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Abstract. Let ẋ = f(t, x) be a smooth differential equation in R×Rn and M be an
s–compact invariant set in R×Rn. Assume the existence of a smooth invariant set Φ
in R×Rn containing M such that M is uniformly asymptotically stable with respect
to the perturbations lying on Φ. We analyze the influence of the stability properties of
Φ “near M” on the unconditional stability properties of M . A comparison with some
classical results concerning the autonomous or the periodic case is given.

1. Introduction. Denote by ‖ · ‖ a norm in Rn and by ρ the induced distance. Let C
be a nonempy set in Rn and for a > 0 let Bn(C, a) = {x ∈ Rn : ρ(x,C) < a}, Bn[C, a] =
{x ∈ Rn : ρ(x,C) ≤ a}, Sn(C, a) = {x ∈ Rn : ρ(x,C) = a}. Consider a set A in R × Rn.
We say that A is s–nonempty if for any t ∈ R the section A(t) = {x ∈ Rn : (t, x) ∈ A} is
nonempty. We say that A has a s–bounded diameter if A is s–nonempty and there exists a
constant λ > 0 such that diamA(t) < λ for all t ∈ R. If A is s–nonempty and there exists
a compact set Q in Rn such that A(t) ⊆ Q for all t ∈ R, then A is said to be s–bounded.
In this case the intersection of all these sets Q will be denoted by Q�(A). If A is s–bounded
and each A(t) is compact, we say that A is s–compact. When the mapping t → A(t) is
ω–periodic for some ω > 0 or in particular t–independent, we say that A is ω–periodic or
t–independent respectively.

Consider the system of differential equations

ẋ = f(t, x), (̇) =
d

dt
(1.1)

where f ∈ C(R×Rn,Rn) and f satisfies conditions ensuring the uniqueness of the solutions.
Moreover f is supposed such that (1.1) admits an invariant s–compact set M in R × Rn.
For any (t0, x0) ∈ R × Rn let us denote by x(t, t0, x0) the solution through (t0, x0) and
by J+(t0, x0), J−(t0, x0) its maximal interval of existence in the future and in the past
respectively.

Let A be any s–nonempty invariant set in R×Rn. The stability concepts of A are known
and derived from the usual concepts concerning the stability of a single trajectory. For
instance A is said to be: (i) stable if for any t0 in R and ε > 0 there exists δ = δ(t0, ε) > 0
such that ρ(x0, A(t0)) < δ implies ρ(x(t, t0, x0), A(t)) < ε for any t ∈ J+(t0, x0); (ii)
attracting if for any t0 in R there exists µ = µ(t0) > 0 for which ρ(x0, A(t0)) < µ implies
J+(t0, x0) = [t0, +∞) and ρ(x(t, t0, x0), A(t)) → 0 as t → +∞. We only notice that as
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in the case of a single trajectory if A has a s–bounded diameter (in particular if A is s–
compact), the stability of A is equivalent to the following condition: for any t0 in R and
ε > 0 there exists δ = δ(t0, ε) > 0 such that ρ(x0, A(t0)) < δ implies J+(t0, x0) = [t0, +∞)
and ρ(x(t, t0, x0), A(t)) < ε for any t ≥ t0. When A is t–independent, A(t) ≡ N , it is
customary to replace A by N and then look at the stability properties of A as the stability
properties of a set in Rn.

Suppose now the existence of an invariant set Φ in R×Rn containing M and satisfying
the two conditions: (a) Φ is the kernel of a function G ∈ C(R × Rn,Rp), p ≥ 1; (b) M is
uniformly asymptotically stable on Φ, that is for perturbations (t0, x0) ∈ Φ. Without any
restriction we can clearly assume Φ = kerF , with F ∈ C(R × Rn,R+). The set of these
functions F will be denoted by (h)Φ. If F ∈ (h)Φ may be chosen to be a first integral of
(1.1), then for this F we will write F ∈ (H)Φ.

The scope of the present paper is an analysis of the unconditional stability of M . The
results show that the stability properties of M appear to be correlated to the stability
properties of Φ “near M” in an appropriate sense (see Definition 2.1). Precisely we find
that for f smooth the stability (the asymptotic stability) of Φ near M implies the stability
(the asymptotic stability) of M in each of the following cases: (u) (H)Φ is nonempty; (v)
Φ is t–independent and satisfies some regularity conditions; (w) Φ is a manifold z = g(t, y)
with (y, z) = x, and g smooth (Section 3).

The case in which f and M are both ω–periodic in t for some constant ω > 0 will be
specified as the periodic case (as the autonomous case if f and M are both t–independent).
In the periodic case the above results are invertible. In other words in the periodic case if
Φ satisfies (u) or (v) or (w), then Φ and M have the same stability properties: M is stable
(asymptotically stable) if and only if Φ is stable (asymptotically stable) near M (Section
4).

