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COMPARISON AMONG SOME OPTIMAL POLICIES
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Abstract. This paper proposes three policies we can consider with unconstrained
additional orders: (i) a policy in which additional orders are placed if the stock level
is negative at the fixed investigative time; (ii) a policy without additional orders; (iii)
a policy in which additional orders are always placed at the investigative time. We
will refer to the optimality in each of these policies and clarify the order among the
optimal quantities related to initial orderings and additional ones.

1 Introduction In a stochastic inventory model shortage of products happens if initial
order quantity is less than total demands. To stave off these losses, we can consider ad-
ditional ordering within the quantity of shortages. In inventory studies [3], [4], and [6]
having already investigated, additional orders take place so as to replenish a part of or all
shortages. Removing a constrained condition to order within the quantity of shortages, we
can hope for cutting down total costs when the cost charged by holding stock is cheaper
than one charged by being sold out.

In this article we suggest a new inventory model with unconstrained quantity of ad-
ditional orders and explore the optimal solution for minimizing the expected total cost.
Section 2 describes a stochastic inventory model permitted unconstrained additional or-
ders. Section 3 explains three policies which we can consider with respect to additional
orders and gives their expected total cost functions. We are interested in investigating the
order among the optimal quantities related to initial orderings and additional ones. Section
4 shows our main results.

2 Model

2.1 Model Description We examine a stochastic inventory model with shortages and
unconstrained additional ordering for a single planning period and a single commodity. Our
model has the following assumptions: Let t be the length of a planning period. Orderings
take place at the beginning of a period and, if it needs, at fixed investigative time t0, 0 ≤
t0 ≤ t. We assume that the initial stock level is equal to zero without loss of generality. The
ordered commodities are received with zero lead-time. Then the stock level after the initial
ordering reaches S units to be depleted to meet demands for customers. The stock gradually
decreases by meeting their demands for a planning period and its level is investigated at
time t0. If the initial order quantity is less than the cumulative quantity of demands in
[0, t0), the quantity s may be additionally ordered because of shortages. The quantity of an
additional order, s, is exhausted to be backlogged for shortages in the interval [0, t0) and,
if it is received more than the quantity of shortages, to meet future demands. The number
of times of additional orderings is restricted to once only. There is no stock carried over to
the next period.
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The following are the relevant costs. Let c1 and c2 be the unit ordering cost charged in
the initial orders and the one charged in the additional orders, respectively. The commodi-
ties are sold at the selling price r per unit. The holding cost per unit time is h for each unit
on-hand inventory carried over. On the other hand, the penalty cost of p per unit per unit
time is incurred for shortage.

The quantity of total demands during the planning period is a random variable, which is
denoted by B. The value b is given as one of values in random variable B. The cumulative
demand at any time T is given as a function, denoted by g(T/t)b, of the quantity of total
demands b, where g(x) is a continuous increasing function of x defined on 0 ≤ x ≤ 1 such
that g(0) = 0 and g(1) = 1. Let G(x) =

∫ x

0 g(y)dy.
We give the following assumptions for parameters in relation to costs and quantity.⎧⎨

⎩
S ≥ 0, s ≥ 0, b ≥ 0
h > 0, p > 0, 0 < c1 ≤ c2 ≤ r
(1 − t0/t)p + r − c2 ≥ 0

The inequalities in the first and second rows are given under natural assumptions and the
last implies that the additional ordering is more efficient than no ordering.

2.2 Objective When a manager has to choose his policy from the following policies at
the beginning of a planning period, he needs to compare the expected total costs for three
policies:

• Policy (S) in which additional orders are placed by s if the stock level is negative at
time t0

• Policy (N) without additional orders

• Policy (A) in which additional orders are always placed by s at time t0

The objective of this paper is to investigate properties for the optimal ordering quantity
and the optimal additional ordering quantity under the minimization of the expected total
costs, and to examine the relation of the optimal orders in these policies.

3 Problem Formulation This section identifies the properties of three policies. For the
purpose, we begin with calculating total cost functions in some cases and their expectations.

3.1 Policy (S) Policy (S) can be expressed by the model described in Section 2.1. In this
model we observe five inventory situations for the different values of demand b as follows.

