COMMON FIXED POINT THEOREMS IN SMALL SELF DISTANCE QUASI-SYMMETRIC DISLOCATED METRIC SPACE

F. M. Zeyada, M. R. A. Moubarak^{*} and A. H. Soliman¹

Received April 5, 2005; revised May 20, 2005

ABSTRACT. In this paper we introduce common fixed point theorems in a new type of generalized metric space so called a small self distance quasi-symmetric dislocated metric space (ssd-q-s-d-metric space for short). Our results are generalizations of Theorem 2.1 [1] due to Mohamed Aamri and Driss El Moutawakil.

1 Introduction and Preliminaries There have been a number of generalizations of metric space. One such generalization is symmetric space. M. Aamri and D. El Moutawakil [1] introduced the following theorem in symmetric space.

Theorem 2.1. Let d be a symmetric for X that satisfies (W.3) and (H_E) . Let A and B be two weakly compatible selfmappings of (X, d) such that (1) $d(Ax, Ay) \leq \phi(\max\{d(Bx, By), d(Bx, Ay), d(Ay, By)\})$ for all $(x, y) \in X^2$, (2) A and B satisfy the property (E.A), and (3) $AX \subseteq BX$. If the range of A or B is a complete subspace of X, then A and B have a unique common fixed point.

The aim of the present paper is to give generalizations of Theorem 2.1 [1] in a type of generalized metric space weaker than symmetric space so called small self distance quasisymmetric dislocated metric space

Let X be a nonempty set and let $d: X \times X \to [0, \infty)$ be a function, called a distance function. The pair (X, d) is called a distance space [3].

We need the following conditions:

- $(d_1) \ \forall x \in X, d(x, x) = 0,$
- $(d_2) \ \forall x, y \in X, d(x, y) = 0 \Rightarrow x = y,$
- $(d_2)' \ \forall x, y \in X, d(x, y) = d(y, x) = 0 \Rightarrow x = y,$

$$(d_3) \ \forall x, y \in X, d(x, y) = d(y, x).$$

- $(d_4) \ \forall x, y, z \in X, d(x, y) \le d(x, z) + d(z, y).$
- $(d_5) \forall x, y \in X. \ d(x, x) \le \min\{d(x, y), d(y, x)\}\$

for all $x, y, z \in X$. If d satisfies conditions $(d_1) - (d_4)$, then (X, d) is called a metric space. If it satisfies conditions $(d_2) - (d_4)$, then (X, d) is called a dislocated metric space [3]. Also (X, d) is called a symmetric space if satisfies $(d_1) - (d_3)$.

Definition 1.2 [2]. Let A and B be two selfmappings of a metric space (X, d). We say that A and B satisfy the property (E.A) if there exists a sequence (x_n) such that

$$\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Bx_n = t$$

for some $t \in X$.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54H25, 47H10.

Key words and phrases. symmetric space, dislocated metric space fixed point.

¹ Corresponding author.

2 Main results Definition 2.1. A distance space (X, d) is called a small self distance quasi-symmetric-dislocated metric space (ssd-q-s-d-metric space, for short) if d satisfies $(d_2)'$ and (d_5) .

Example 2.1. Let X be a nonempty set and $d: X \times X \to [0, \infty)$ defined by $d(x, y) = \frac{1}{3}$ if x = y and d(x, y) = 1 if $x \neq y$. Then (X, d) is a small self distance quasi-symmetric-dislocated metric space.

Definition 2.2. Let (X, d) be a ssd quasi-symmetric dislocated metric space and let $Y \subset X$. Y said to be *l*-closed (resp. *r*-closed) if d(x, Y) = 0 (resp. d(Y, x) = 0), then $x \in Y$.

Definition 2.3. Two selfmapping A and B of ssd-q-s-d-metric X are said to be weakly compatible if they commute at there coicidence points; i.e., if Bu = Au for some $u \in X$, then BAu = ABu.

Definition 2.4. Let (X, d) a ssd-q-sd-metric space. Then (X, d) satisfies $(\ell w3)$ if for every sequence (x_n) in X and $x, y \in X$, if $\lim_{n\to\infty} d(x, x_n) = \lim_{n\to\infty} d(y, x_n) = 0$, then x = y; and satisfies (rw3) if for every sequence (x_n) in X and $x, y \in X$, $\lim_{n\to\infty} d(x_n, x) = \lim_{n\to\infty} d(x_n, y) = 0$, then x = y.