It is useful to compare these latter results with some classical results (Liapunov [4],
Pliss [5], Kelley [3]). In [3] M = R× c, where c is an equilibrium, or the orbit of a periodic
solution, or a periodic surface. Moreover (1.1) is autonomous and (suitably modified outside
of a neighborhood of c) admits in Rn an invariant center manifold Ψ containing c and
exponentially asymptotically stable near c. In terms of Ψ the results in [3] may be stated
as follows: the (unconditional) stability properties of c are completely determined by the
stability properties of c on Ψ; precisely if c is stable (asymptotically stable, unstable) on
Ψ, then c is stable (asymptotically stable, unstable). If c is asymptotically stable on Ψ,
the asymptotic stability of c follows immediately from our results with Φ = R × Ψ and
M = R×c (Section 4). Similarly it may be treated the known result (see for instance Chow
and Hale [2]) concerning the asymptotic stability problem of a ω–periodic solution x(t) to a
nonautonomous ω–periodic differential system. In this case Φ and M are ω–periodic subsets
of R×Rn and M = {(t, x) : t ∈ R, x = x(t)}. It has to be noticed that for the asymptotic
stability of c, the exponential character in [3] of the asymptotic stability of Ψ near c does
not play any role. This has been the motivation to analyze in the general case the influence
that the stability properties of Φ near M have on the corresponding unconditional stability
properties of M . However, we do not have discussed the extendibility to our general setup
of the result in [3] relative to the case that c is nonasymptotically stable on Ψ. We only
remark that for this extension the assumption that Φ is exponentially asymptotically stable
near M cannot be in general avoided (Section 4).

In Sections 3 and 4 some simple applications of our results are given. More significant
applications, especially to the bifurcation theory from equilibrium into s–compact sets, will
be provided in forthcoming papers.
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2. Preliminaries. We begin by giving some definitions concerning a function F ∈ C(R×
Rn,R+) such that the set A = kerF is invariant and contains M .

Definition 2.1 For any γ > 0 let I[M, γ] = {(t, x) : t ∈ R, x ∈ Bn[M(t), γ]}. Then we
will say that A has a stability property near M if there exists γ > 0 such that the property
is satisfied with respect to the perturbations (t0, x0) ∈ I[M, γ]. For instance A is said to
be: (i) stable near M if there exists γ > 0 such that for any t0 ∈ R and ε > 0 one may
find δ = δ(t0, ε) > 0 with the property that x0 ∈ Bn[M(t0), γ] and ρ(x0, A(t0)) < δ imply
ρ(x(t, t0, x0), A(t)) < ε for any t ∈ J+(t0, x0); (ii) attracting near M if there exists γ > 0
such that for any t0 ∈ R one may find µ = µ(t0) > 0 for which x0 ∈ Bn[M(t0), γ] and
ρ(x0, A(t0)) < µ imply J+(t0, x0) = [t0, +∞) and ρ(x(t, t0, x0), A(t)) → 0 as t → +∞.
Similarly one may define the other stability properties of A near M .

Remark 2.1 Since M is contained in A, and then ρ(x0, A(t0)) ≤ ρ(x0, M(t0)) for any
(t0, x0) ∈ R × Rn, the uniform attractivity of A near M may be defined as follows: There
exists σ > 0 such that t0 ∈ R and x0 ∈ Bn[M(t0), σ] implies that x(t, t0, x0) exists for all
t ≥ t0 and satisfies ρ(x(t, t0, x0), A(t)) → 0 as t → +∞ , uniformly in (t0, x0).

Definition 2.2 The function F is said to be A–positive definite near M if for some γ > 0
and for any t0 ∈ R, α > 0 there exists β = β(t0, α) > 0 such that if t ∈ (t0, +∞),
x ∈ Bn[Q�(M), γ], and ρ(x,A(t)) ≥ α, then F (t, x) ≥ β.

We observe that because of the continuity of F we have that if the above β(t0, α) exists
for a fixed t0, it exists for any t0 and for t′0 > t0 one may assume β(t′0, α) = β(t0, α). If
A(t) ≡ M(t) ≡ N , we have Q�(M) = N and this definition reduces to the usual concept
of positive definitiveness of F with respect to N . We also need a weaker definitiveness
property which involves the solutions of (1.1). For γ > 0, t0 ∈ R, consider the following set

Π(t0, γ) = {(t, x) : t ≥ t0, x ∈ Bn[M(t), γ], t0 ∈ J−(t, x), x(t0, t, x) ∈ Bn[M(t0), γ]}.

Definition 2.3 The function F is said to be weakly A–positive definite near M (with respect
to (1.1)) if for some γ > 0 and for any t0 ∈ R, α > 0 there exists β = β(t0, α) > 0 such
that if (t, x) ∈ Π(t0, γ) and ρ(x,A(t)) ≥ α then F (t, x) ≥ β.