Case (I): If the quantity of total demands is less than or equal to the initial order
quantity, that is, demand b satisfies 0 ≤ b ≤ S, S units ordered at time 0 meet all demands
in a planning period. The stock level is always nonnegative at any time T, 0 ≤ T ≤ t.
Therefore this situation does not have additional orders.

Case (II): We next consider the situation in which the quantity of total demands b is
given by S < b ≤ S/g(t0/t). The stock level keeps positive at investigate time t0, and the
additional ordering does not take place. Because of excess demands, however, the stock
level drops down into the situation of shortages between times t0 and t.

Case (III): When the quantity of total demands b satisfies b > (S +s)/g(t0/t), shortages
at investigative time t0 cause to s units of additional orders. The commodities replenished
by additional ordering backlog a part of excess demands having appeared before time t0.
Because the additional quantity s is fewer rather than cumulative quantity of shortages at
time t0, the stock level after that time always remains negative.
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Case (IV): Given the quantity of total demands b satisfying max{S/g(t0/t), S + s} <
b ≤ (S + s)/g(t0/t), shortages occur by time t0 and s units of additional orders are made
at that time. These additional commodities backlog all of excess demands having appeared
before time t0. Moreover, the stock level goes up to be positive after receiving additional
commodities. The stock level, however, drops down into the situation of shortages by the
end of the planning period because of sequential consumption again.

Case (V): At last, we consider the situation in which the quantity of total demands b
is given by S/g(t0/t) < b ≤ S + s. Shortages by investigative time t0 lead to s units of
additional orders at that time. As the additional order quantity s is much enough, the
additional commodities backlog all of excess demands having appeared before time t0 and
meet all demands from time t0 to the end of the planning period. Therefore, the stock level
always keeps to be nonnegative after additional ordering. Of course, this case exsits only if
it holds that S/g(t0/t) < S + s.

In these cases the stock levels at any time T , denoted by Q(T ), can be expressed by

Q(T ) = S − g(T/t)b, 0 ≤ T ≤ t for Cases (I), (II)(1)

and

Q(T ) =
{

S − g(T/t)b, 0 ≤ T < t0
S + s − g(T/t)b, t0 ≤ T ≤ t

for Cases (III), (IV), and (V).(2)

Letting C(S, s; b) and Ci(S, s; b), i = 1, . . . , 5 be the total cost function for a given b and
ones corresponding to each of inventory situations described above, respectively, we obtain
the following equation:

C(S, s; b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C1(S, s; b), for 0 ≤ b ≤ S
C2(S, s; b), for S < b ≤ S/g(t0/t)
C3(S, s; b), for b > (S + s)/g(t0/t)
C4(S, s; b), for max{S/g(t0/t), S + s} < b ≤ (S + s)/g(t0/t)
C5(S, s; b), for S/g(t0/t) < b ≤ S + s,

which is given by

C1(S, s; b) = [c1 + h]S − [hG(1) + r]b,
C2(S, s; b) = [c1 − p − r]S + (h + p){Sg−1(S/b) − bG(g−1(S/b))} + pbG(1),
C3(S, s; b) = [c1 − p − r]S + (h + p){Sg−1(S/b) − bG(g−1(S/b))} + pbG(1)

+[c2 − r − p(1 − t0/t)]s,
C4(S, s; b) = [c1 − p − r]S + (h + p)[S{g−1(S/b) + g−1((S + s)/b) − t0/t}

+sg−1((S + s)/b) − b{G(g−1(S/b)) + G(g−1((S + s)/b)) − G(t0/t)}]
+pbG(1) − [ht0/t + p + r − c2]s,

C5(S, s; b) = [c1 − pt0/t + h(1 − t0/t)]S + [h(1 − t0/t) + c2]s − [hG(1) + r]b
+(h + p)[Sg−1(S/b) + b{G(t0/t) − G(g−1(S/b))}].