Definition 2.5. Let (X, d) be a ssd-q-s-d-metric space. Two self mappings A and B of (X, d) are said to have the property $(\ell - E \cdot A - H_E)$ if

(a) $AX \subseteq BX$,

(b) there exists a sequence (x_n) such that

 $\lim_{n \to \infty} d(t, Ax_n) = \lim_{n \to \infty} d(t, Bx_n) = \lim_{n \to \infty} d(Bx_n, Ax_n) = 0 \text{ for some } t \in X.$

Also, A and B are said to have the property $(r - E A - H_E)$ if

 $(a') AX \subseteq BX,$

(b') there exists a sequence (x_n) such that

 $\lim_{n \to \infty} d(Ax_n, t) = \lim_{n \to \infty} d(Bx_n, t) = \lim_{n \to \infty} d(Bx_n, Ax_n) = 0 \text{ for some } t \in X.$ In the sequel, we need a function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying the condition $0 < \phi(t) < t$ for each t > 0.

Theorem 2.1. Let (X, d) be a ssd-q-sd-metric space that satisfies $(\ell w3)$. Let A and B be two weakly compatible selfmappings of (X, d) such that

(1) $d(Ax, Ay) \le \phi(\max\{d(Bx, By), d(Bx, Ay), d(Ay, By)\}) \ \forall x, y \in X;$

(2) A and B satisfies $(\ell - E A - H_E)$. If AX or BX is l-closed. Then A and B have a unique common fixed point.

Proof. From (2), there exists a sequence (x_n) in X such that $\lim_{n\to\infty} d(t, Ax_n) = \lim_{n\to\infty} d(t, Bx_n) = \lim_{n\to\infty} d(Bx_n, Ax_n) = 0$. Since BX is *l*-closed or AX is *l*-closed, then $t \in BX$ or $t \in AX$. Thus there exists $u \in X$ such that Bu = t. Now, we prove that Au = Bu. If $Au \neq Bu$, then from $(\ell w3)$, $\lim_{n\to\infty} d(Au, Ax_n) = \alpha > 0$. Thus for $0 < \epsilon < \alpha$, there exists $n_0(\epsilon) \in N$ such that $\forall n \ge n_0(\epsilon)$, $| d(Au, Ax_n) - \alpha | < \epsilon, i.e.$, $\alpha - \epsilon < d(Au, Ax_n) < \epsilon + \alpha$. Thus $\forall n \ge n_0(\epsilon)$,

$$d(Au, Ax_n) \leq \phi(\max\{d(Bu, Bx_n), d(Bu, Ax_n), d(Bx_n, Ax_n)\}) < \max\{d(Bu, Bx_n), d(Bu, Ax_n), d(Bx_n, Ax_n)\}$$

Letting $n \to \infty$ we have $\lim_{n\to\infty} d(Au, Ax_n) = 0$. So *i* from $(\ell w3)$, Au = Bu. The weak compatibility of A and B implies that ABu = BAu and then AAu = ABu = BAu = BBu. Let us show that Au is a common fixed of A and B. Suppose that $AAu \neq Au$, then $d(AAu, Au) \neq 0$ or $d(Au, AAu) \neq 0$. First, if $d(AAu, Au) \neq 0$, then

$$d(AAu, Au) \leq \phi(\max\{d(BAu, Bu), d(BAu, Au), d(Au, Bu)\}) = \phi(d(AAu, Au))$$

$$< d(AAu, Au),$$

which is a contradiction. Therefore Au = AAu = BAu = BBu. Second if $d(Au, AAu) \neq 0$, then

$$d(Au, AAu) \leq \phi(\max\{d(Bu, BAu), d(Bu, AAu), d(BAu, AAu)\}) = \phi(d(Au, AAu)) < d(Au, AAu),$$

which is a contradiction. Therefore Au = AAu = BAu. Hence Au is a common fixed point of A and B. Suppose u and v are two fixed points of A and B and $u \neq v$. Then d(u, v) > 0 or d(v, u) > 0. If d(u, v) > 0, then

$$d(u,v) = d(Au, Av) \le \phi(\max\{d(Bu, Bv), d(Bu, Av), d(Bv, Av)\} = \phi(d(u, v)) < d(u, v),$$

which is a contradiction. Also if d(v, u) > 0, one can deduce that d(v, u) < d(v, u) which is a contradiction. Therefore u = v.