Remark 2.2 If M is t–independent, M(t) ≡ N , then we have

Π(t0, γ) = {(t, x) : x ∈ Bn[N, γ], t ∈ P (t0, x, γ)},

with
P (t0, x, γ) = {t ≥ t0 : t0 ∈ J−(t, x), x(t0, t, x) ∈ Bn[N, γ]}.

When F is a first integral, the weak A–positive definitiveness of F is connected to the
stability of A near M . Precisely the following result holds:

Lemma 2.1 Assume that F is a first integral of (1.1). Then:

(i) If A is stable near M , then F is weakly A–positive definite near M .

(ii) Assume that A(t) ≡ M(t) ≡ N . Then M is stable if and only if there exists γ > 0 such
that F is weakly A–positive definite near M .
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Proof. (i) For some fixed γ > 0 and for any t0 ∈ R, α > 0 there exists η = η(t0, α) > 0
such that if x0 is in Bn[M(t0), γ] and ρ(x0, A(t0)) < η then ρ(x(t, t0, x0), A(t)) < α for
t ≥ t0. For fixed t0 let us consider the function F (t0, ·). One has F (t0, x0) > 0 for any
x0 /∈ A(t0) and F (t0, x0) = 0 for x0 ∈ A(t0). By setting

β(t0, α) = min {F (t0, x0) : x0 ∈ Bn[M(t0), γ], ρ(x0, A(t0)) ≥ η(t0, α)},

we easily obtain

x0 ∈ Bn[M(t0), γ], F (t0, x0) < β(t0, α) imply ρ(x(t, t0, x0), A(t)) < α ∀t ∈ J+(t0, x0).
(2.1)

Given any (t, x) ∈ Π(t0, γ), let x0 = x(t0, t, x). By definition x0 ∈ Bn[M(t0), γ]. Hence
from (2.1) it follows

ρ(x,A(t)) ≥ α =⇒ F (t0, x(t0, t, x)) ≥ β(t0, α).

In conclusion, since F (t, x) = F (t0, x(t0, t, x)) we have that if

(t, x) ∈ Π(t0, γ) and ρ(x,A(t)) ≥ α,

then F (t, x) ≥ β(t0, α). The proof of (i) is complete.
(ii) Since now M = A, necessity follows from (i). Then it remains only to prove sufficiency.
This is obtained by the arguments which are used when F is positive definite in the usual
sense. Indeed, choose any t0 in R and ε ∈ (0, γ). Taking into account Definition 2.3 and
Remark 2.2, for any x ∈ Sn(N, ε) and t ∈ P (t0, x, ε) one has F (t, x) ≥ β(t0, ε) > 0. Let
δ = δ(t0, ε) ∈ (0, ε) be such that if x ∈ Bn(N, δ) then F (t0, x) < β(t0, ε). Suppose the
existence of x0 in Bn(N, δ) and t� > t0 such that ρ(x(t, t0, x0), N) < ε for t ∈ [t0, t�) and
ρ(x(t�, t0, x0), N) = ε. Then necessarily one has t� ∈ P (t0, x(t�, t0, x0), ε) and

β(t0, ε) > F (t0, x0) = F (t�, x(t�, t0, x0)) ≥ β(t0, ε),

a contradiction. This completes the proof of (ii).

3. Stability results. In the sequel we will denote by L(x) the class of functions g :
R × Rn → Rn, (t, x) → g(t, x), which are locally Lipschitzian with respect to x. We write
g ∈ Lu(x) if for every compact set K ⊂ Rn there exists a constant L(K) > 0 such that
‖g(t, x) − g(t, y)‖ ≤ L(K)‖x − y‖ for all x, y in K and t in R, and write g ∈ Lub(x) if in
addition for every compact set K ⊂ Rn g is bounded in R×K. Trivially g ∈ Lu(x) implies
g ∈ Lub(x) if there exists at least one x ∈ Rn such that the fonction g(·, x) is bounded. We
assume from now on the existence of an invariant set Φ containing M which is the kernel
of a function G ∈ C(R × Rn,Rp), p ≥ 1, and satisfies the condition that M is uniformly
asymptotically stable for perturbations (x0, y0) ∈ Φ. As in Section 1, we will denote by
(h)Φ the set of functions F ∈ C(R × Rn,R+) such that Φ = kerF , and write F ∈ (H)Φ if
F ∈ (h)Φ and F is a first integral. Often a further condition on Φ will be assumed. This
will be one of the following:

(u) The set (H)Φ is nonempty;

(v) Φ = R × kerϕ, where ϕ ∈ C1(Rn,Rq), 1 ≤ q ≤ n, and rank[∂ϕ/∂x] = q for any
x ∈ kerϕ;
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(w) Φ = {(t, y, z) : z = g(t, y)}, with (y, z) = x, y ∈ Rm, z ∈ Rn−m, and g ∈ C1,
g ∈ L′

ub(y).

Here by g ∈ L′
ub(y) we want to mean that g belongs to Lub(y) together with its partial

derivatives.