See Appendix for these details on calculations.
Letting E[C(S, s; B)] denote the expectation of the total cost C(S, s; b) with respect to

b, we can represent it as

E[C(S, s; B)] =
{

E1[C(S, s; B)], S + s ≤ S/g(t0/t)
E2[C(S, s; B)], S + s > S/g(t0/t),
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which is calculated by

E1[C(S, s; B)] =
∫ S

0

C1(S, s; b)φ(b)db +
∫ S/g(t0/t)

S

C2(S, s; b)φ(b)db

+
∫ (S+s)/g(t0/t)

S/g(t0/t)

C4(S, s; b)φ(b)db +
∫ ∞

(S+s)/g(t0/t)

C3(S, s; b)φ(b)db,

E2[C(S, s; B)] =
∫ S

0

C1(S, s; b)φ(b)db +
∫ S/g(t0/t)

S

C2(S, s; b)φ(b)db

+
∫ S+s

S/g(t0/t)

C5(S, s; b)φ(b)db +
∫ (S+s)/g(t0/t)

S+s

C4(S, s; b)φ(b)db

+
∫ ∞

(S+s)/g(t0/t)

C3(S, s; b)φ(b)db.

Then the following result is obtained.
Proposition 1. In Policy (S) there exists the unique optimal solution s = s∗ satisfying
∂
∂sE[C(S, s; B)] = 0 among (0,∞) and the optimal solution S = S∗ exists among [0,∞).
Proof. For a fixed S, E1[C(S, s; B)] and E2[C(S, s; B)] are continuous convex functions
with respect to s. They satisfy

∂

∂s
E1[C(S, s; B)]

∣∣∣∣
s=0

< 0 and lim
s→+∞

∂

∂s
E2[C(S, s; B)] > 0.

Also, E1[C(S, s; B)] and E2[C(S, s; B)] are continuous functions of S for a fixed s, however
their derivatives are not continuous on the line S + s = s/g(t0/t). Furthermore, the value
of E2[C(S, s; B)] is bounded at S = 0 and it tends to +∞ as S → +∞. These statements
give the result of Proposition 1.

3.2 Policy (N) We next consider another policy, say Policy (N), without additional
ordering at time t0. That is, a single ordering just takes place at the beginning of a
planning period. Since Policy (N) is constructed by Cases (I) and (II) having described in
the preceding subsection, the expected total cost in this policy, denoted by E3[C(S, s; B)],
is calculated as

E[C(S, s; B)] = E3[C(S, s; B)]

=
∫ S

0

C1(S, s; b)φ(b)db +
∫ ∞

S

C2(S, s; b)φ(b)db.

The convexity of function E3[C(S, s; B)] gives the following proposition.
Proposition 2. In Policy (N) there uniquely exists the optimal solution S = S0 satisfying
d

dS E[C(S, s; B)] = 0 among (0,∞).

3.3 Policy (A) At last, we discuss the other policy, say Policy (A), in which additional
ordering always takes place whether the stock level is nonpositive or not at time t0. Thus,
two orderings certainly take place: the initial ordering at time 0 and the additional ordering
at investigative time t0. In Policy (A), there appear the following situations instead of Cases
(I), (II) of Policy (S).

Case (I’): Consider the situation in which the quantity of total demands b satisfies
0 ≤ b ≤ min{S/g(t0/t), S + s}. Although the stock level keeps to be nonnegative at time
t0, the additional ordering takes place at that time. The total of quantity of initial ordering
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and additional ordering, S + s, meets all of demands for a planning period. The stock level
always keeps to be nonnegative.

Case (II’): We next consider the situation in which the quantity of total demands b
satisfies S + s < b ≤ S/g(t0/t). The additional ordering takes place at time t0. Since the
quantity S + s is not as much as the total demands, the stock level drops down into the
situation of shortages before the end of a planning period. Of course, this case exists only
if it holds that S + s < S/g(t0/t).

For Cases (I’) and (II’), the stock level at any time T can be expressed by Eq.(2). The
total costs corresponding to these situations, Ci(S, s; b), i = 1′, 2′, are given as follows:

C1′(S, s; b) = [c1 + h]S + [h(1 − t0/t) + c2]s − [hG(1) + r]b,
C2′(S, s; b) = [c1 − p − r]S + [c2 − ht0/t − p − r]s + (h + p)(S + s)g−1((S + s)/b)

+{pG(1) − (h + p)G(g−1((S + s)/b))}b.

