsilon),\left|d\left(A x_{n}, B u\right)-\alpha\right|<\epsilon$, i.e., $\alpha-\epsilon<d\left(A x_{n}, B u\right)<\epsilon+\alpha$. Thus $\forall n \geq n_{0}(\epsilon)$,

$$
\begin{aligned}
d\left(A x_{n}, A u\right) & \leq \phi\left(\max \left\{d\left(B x_{n}, B u\right), d\left(A x_{n}, B u\right), d\left(B x_{n}, A x_{n}\right)\right\}\right) \\
& <\max \left\{d\left(B x_{n}, B u\right), d\left(A x_{n}, B u\right), d\left(B x_{n}, A x_{n}\right)\right\}
\end{aligned}
$$

Letting $n \rightarrow \infty$ we have $\left.\lim _{n \rightarrow \infty} d\left(A x_{n}, A u\right)\right)=0$. So from $(r w 3), A u=B u$. The weak compatibility of A and B implies that $A B u=B A u$ and then $A A u=A B u=B A u=B B u$. Let us show that $A u$ is a common fixed of A and B. Suppose that $A A u \neq A u$, then $d(A A u, A u) \neq 0$ or $d(A u, A A u) \neq 0$. First, if $d(A A u, A u) \neq 0$, then

$$
\begin{aligned}
d(A A u, A u) & \leq \phi(\max \{d(B A u, B u), d(A A u, B u), d(B A u, A A u)\})=\phi(d(A A u, A u)) \\
& <d(A A u, A u)
\end{aligned}
$$

which is a contradiction. Therefore $A u=A A u=B A u=B B u$. Second if $d(A u, A A u) \neq 0$, then

$$
\begin{aligned}
d(A u, A A u) & \leq \phi(\max \{d(B u, B A u), d(A u, B A u), d(B u, A u)\})=\phi(d(A u, A A u)) \\
& <d(A u, A A u)
\end{aligned}
$$

which is a contradiction. Therefore $A u=A A u=B A u$. Hence $A u$ is a common fixed of A and B. Suppose u and v are two fixed points of A and B and $u \neq v$. Then $d(u, v)>0$ or $d(v, u)>0$. If $d(u, v)>0$, then

$$
d(u, v)=d(A u, A v) \leq \phi(\max \{d(B u, B v), d(A u, B v), d(B u, A u)\}=\phi(d(u, v))<d(u, v),
$$

which is a contradiction. The same is obtained if $d(v, u)>0$. Therefore $u=v$.
Conclusion. Since any symmetric space is ssd-q-s-d-metric space and the conditions in Theorem 2.1 [1] implies the conditions in Theorem 2.1 or in Theorem 2.2, then Theorem 2.1 [1] is obtained as a corollary of Theorem 2.1 or Theorem 2.2.

Acknowledgments. The authors thank Prof. Dr. Rus (Universitatea Babes-Bolyai Din Cluj-Napoca) for useful comments and suggestions.

References

[1] M. Aamri and D. El Moutawakil, Common Fixed Points Under Contractive Conditions In Symmetric Spaces, Applied Mathematics 3(2003), 156-162.
[2] P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Engin, Vol. 51. No. 12/s. (2000) 3-7.
[3] Pawel Waszkiewicz, Quantitative Continuous Domains, Ph. D. Thesis. The University of Birmingham,(2002).

Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut, Egypt
*Department of Mathematics, Faculty of Science, Minia University, Minia, Egypt
E-mail address: $a_{-} h-$ soliman@yahoo.com

[^0]: 2000 Mathematics Subject Classification. Primary 54H25, 47H10.
 Key words and phrases. symmetric space, dislocated metric space fixed point.
 ${ }^{1}$ Corresponding author.