Lemma 3.1 Suppose that f of (1.1) is continuous and f ∈ Lu(x). Assume the existence
of a function F ∈ (H)Φ which is weakly Φ–positive definite near M . Then M is stable.

Proof. The proof is very similar to that given in [6] in the case f(t, 0) ≡ 0 and M =
R×{0}. Choose γ > 0 as in Definition 2.3, with A = Φ. For any ε > 0 let δ = δ(ε) ∈ (0, ε)
be such that if t0 ∈ R, y0 ∈ Φ(t0), and ρ(y0, M(t0)) < δ, then ρ(x(t, t0, y0),M(t)) <
ε for all t ≥ t0. Let σ ∈ (0, δ(γ)) be chosen with the condition that for any ν > 0
there exists a number T = T (ν) > 0 such that if y0 ∈ Φ(t0) and ρ(y0, M(t0)) < σ, then
ρ(x(t, t0, y0),M(t)) < ν for all t ≥ t0 + T .

Given any ε ∈ (0, σ), let δ1 = (1/2)δ(ε/2), τ = T ((1/4)δ(ε)) and δ̄ = (1/4)δ(ε)exp(−kτ)
where k = L(Bn[Q�(M), γ]). By Definition 2.3 there exists β = β(t0, δ̄) such that one has:

(t, x) ∈ Π(t0, γ) and F (t, x) < β imply ρ(x,Φ(t)) < δ̄.(3.1)

Fix t0 in R and assume x0 ∈ Bn(M(t0), δ1), F (t0, x0) < β. Since δ1 < γ and then trivially
(t0, x0) ∈ Π(t0, γ), from (3.1) it follows ρ(x0, Φ(t0)) < δ̄. Hence there exists y0 ∈ Φ(t0) with
‖x0 − y0‖ < δ̄. Thus we obtain

ρ(y0, M(t0)) ≤ ‖x0 − y0‖ + ρ(x0, M(t0)) ≤ 3
2
δ1 < δ(

ε

2
),

and then in [t0, t0 + τ ] we have

ρ(x(t, t0, y0),M(t)) <
ε

2
with ρ(x(t0 + τ, t0, y0),M(t0 + τ)) <

δ1

2
.

It follows

ρ(x(t, t0, x0),M(t)) ≤ ‖x(t, t0, x0) − x(t, t0, y0)‖ + ρ(x(t, t0, y0),M(t))

≤ ‖x0 − y0‖exp(kτ) + ρ(x(t, t0, y0),M(t)) <
δ1

2
+

ε

2
< ε(3.2)

for all t in [t0, t0 + τ ] and

ρ(x(t0 + τ, t0, x0),M(t0 + τ)) <
δ1

2
+

δ1

2
= δ1.(3.3)

Setting now t1 = t0 + τ and x1 = x(t1, t0, x0), and taking into account that F is a first
integral, we then recognize that x1 ∈ Bn(M(t1), δ1) and F (t1, x1) < β. Since (t1, x1) ∈
Π(t0, γ), by virtue of (3.1) we still have ρ(x1, Φ(t1)) < δ̄. Therefore the result expressed by
(3.2), (3.3) holds with (t0, x0) replaced by (t1, x1), and so on. In other words for each ε ∈
(0, σ) and t0 ∈ R there exist two positive numbers δ1 and β such that if x0 ∈ Bn(M(t0), δ1)
and F (t0, x0) < β, then

ρ(x(t, t0, x0),M(t)) < ε ∀t ≥ t0.(3.4)

Let now λ = λ(t0, ε) ∈ (0, δ1) be such that F (t0, x) < β for any x ∈ Bn(M(t0), λ). Then
(3.4) holds for each x0 in Bn(M(t0), λ) and this proves that M is stable.
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Theorem 3.1 Suppose that f of (1.1) is continuous and f ∈ Lu(x). Assume (u). Then, if
Φ is stable near M , M is stable.

Proof. Let F ∈ (H)Φ. By Lemma 2.1 we see that F is weakly positive definite near M .
Hence the result follows from Lemma 3.1.

Theorem 3.2 Suppose that f of (1.1) is continuous and f ∈ Lub(x). Assume (v). Then,
if Φ is stable near M , M is stable.

Proof. The set Φ is t–independent and its invariance is equivalent to the invariance of
kerϕ. Let B, B′ be two bounded open sets in Rn with clB ⊂ B′ and Q�(M) ⊂ B. Consider
the system

ẋ = f(t, x)α(x),(3.5)

where α ∈ C∞(Rn, [0, 1]) is such that α(x) = 1 for x ∈ B and α(x) = 0 for x /∈ B′. The
r.h.s. of (3.5) is in Lub(x) and then in Lu(x). Because of the local character of our stability
problem, system (3.5) may replace the original system (1.1). We denote by (x(3.5)(t, t0, x0))
the solution of (3.5) through (t0, x0). This solution clearly exists in all R. The proof is
divided into two steps.
(a) Let us prove that Φ = R × kerϕ is invariant even for (3.5). Along the solutions of
(3.5) we have