Then the expectation of the total cost C(S, s; b) for Policy (A), E[C(S, s; B)], is calcu-
lated by

E[C(S, s; B)] =
{

E4[C(S, s; B)], S + s ≤ S/g(t0/t)
E5[C(S, s; B)], S + s > S/g(t0/t),

where

E4[C(S, s; B)] =
∫ S+s

0

C1′(S, s; b)φ(b)db +
∫ S/g(t0/t)

S+s

C2′(S, s; b)φ(b)db

+
∫ (S+s)/g(t0/t)

S/g(t0/t)

C4(S, s; b)φ(b)db +
∫ ∞

(S+s)/g(t0/t)

C3(S, s; b)φ(b)db,

E5[C(S, s; B)] =
∫ S/g(t0/t)

0

C1′(S, s; b)φ(b)db +
∫ S+s

S/g(t0/t)

C5(S, s; b)φ(b)db

+
∫ (S+s)/g(t0/t)

S+s

C4(S, s; b)φ(b)db +
∫ ∞

(S+s)/g(t0/t)

C3(S, s; b)φ(b)db.

Then the following result is obtained.
Proposition 3. In Policy (A), the unique optimal solutions S = S1 and s = s1 exist
among [0,∞), respectively.
Proof. These equations lead us to the equality E4[C(S, s; B)] = E5[C(S, s; B)]. This
function is continuous and convex in S for a fixed s. Also, it is continuous convex function
of s for a fixed S. Furthermore, it is bounded at S = 0 and s = 0, and it satisfies

lim
S→+∞

∂

∂S
E4[C(S, s; B)] > 0, and lim

s→+∞
∂

∂s
E5[C(S, s; B)] > 0.

These statements give the result of Propostion 3.

4 Relation of ordering size With this background in place, we can establish our main
results. This section investigates the relation of ordering size among three types of policies.
First we show the relation between the optimal additional ordering quantities s∗ of Policy
(S) and s1 of Policy (A).
Theorem 1. Suppose that S units of initial ordering are made on both policies (S) and
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(A). Then we obtain the following results.
(i) If s∗ satisfies S + s∗ ≤ S/g(t0/t), then

∂

∂s
E4[C(S, s; B)]

∣∣∣∣
s=s∗

⎧⎨
⎩

< 0 ⇒ s∗ < s1

= 0 ⇒ s∗ = s1

> 0 ⇒ s∗ > s1

(ii) If s∗ satisfies S + s∗ > S/g(t0/t), then

s1 ≤ s∗.

Proof. From Proposition 1, Policy (S) uniquely has an optimal solution s∗ on functions
E1[C(S, s; B)] or E2[C(S, s; B)]. We now consider two ranges with respect to s∗ for a fixed
S:

(i) Suppose that it follows S + s∗ ≤ S/g(t0/t). Then the optimal solution s∗ satisfies
∂

∂s
E1[C(S, s; B)]

∣∣∣∣
s=s∗

= 0. Substituting the value s∗ for the s-partial derivative of function

E4[C(S, s; B)], we obtain

∂

∂s
E4[C(S, s; B)]

∣∣∣∣
s=s∗

= [(1 − t0/t)h + c2]
∫ S+s∗

0

φ(b)db

− [(1 − t0/t) p + r − c2]
∫ S/g(t0/t)

S+s∗
φ(b)db

+(h + p)
∫ S/g(t0/t)

S+s∗

{
g−1 ((S + s∗)/b) − t0/t

}
φ(b)db.

Thus from the optimality of s1, the former of Theorem 1 is derived.
(ii) Suppose that it follows S + s∗ > S/g(t0/t). Then the optimal solution s∗ satisfies

that the partial derivative
∂

∂s
E2[C(S, s; B)] is equal to zero. By substituting this value for

the s-partial derivative of function E5[C(S, s; B)] and using the statement of Proposition 3,
we have

∂

∂s
E5[C(S, s; B)]

∣∣∣∣
s=s∗

= [(1 − t0/t) h + c2]
∫ S/g(t0/t)

0

φ(b)db ≥ 0.