Theorem 2.2. Let (X, d) be a ssd-q-sd-metric space that satisfies (r - w.3). Let A and B be two weakly compatible selfmappings of (X, d) such that

(1) $d(Ax, Ay) \leq \phi(\max\{d(Bx, By), d(Ax, By), d(Bx, Ax)\}) \forall x, y \in X;$

(2) A and B satisfies $(r - E A - H_E)$. If AX or BX is r-closed, then A and B have a unique common fixed point

Proof. From (2), there exists a sequence (x_n) in X such that $\lim_{n\to\infty} d(Ax_n, t) = \lim_{n\to\infty} d(Bx_n, t) = \lim_{n\to\infty} d(Bx_n, Ax_n) = 0$. Since BX is r-closed or AX is r-closed, then $t \in BX$ or $t \in AX$. Thus there exists $u \in X$ such that Bu = t. Now, we prove that Au = Bu. If $Au \neq Bu$, then from (rw3), $\lim_{n\to\infty} d(Ax_n, Bu) = \alpha > 0$. Thus for $0 < \epsilon < \alpha$, there exists $n_0(\epsilon) \in N$ such that $\forall n \ge n_0(\epsilon)$, $| d(Ax_n, Bu) - \alpha | < \epsilon, i.e., \alpha - \epsilon < d(Ax_n, Bu) < \epsilon + \alpha$. Thus $\forall n \ge n_0(\epsilon)$,

$$d(Ax_n, Au) \leq \phi(\max\{d(Bx_n, Bu), d(Ax_n, Bu), d(Bx_n, Ax_n)\}) < \max\{d(Bx_n, Bu), d(Ax_n, Bu), d(Bx_n, Ax_n)\}$$

Letting $n \to \infty$ we have $\lim_{n\to\infty} d(Ax_n, Au) = 0$. So from (rw3), Au = Bu. The weak compatibility of A and B implies that ABu = BAu and then AAu = ABu = BAu = BBu. Let us show that Au is a common fixed of A and B. Suppose that $AAu \neq Au$, then $d(AAu, Au) \neq 0$ or $d(Au, AAu) \neq 0$. First, if $d(AAu, Au) \neq 0$, then

$$\begin{aligned} d(AAu, Au) &\leq \phi(\max\{d(BAu, Bu), d(AAu, Bu), d(BAu, AAu)\}) = \phi(d(AAu, Au)) \\ &< d(AAu, Au), \end{aligned}$$

which is a contradiction. Therefore Au = AAu = BAu = BBu. Second if $d(Au, AAu) \neq 0$, then

$$d(Au, AAu) \leq \phi(\max\{d(Bu, BAu), d(Au, BAu), d(Bu, Au)\}) = \phi(d(Au, AAu))$$

< $d(Au, AAu),$

which is a contradiction. Therefore Au = AAu = BAu. Hence Au is a common fixed of A and B. Suppose u and v are two fixed points of A and B and $u \neq v$. Then d(u, v) > 0 or d(v, u) > 0. If d(u, v) > 0, then

$$d(u, v) = d(Au, Av) \le \phi(\max\{d(Bu, Bv), d(Au, Bv), d(Bu, Au)\} = \phi(d(u, v)) < d(u, v),$$

which is a contradiction. The same is obtained if d(v, u) > 0. Therefore u = v.

Conclusion. Since any symmetric space is ssd-q-s-d-metric space and the conditions in Theorem 2.1 [1] implies the conditions in Theorem 2.1 or in Theorem 2.2, then Theorem 2.1 [1] is obtained as a corollary of Theorem 2.1 or Theorem 2.2.

Acknowledgments. The authors thank *Prof. Dr. Rus* (Universitatea Babes-Bolyai Din Cluj-Napoca) for useful comments and suggestions.

References

- M. Aamri and D. El Moutawakil, Common Fixed Points Under Contractive Conditions In Symmetric Spaces, Applied Mathematics 3(2003), 156-162.
- [2] P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Engin, Vol. 51. No. 12/s. (2000) 3-7.
- [3] Pawel Waszkiewicz, Quantitative Continuous Domains, Ph. D. Thesis. The University of Birmingham, (2002).

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, AL-AZHAR UNIVERSITY, ASSIUT, EGYPT

*Department of Mathematics, Faculty of Science, Minia University, Minia, Egypt

E-mail address: a_h _soliman@yahoo.com