[
dϕ

dt
]
(3.5)

= α(x)〈∂ϕ

∂x
(x), f(t, x)〉 = 0 for any t ∈ R, x ∈ kerϕ,(3.6)

because kerϕ is invariant under (1.1). To complete the proof of the above invariance, set

u = ϕ(x)(3.7)

and consider any (t0, x0) ∈ Φ. Equation (3.7) is satisfied for x = x0 and u = 0. More-
over the determinant of at least one of the q × q matrices contained in [∂ϕ/∂x](x0) is
different from zero. Suppose for instance that this matrix is that contained in the first
q columns of [∂ϕ/∂x](x0) and set x = (y, z), x0 = (y0, z0), with y = (x1, x2, ..., xq),
z = (xq+1, xq+2, ..., xn). Then (3.7) defines in a neighborhood N of z = z0, u = 0, an
implicit function y = y(z, u), y(z0, 0) = y0. Hence in N equation (3.5) in terms of z, u may
be written as

ż = Z(t, z, u)
(3.8)

u̇ = U(t, z, u),

where U(t, z, 0) ≡ 0 by virtue of (3.6), (3.7). Let (z(t), u(t)) be the solution of (3.8) such
that z(t0) = z0, u(t0) = 0. As well as this solution exists in N , one has u(t) ≡ 0. Indeed
(3.8)2 is satisfied by assuming u(t) ≡ 0, while (3.8)1 with u = 0 admits one and only one
solution such that z(t0) = z0. Hence, since (t0, x0) is any point on Φ, the invariance of Φ
under (3.5) is clearly proved.
(b) Since any solution of (3.5) exists for all t in R, we may define a function G ∈ C(R×
Rn,R+) by assuming

G(t, x) ≡ ‖ϕ(x(3.5)(0, t, x))‖.
Let us prove that kerG = Φ. Indeed (t, x) ∈ kerG implies (0, x0) ∈ Φ, with x0 =
x(3.5)(0, t, x). The invariance of Φ under (3.5) then implies (t, x) ∈ Φ. Similarly one can
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prove that (t, x) ∈ Φ implies (t, x) ∈ kerG. Since G is a first integral for (3.5), for this
equation we have G ∈ (H)Φ. Moreover Φ is stable near M even for (3.5). Hence from
Theorem 3.1 it follows that M is stable for (3.5) and then stable for the original equation
(1.1). The proof is complete.

Theorem 3.3 Suppose that f of (1.1) is continuous and f ∈ Lub(x). Assume (w). Then,
if Φ is stable near M , M is stable.

Proof. Letting u = z − g(t, y), system (1.1) in terms of the variables y, u becomes

ẏ = Y (t, y, u)
(3.9)

u̇ = U(t, y, u),

where Y, U are continuous functions such that Y, U ∈ Lub(y, u) and U(t, y, 0) ≡ 0, while Φ
becomes the set Φ̃ = {(t, y, u) : u = 0} and M becomes a set M̃ . The problem of stability
of M for (1.1) is equivalent to the problem of stability of M̃ for (3.9). Setting ϕ(y, u) ≡ u
we have Φ̃ = R × kerϕ and clearly ϕ satisfies for (3.9) the conditions in Theorem 3.2 with
q = n − m. Since Φ̃ is uniformly stable near M̃ , the result follows from Theorem 3.2. The
proof is complete.

Thus we find in each of the above theorems that the stability of Φ near M implies the
stability of M provided Φ satisfies (u) or (v) or (w). Conversely, the uniform stability of
M implies in general (that is without any of the conditions (u) or (v) or (w)) the uniform
stability of Φ near M . Precisely the following theorem holds:

Theorem 3.4 Suppose that f of (1.1) is continuous and f ∈ Lu(x). If M is uniformly
stable, then Φ is uniformly stable near M .

Proof. For any ε > 0 let δ = δ(ε) > 0 be the number associated with ε in the definition
of the uniform stability of M . Let σ > 0 be such that ρ(x(t, t0, y0),M(t)) → 0 as t →
+∞, uniformly in {(t0, y0) : t0 ∈ R, y0 ∈ Φ(t0) ∩ Bn[M(t0), σ]}. Thus if t0 ∈ R and
y0 ∈ Φ(t0) ∩ Bn[M(t0), δ(σ)], then: (i) ρ(x(t, t0, y0),M(t)) < σ ∀t ≥ t0; (ii) for any
ν > 0, there exists T = T (ν) > 0 such that ρ(x(t, t0, y0),M(t)) < ν ∀t ≥ t0 + T . Let
γ ∈ (0, δ(σ)/2). Fixing now ε ∈ (0, γ) and ν ∈ (0, δ), choose a number η = η(ε) > 0 with
the condition

0 < η <
δ − ν

exp(kT )
, k = L(Bn[Q�(M), σ]).