This completes the proof of Theorem 1.
Next we show the relation among the optimal initial order quantities S0 of Policy (N),

S∗ of Policy (S), and S1 of Policy (A).
Theorem 2. Suppose that s units of additional ordering are made on both policies (S)
and (A). For a given s, we define

A(S∗, s) = r

∫ S∗+s

S∗
φ(b)db + (h + p)

∫ S∗+s

S∗

{
1 − g−1 (S∗/b)

}
φ(b)db

+(h + p)
∫ S∗/g(t0/t)

S∗+s

{
g−1 ((S∗ + s)/b) − g−1 (S∗/b)

}
φ(b)db,

B(S∗, s) = (h + p)
∫ (S∗+s)/g(t0/t)

S∗/g(t0/t)

{
g−1 ((S∗ + s)/b) − t0

t

}
φ(b)db,

M(S∗, s) = {(h + p)
∫ g−1((S∗+s)/S∗g(t0/t))

t0/t

{S∗ + s − g(x)S∗/g(t0/t)} dx

− [(1 − t0/t) p + r − c2] s}φ (S∗/g(t0/t)) /g(t0/t)
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Then we obtain the following results.
(I) For S∗ = 0:

0 = S∗ ≤ S1 ≤ S0

(II) For S∗ �= 0:
(1) If S∗ and s satisfy S∗ + s ≤ S∗/g(t0/t), then

(i) M(S∗, s) ≤ −A(S∗, s) ⇒ S∗ ≤ S1 ≤ S0,
(ii) −A(S∗, s) < M(S∗, s) < B(S∗, s) ⇒ S1 < S∗ < S0,
(iii) M(S∗, s) ≥ B(S∗, s) ⇒ S1 ≤ S0 ≤ S∗,

(2) If S∗ and s satisty S∗ + s > S∗/g(t0/t), then

S1 ≤ S∗ ≤ S0

Proof. We first show the relation between the optimal order quantities S0 of Policy (N)
and S1 of Policy (A).

(a) Suppose that S0+s ≤ S0/g(t0/t) for a fixed s. Then the optimal solution S0 satisfies

that the derivative
d

dS
E3[C(S, s; B)] is equal to zero. By substituting the value S0 for the

S-partial derivative of function E4[C(S, s; B)] and arranging it, we obtain

∂

∂S
E4[C(S, s; B)]

∣∣∣∣
S=S0

≥ 0.

(b) Suppose that S0+s > S0/g(t0/t) for given s. As in above discriptions, we substitute

the equation
d

dS
E3[C(S, s; B)] = 0 for the S-partial derivative of function E4[C(S, s; B)].

Then we have

∂

∂S
E4[C(S, s; B)]

∣∣∣∣
S=S0

≥ 0.

Therefore, it follows S1 ≤ S0 for any given s.
Next, we show the relation between S∗ and S1, that is the initial order quantity of Policy

(S) and one of Policy (A).
(a) Suppose that S∗ + s ≤ S∗/g(t0/t) for a fixed s. We assume that there exists an

optimal solution S∗ satisfying
∂

∂S
E1[C(S, s; B)] = 0. Substituting this value for the S-

partial derivative of function E4[C(S, s; B)], we obtain

∂

∂S
E4[C(S, s; B)]

∣∣∣∣
S=S∗

= r

∫ S∗+s

S∗
φ(b)db + (h + p)

∫ S∗+s

S∗

{
1 − g−1 (S∗/b)

}
φ(b)db

+(h + p)
∫ S∗/g(t0/t)

S∗+s

{
g−1 ((S∗ + s)/b) − g−1 (S∗/b)

}
φ(b)db

+

{
(h + p)

∫ g−1((S∗+s)/S∗g(t0/t))

t0/t

{S∗ + s − g(x)S∗/g(t0/t)} dx

− [(1 − t0/t) p + r − c2] s}φ (S∗/g(t0/t)) /g(t0/t).(3)

Then it leads to the following results.

∂

∂S
E4[C(S, s; B)]

∣∣∣∣
S=S∗

⎧⎨
⎩

< 0 ⇒ S∗ < S1

= 0 ⇒ S∗ = S1

> 0 ⇒ S∗ > S1.
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If the last term of Eq.(3) is non-negative, it always holds S1 ≤ S∗.
(b) Suppose that S∗ + s > S∗/g(t0/t) for a fixed s. We assume that there exists an

optimal solution S∗ satisfying
∂

∂S
E2[C(S, s; B)] = 0. Substituting this value for the S-

partial derivative of function E4[C(S, s; B)], we obtain

∂

∂S
E4[C(S, s; B)]

∣∣∣∣
S=S∗

≥ 0.