Let t0 ∈ R. Assume x0 ∈ Bn[M(t0), γ] and y0 ∈ Φ(t0) such that ρ(x0, Φ(t0)) < η and
‖x0 − y0‖ < η. Since

‖x(t, t0, x0) − x(t, t0, y0)‖ < ηexp(kT ) < δ − ν < ε ∀t ∈ [t0, t0 + T ],(3.10)

and Φ is an invariant set, one has

ρ(x(t, t0, x0),Φ(t)) < ε ∀t ∈ [t0, t0 + T ].(3.11)

We also have ρ(y0, M(t0)) ≤ ‖x0 − y0‖ + ρ(x0, M(t0)) < η + γ < 2γ < δ(σ) from which it
follows by virtue of (ii)

ρ(x(t, t0, y0),M(t)) < ν ∀t ≤ t0 + T.(3.12)
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Consequently by virtue of (3.10), (3.12),

ρ(x(t0 + T, t0, x0),M(t0 + T ))
≤ ‖x(t0 + T, t0, x0) − x(t0 + T, t0, y0)‖ + ρ(x(t0 + T, t0, y0),M(t0 + T )) < δ(ε).

Thus ρ(x(t, t0, x0),M(t)) < ε for all t ≥ t0 + T . Hence, since M(t) ⊆ Φ(t) for every t, the
inequality (3.11) is satisfied even for t > t0 + T . In conclusion for each ε ∈ (0, γ) there
exists η > 0 such that

(t0, x0) ∈ R×Bn[M(t0), γ] and ρ(x0, Φ(t0)) < η imply ρ(x(t, t0, x0),Φ(t)) < ε ∀t ≥ t0.

The proof is complete.

We wish now to analyze the connections between the asymptotic stability of Φ near M
and the unconditional asymptotic stability of M . We begin by a statement which is the
corresponding of Theorem 3.1 for asymptotic stability.

Theorem 3.5 Suppose that f of (1.1) is continuous and f ∈ Lu(x). Assume (u). Then, if
Φ is asymptotically stable near M , M is asymptotically stable.

Proof. Since (H)Φ is nonempty and Φ is stable near M , M is stable by virtue of Theorem
3.1. It remains only to prove that M is attracting. Denote by δ(ε) > 0 the number associated
with (ε) in the definition of the uniform stability of M on Φ. Since M is uniformly attracting
on Φ, for some fixed σ > 0 and for every ν > 0 there exists T = T (ν) > 0 such that
ρ(x(t, t0, y0),M(t)) < ν

2 for all t0 in R, y0 ∈ Bn[M(t0), δ(σ)] ∩ Φ(t0), and t ≥ t0 + T . For
every ν ∈ (0, δ(σ)) choose ν′ = ν′(ν) with the condition

0 < ν′ <
ν

2exp(kT )
, k = L(Bn[Q�(M), σ]).(3.13)

Let γ ∈ (0, δ(σ)/2) and µ(t0) ∈ (0, γ) be chosen as in Definition 2.1(ii) for A = Φ. Then
for every ν ∈ (0, δ(σ)) there exists T ′ = T ′(t0, x0, ν) > 0 such that x0 ∈ Bn[M(t0), γ] and
ρ(x0, Φ(t0)) < µ(t0) imply

J+(t0, x0) = [t0, +∞) and ρ(x(t, t0, x0),Φ(t)) < ν′ ∀t ≥ t0 + T ′.(3.14)

Given any x0 ∈ Bn(M(t0), µ(t0)), we will now prove that

ρ(x(τ0 + T, τ0, ξ0),M(τ0 + T )) < ν,(3.15)

where τ0 ≥ t0 + T ′, ξ0 = x(τ0, t0, x0). Since M(t0) ⊆ Φ(t0) one has ρ(x0, Φ(t0)) < µ(t0)
and then, by virtue of (3.14), ρ(ξ0, Φ(τ0)) < ν′. Hence there exists y0 ∈ Φ(τ0) such that
‖ξ0 − y0‖ < ν′. Since

ρ(y0, M(τ0)) ≤ ‖ξ0 − y0‖ + ρ(ξ0, M(τ0)) < ν′ + γ <
δ(σ)

2
+

δ(σ)
2

= δ(σ)

and

ρ(x(τ0 + T, τ0, ξ0),M(τ0 + T )) ≤ ‖x(τ0 + T, τ0, ξ0) − x(τ0 + T, τ0, y0)‖
+ ρ(x(τ0 + T, τ0, y0),M(τ0 + T )),

it follows
ρ(x(τ0 + T, τ0, ξ0),M(τ0 + T )) < ν′exp(kT ) +

ν

2
<

ν

2
+

ν

2
= ν.

Therefore (3.15) is proved. Because of the arbitrarity of τ0 ≥ t0 + T ′ we then obtain

ρ(x(t, t0, x0),M(t)) < ν ∀t0 ∈ R, ∀x0 ∈ Bn(M(t0), µ(t0)), ∀t ≥ t0 + T (ν) + T ′(t0, x0, ν).

This completes the proof.
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By using Theorem 3.5 and the same arguments employed in the proofs of Theorems 3.2,
3.3 we easily find corresponding statements for asymptotic stability:

Theorem 3.6 Suppose that f of (1.1) is continuous and f ∈ Lub(x). Assume (v) or (w).
Then, if Φ is asymptotically stable near M , M is asymptotically stable.

For asymptotic stability the converse Theorem 3.4 may be formulated as follows:

Theorem 3.7 Suppose that f of (1.1) is continuous and f ∈ Lu(x). If M is uniformly
asymptotically stable, then Φ is uniformly asymptotically stable near M .

Proof. By virtue of Theorem 3.4 the set Φ is uniformly stable near M . Let ε > 0 and
denote by δ(ε), δ′(ε) the positive numbers respectively associated with this property and
with the uniform stability of M . Let γ > 0 and σ ∈ [0, min(δ(γ), δ′(γ))] be such that
t0 ∈ R and x0 ∈ Bn[M(t0), σ] imply that ρ(x(t, t0, x0),M(t)) → 0 as t → +∞ , uniformly
in (t0, x0). Since M(t) ⊆ Φ(t) for any t in R, then we have

ρ(x(t, t0, x0),Φ(t)) → 0 as t → +∞,

uniformly in t0 ∈ R, x0 ∈ Bn[M(t0), σ]. Thus Φ is uniformly attractive near M (see Remark
2.1). The proof is complete.

Remark 3.1 Obviously all the above results are still true if for the differential system and
in any definition or assumption the t–axis is replaced by an interval (τ, +∞), τ ∈ R.

We conclude the section with a simple example which depicts the situation in Remark 3.1.
Consider in (τ, +∞) × R2, τ ∈ R, the system:

ẏ = −2y − [y − exp(−2t)]y2 + yz2

(3.16)
ż = −z3(1 + y2).

Since t is varying in an interval bounded from below, the r.h.s. of (3.16) is in Lub(y, z). The
set Φ = {(t, y, z) : t ∈ (τ, +∞), y ∈ R, z = 0} is invariant and the y–part of the solutions
lying on Φ are the solutions of the equation

ẏ = −2y − [y − exp(−2t)]y2.(3.17)

Consider the two solutions y = 0 and y = exp(−2t) of equation (3.17). These solutions
are both uniformly asymptotically stable. The property is evident for y = 0. To prove the
statement for y = exp(−2t), set v = y − exp(−2t). From (3.17) it follows

v̇ = −[2 + exp(−4t)]v − 2exp(−2t)v2 − v3,(3.18)

and then the assert. Relatively to system (3.16), let

M = {(t, y, z) : t ∈ (τ, +∞), y = 0, z = 0},
M ′ = {(t, y, z) : t ∈ (τ, +∞), y = exp(−2t), z = 0},
M� = {(t, y, z) : t ∈ (τ, +∞), y ∈ [0, exp(−2t)], z = 0}.

These three sets are all s–compact invariant subsets of Φ (the s–compactness of M ′ and
M� is ensured by the restriction assumed on t). Furthermore these sets are uniformly
asymptotically stable on Φ. Consider any (y0, z0) ∈ R2 and t0 ∈ (τ, +∞) and let (y(t),z(t))
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be the corresponding solution. By using (3.16)2 ve find that |z(t)| ≤ |z0| as well as the
solution (y(t),z(t)) exists. By Theorem 3.3 and Remark 3.1, the sets M , M ′ and M� are
stable. Because these sets are all s–compact, by assuming (y0, z0) sufficiently close to M or
to M ′ or to M�, the solution (y(t),z(t)) exists for all t ≥ t0. Hence, by using again (3.16)2,
we recognize that Φ is asymptotically stable near each one of these sets. Therefore by
Theorem 3.6 and Remark 3.1 we see that these sets are all (unconditionally) asymptotically
stable.

4. The periodic case. Let us assume that f of (1.1) is continuous and f ∈ L(x). The
case in which f and M are both ω–periodic in t for the same constant ω > 0 will be specified
as the periodic case. In particular f or M or both may be t–independent. In the periodic
case one has: (i) f ∈ Lub(x); (ii) the stability and the asymptotic stability of M when
occurring are always uniform. Consequently under the conditions (u) or (v) or (w) even
the stability or the asymptotic stability of Φ near M when occuring are uniform. Indeed
if any of these conditions is satisfied and Φ is stable near M , M is uniformly stable and
then Φ is uniformly stable near M by virtue of Theorem 3.4. Similarly one may proceed
for asymptotic stability by the aid of Theorem 3.7. By Theorems 3.4, 3.7, it follows that
in the periodic case Theorems 3.1, 3.2, 3.3 and Theorems 3.5, 3.6 are invertible. In other
words the following theorem holds:

Theorem 4.1 Suppose that f of (1.1) is continuous and f ∈ L(x). Moreover assume that f
and M are both ω–periodic in t for the same constant ω > 0. Then, under the conditions (u)
or (v) or (w), M is stable (asymptotically stable) if and only if Φ is stable (asymptotically
stable) near M .