Therefore it holds S1 ≤ S∗.
At last, we show the relation between S∗ and S0, that is the initial order quantity of

Policy (S) and one of Policy (N).
(a) Suppose that S∗ + s ≤ S∗/g(t0/t) for a fixed s. We assume that there exists

an optimal solution S∗ satisfying
∂

∂S
E1[C(S, s; B)] = 0. Substituting this value for the

derivative of function E3[C(S, s; B)], we obtain

d

dS
E3[C(S, s; B)]

∣∣∣∣
S=S∗

= −(h + p)
∫ (S∗+s)/g(t0/t)

S∗/g(t0/t)

{
g−1 ((S∗ + s)/b) − t0

t

}
φ(b)db

+

{
(h + p)

∫ g−1((S∗+s)/S∗g(t0/t))

t0/t

{S∗ + s − g(x)S∗/g(t0/t)} dx

− [(1 − t0/t) p + r − c2] s}φ (S∗/g(t0/t)) /g(t0/t).(4)

Then we obtain the following results.

d

dS
E3[C(S, s; B)]

∣∣∣∣
S=S∗

⎧⎨
⎩

< 0 ⇒ S∗ < S0

= 0 ⇒ S∗ = S0

> 0 ⇒ S∗ > S0.

If the last term of Eq.(4) is non-positive, it follows S∗ ≤ S0.
(b) Suppose that S∗ + s > S∗/g(t0/t) for a fixed s. We assume that there exists

an optimal solution S∗ satisfying
∂

∂S
E2[C(S, s; B)] = 0. Substituting this value for the

derivative of function E3[C(S, s; B)], we obtain

d

dS
E3[C(S, s; B)]

∣∣∣∣
S=S∗

≤ 0,

which implies S∗ ≤ S0.
These statements completes the proof of Theorem 2.

5 Concluding Remarks This paper suggested a stochastic inventory model with uncon-
strained additional orders and provided a mathematical formulation. We explained three
policies we can consider for additional orders and searched on the optimality in three con-
siderable policies. It showed that each of the optimal quantities of orderings without initial
one of Policy (S) has uniqueness. We also clarified the order among the optimal quantities
related to initial orderings and additional ones.

Appendix. It is indispensable for our study to calculate the expectation of the total
costs. We give the total cost functions for all cases mentioned in Section 3 as follows.
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Case (I): In Case (I) of Policy (S), the stock level Q(T ) is given by Eq.(1). Then the
average quantity I1 is calculated by

I1 =
1
t

∫ t

0

{S − g(T/t)b}dT

= S − G(1).

Because this situation has no shortage, the average shortage quantity I2 is equal to zero.
The initial order quantity is S and the number of commodities sold is b. Hence the total
cost C1(S, s; b) is given by

C1(S, s; b) = c1S + hI1 + pI2 − rb
= [c1 + h]S − [hG(1) + r]b.

Case (II): The average quantity I1 and the average shortage quantity I2 are calculated
by

I1 =
1
t

∫ tg−1(S/b)

0

{S − g(T/t)b}dT

= Sg−1(S/b) − bG(g−1(S/b))(5)

and

I2 =
1
t

∫ t

tg−1(S/b)

{g(T/t)b − S}dT

= b[G(1) − G(g−1(S/b))] − S[1 − g−1(S/b)].

The initial order quantity is S and the number of commodities sold is S. Hence the total
cost C2(S, s; b) is given by

C2(S, s; b) = c1S + hI1 + pI2 − rS
= [c1 − p − r]S + (h + p){Sg−1(S/b) − bG(g−1(S/b))} + pbG(1).

Case (III): The average quantity I1 is given by Eq.(5). On the other hand, the average
shortage quantity I2 is calculated by

I2 =
1
t

∫ t0

tg−1(S/b)

{g(T/t)b − S}dT +
1
t

∫ t

t0

{g(T/t)b − S − s}dT

= Sg−1(S/b) − G(g−1(S/b))b + G(1)b − S −
(

1 − t0
t

)
s.

The initial order quantity is S and the number of commodities sold is S + s. Hence the
total cost C3(S, s; b) is given by

C3(S, s; b) = c1S + hI1 + pI2 − r(S + s)
= [c1 − p − r]S + (h + p){Sg−1(S/b) − bG(g−1(S/b))} + pbG(1)

+[c2 − r − p(1 − t0/t)]s.