The results in [3] for the part concerning the problem of asymptotic stability may be ob-
tained by using Theorem 4.1. For simplicity we consider the case that 0 is an equilibrium
and M = R × {0}. Consider the autonomous system

ẏ = Ay + u(y, z),
(4.1)

ż = Bz + v(y, z),

y ∈ Rm, z ∈ Rn−m. Here A and B are square matrices, the eigenvalues of A have zero real
parts and the eigenvalues of B have negative real parts. Finally u and v are C2 functions
which vanish together with their derivatives at the origin. It is known (see for instance [1],
[2]) the existence of a differential system S associated to (4.1) having the same regularity
of (4.1) and such that: (1) S coincides with (4.1) for ‖y‖ < δ, δ > 0 small; (2) S admits
an invariant manifold in R × Rn, Φ = {(t, y, z) : t ∈ R, y ∈ Rm, z = g(y)} with g ∈ C2,
g(0) = 0. Moreover Φ is exponentially asymptotically stable for S near M = R × {0}.
The set Φ� = {(t, y, z) : t ∈ R, ‖y‖ < δ, z = g(y)} is locally invariant for (4.1). Clearly
the unconditional stability properties of M and the stability properties of M on Φ� are
preserved when the original system (4.1) is replaced by S and Φ� is replaced by Φ. Thus
the result in [3] relative to the asymptotic stability of equilibrium, and expressed in terms
of Φ� and system (4.1), may be stated in terms of the invariant manifold Φ and system S
by saying that for S the asymptotic stability of M on Φ implies the asymptotic stability of
M . Therefore the result is an immediate consequence of Theorem 4.1.

Similarly it may be treated the asymptotic stability problem of a nonautonomous ω–
periodic solution x(t) to a ω–periodic differential system. In this case Φ and M are ω–
periodic subsets of R × Rn and M = {(t, x) : t ∈ R, x = x(t)}.
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We emphasize that in our general results the asymptotic stability of Φ is not supposed
to be of exponential type. However we do not have treated here the case that the stability
of M on Φ is nonasymptotic. About this case we only observe that the assumption that Φ
is exponentially asymptotically stable cannot be in general avoided. This is trivially shown
by the following counterexample. Consider the system

ẏ = yz2

(4.2)
ż = −z3,

with y, z ∈ R. Clearly any solution of (4.2) exists for all t ∈ R. Hence, by using (4.2)2, we
see that the set Φ = {(t, y, z) : t ∈ R, y ∈ R, z = 0} is an asymptotically (but nonexponen-
tially) stable invariant manifold in R × R2. With respect to the solutions lying on Φ the
origin is stable but nonasymptotically. We prove that the origin is unstable. Indeed (4.2)1
by means of (4.2)2 may be written as

ẏ =
yz2

0

1 + 2z2
0(t − t0)

from which it follows
y(t, t0, y0, z0) = y0[1 + 2z2

0(t − t0)]
1
2 .

Thus y(t, t0, y0, z0) → +∞ as t → +∞ for any choice of y0 �= 0, z0 �= 0. Hence our assert
follows.

We conclude by a simple example concerning the case that M does not consist of a single
trajectory. Consider the following system:

ẏ = ycost + 3yexp(sint) − 3y2 + yz

(4.3)
ż = −λz3(1 + y2),

were t, y, z, λ ∈ R and λ is a constant. The set Φ = {(t, y, z) : t ∈ R, y ∈ R, z = 0} is
invariant. The y–part of the solutions lying on Φ are the solutions of the equation

ẏ = [cost + 3exp(sint)]y − 3y2.(4.4)

Equation (4.4) admits the equilibrium position y = 0 and the periodic solution y =
exp(sint). Clearly: (i) y = 0 is asymptotically stable on the left and unstable on the
right; (ii) the solution y = exp(sint) is asymptotically stable. To prove (ii) it is sufficient
to show that setting v = y − exp(sint) from (4.4) it follows

v̇ = −[3exp(sint) − cost]v − 3v2.

Relatively to system (4.3) , consider the two sets

M� = {(t, y, z) : t ∈ R, y = exp(sint), z = 0},
M = {(t, y, z) : t ∈ R, y ∈ [0, exp(sint)], z = 0}.

These two sets are both s–compact invariant subsets of Φ and asymptotically stable on
Φ. Moreover, by using the same arguments employed for the example in Section 3, we see
that Φ is asymptotically stable (stable, unstable) near M� and near M if λ > 0 (λ = 0,
λ < 0). Then by using Theorem 4.1 we see that M� and M are both (unconditionally)
asymptotically stable for λ > 0, stable for λ = 0, and unstable for λ < 0.
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