Case (IV): Under the stock level Q(T ) represented by Eq.(2), the average quantity I1

and the average shortage quantity I2 are calculated by

I1 =
1
t

∫ tg−1(S/b)

0

{S − g(T/t)b}dT +
1
t

∫ tg−1((S+s)/b)

t0

{S + s − g(T/t)b}dT
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= {g−1(S/b) + g−1((S + s)/b) − t0/t}S + {g−1((S + s)/b) − t0/t}s
−{G(g−1(S/b)) + G(g−1((S + s)/b)) − G(t0/t)}b

and

I2 =
1
t

∫ t0

tg−1(S/b)

{g(T/t)b − S}dT +
1
t

∫ t

tg−1((S+s)/b)

{g(T/t)b − S − s}dT

= {g−1(S/b) + g−1((S + s)/b) − 1 − t0/t}S − {1 − g−1((S + s)/b)}s
+{G(1) + G(t0/t) − G(g−1((S + s)/b)) − G(g−1(S/b))}b.

The initial ordering and the additional ordering are S units and s units, respectively. The
number of commodities sold is S + s. Hence the total cost C4(S, s; b) is given by

C4(S, s; b) = c1S + hI1 + pI2 − r(S + s) + c2s
= [c1 − p − r]S + (h + p)[S{g−1(S/b) + g−1((S + s)/b) − t0/t}

+sg−1((S + s)/b) − b{G(g−1(S/b)) + G(g−1((S + s)/b)) − G(t0/t)}]
+pbG(1) − [ht0/t + p + r − c2]s.

Case (V): The average quantity I1 and the average shortage quantity I2 are calculated
by

I1 =
1
t

∫ tg−1(S/b)

0

{S − g(T/t)b}dT +
1
t

∫ t

t0

{S + s − g(T/t)b}dT

= Sg−1(S/b) − bG(g−1(S/b)) + (1 − t0/t)(S + s) − {G(1) − G(t0/t)}b

and

I2 =
1
t

∫ t0

tg−1(S/b)

{g(T/t)b − S}dT

= {g−1(S/b) − t0/t}S + {G(t0/t) − G(g−1(S/b))}b.

The initial ordering and the additional ordering are S units and s units, respectively. The
number of commodities sold is b. Hence the total cost C5(S, s; b) is given by

C5(S, s; b) = c1S + hI1 + pI2 + c2s − rb
= [c1 − pt0/t + h(1 − t0/t)]S + [h(1 − t0/t) + c2]s − [hG(1) + r]b

+(h + p)[Sg−1(S/b) + b{G(t0/t) − G(g−1(S/b))}].

Case (I’): In Case (I’) of Policy (A), the stock level Q(T ) is given by Eq.(2). Then the
average quantity I1 is calculated by

I1 =
1
t

∫ t0

0

{S − g(T/t)b}dT +
1
t

∫ t

t0

{S + s − g(T/t)b}dT

= S − G(1)b + (1 − t0/t)s.

Because this situation has no shortage, the average shortage quantity I2 is equal to zero.
The initial ordering and the additional ordering are S units and s units, respectively. The
number of commodities sold is b. Hence the total cost C1′(S, s; b) is given by

C1′(S, s; b) = c1S + hI1 + pI2 − rb + c2s
= [c1 + h]S + [h(1 − t0/t) + c2]s − [hG(1) + r]b.
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Case (II’): The average quantity I1 and the average shortage quantity I2 are calculated
by

I1 =
1
t

∫ t0

0

{S − g(T/t)b}dT +
1
t

∫ g−1((S+s)/b)t

t0

{S + s − g(T/t)b}dT

= Sg−1((S + s)/b) − G(g−1((S + s)/b))b + {g−1((S + s)/b) − t0/t}s

and

I2 =
1
t

∫ t

g−1((S+s)/b)t

{g(T/t)b − S − s}dT

= (g−1((S + s)/b) − 1)(S + s) + (G(1) − G(g−1((S + s)/b)))b.

The initial ordering and the additional ordering are S units and s units, respectively. The
number of commodities sold is S + s. Hence the total cost C2′(S, s; b) is given by

C2′(S, s; b) = c1S + hI1 + pI2 − r(S + s) + c2s
= [c1 − p − r]S + [c2 − ht0/t − p − r]s + (h + p)(S + s)g−1((S + s)/b)

+{pG(1) − (h + p)G(g−1((S + s)/b))}b.
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