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UNIQUENESS OF MEROMORPHIC FUNCTIONS ∗
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Abstract. In this paper, we deal with the uniqueness problems on meromorphic
functions concerning differential polynomials that share a small meromorphic function.
Moreover, we improve some former results.

1 Introduction and Results In this paper, we assume all the functions are non-
constant meromorphic functions in the complex plane C. We shall use the standard no-
tations of Nevanlinna theory of meromorphic functions such as T (r, f),m(r, f), N(r, f),
N(r, f), S(r, f), etc. · · · .

It is well known that if f and g share four distinct values CM, then f is a Möbius
transformation of g. Recently, corresponding to one famous question of Hayman [1], many
uniqueness theorems for some certain types of differential polynomials sharing one value
were obtained (See [2, 3, 4, 5]).

In 2001, M. Fang and W. Hong proved:

Theorem A [3]. Let f and g be two transcendental entire functions, n ≥ 11 an integer.
If fn(f − 1)f ′ and gn(g − 1)g′ share 1 CM, then f(z) ≡ g(z).

Afterwards, W. Lin and H. X. Yi improved Theorem A and obtained the following
results:

Theorem B [4]. Let f and g be two transcendental entire functions, n ≥ 7 an integer. If
fn(f − 1)f ′ and gn(g − 1)g′ share 1 CM, then f(z) ≡ g(z).

Theorem C [4]. Let f and g be two transcendental meromorphic functions, n ≥ 12
an integer. If fn(f − 1)f ′ and gn(g − 1)g′ share 1 CM, then either f(z) ≡ g(z) or f =
{(n+2)h(1−hn+1)}/{(n+1)(1−hn+2)} and g = {(n+2)(1−hn+1)}/{(n+1)(1−hn+2)},
where h is a nonconstant meromorphic function.

Recently, W. Lin and H. X. Yi extended Theorem B and Theorem C concerning to
fix-points (See [5]).

In this paper, some uniqueness problems of meromorphic functions are investigated,
which are improvement and complementary results for the above theorems.

Throughout this paper, we use the following notations:
Let E(f) = {z|f(z) = 0}, where a zero of f with multiplicity m is counted m times.

If E(f − α) = E(g − α), then we say that f and g share α CM, especially, we say that
f(z) and g(z) have the same fixed-points if α(z) = z. Let Ek)(f) = {z| zeros of f(z)
with multiplicity at most k}, where a zero with multiplicity m(≤ k) is counted m times.
Obviously, if E(f) = E(g), then Ek)(f) = Ek)(g), for k = 1, 2, · · · .

Let f be a meromorphic function. We denote by nk)(r, f) the number of poles of f
with multiplicity at most k in |z| < r counting its multiplicities. We denote by n(k(r, f)
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the number of poles of f with multiplicity at least k in |z| < r counting its multiplicities.
We denote by n2(r, f) the number of poles of f in |z| < r, where a simple pole is counted
once and a multiple pole is counted two times. We denote by n(r, f) as the counting
function of poles of f counted with ignoring multiplicities. Nk)(r, f), N(k(r, f), N2(r, f),
Nk)(r, f), N (k(r, f), Nk)(r, 1/(f−a)), N(k(r, 1/(f−a)), N2(r, 1/(f−a)) and so on are defined
in the usual way, respectively.

Let f, g and α be meromorphic functions. Let Ψf (z) = fn+1(z)(fm(z) + a) + α(z),
where a is a constant. We note that

Ψ′
f (z) = (n + m + 1){fn(z)(fm(z) + a1)f ′(z) + α1(z)},

where a1 = (n + 1)a/(n + m + 1) and α1(z) = α′(z)/(n + m + 1).

Theorem 1. Let f and g be two transcendental entire functions, α be a meromorphic
function such that T (r, α1) = o(T (r, f) + T (r, g)) and α1 �≡ 0,∞. Let Ψf (z) be as above,
and a be a nonzero constant. Suppose that m, n and k are positive integers such that
(k − 1)n > 7 + 3m + k(5 + m). If Ek)(Ψ′

f ) = Ek)(Ψ′
g), then f(z) ≡ g(z).

Remark 1. Under the condition of Theorem 1, letting k → ∞, we obtain that f(z) ≡ g(z)
if E(Ψ′

f ) = E(Ψ′
g) and n > 5+m. Obviously, Theorem 1 improves Theorem A and Theorem

B.

Theorem 2. Let f and g be two transcendental meromorphic functions, α1 be a meromor-
phic function such that T (r, α) = o(T (r, f)+T (r, g)) and α �≡ 0,∞. Let a be a nonzero con-
stant. Suppose that m, n and k are positive integers such that (k−1)n > 14+3m+k(10+m).
If Ek)(Ψ′

f ) = Ek)(Ψ′
g), then

(i) if m ≥ 2, then f(z) ≡ g(z) ;

(ii) if m = 1, either f(z) ≡ g(z) or f and g satisfy the algebraic equation R(f, g) ≡ 0,
where R(�1, �2) = (n + 1)(�n+2

1 − �n+2
2 ) − (n + 2)(�n+1

1 − �n+1
2 ).

Remark 2. Under the condition of Theorem 2, letting k → ∞, we obtain that the result of
Theorem 2 is still valid if E(Ψ′

f ) = E(Ψ′
g) and n > 10+m. Obviously, Theorem 2 improves

Theorem C.

Theorem 3. Let f and g be two transcendental meromorphic functions, α be a meromor-
phic function such that T (r, α) = o(T (r, f) + T (r, g)) and α �≡ 0,∞. Let a be a nonzero
constant. Suppose that Θ(∞, f) + Θ(∞, g) > (2/5){10 + m − n + 2(n + m + 2)/(k + 1)}
holds for positive integers m, n, k such that k ≥ 2 and n ≥ 10 + m. If Ek)(Ψ′

f ) = Ek)(Ψ′
g),

then

(i) if m ≥ 2, f(z) ≡ g(z);

(ii) if m = 1, either f(z) ≡ g(z), or f and g satisfy the algebraic equation R(f, g) ≡ 0,
where R(�1, �2) = (n + 1)(�n+2

1 − �n+2
2 ) − (n + 2)(�n+1

1 − �n+1
2 ).

As the consequence of Theorem 2 and Theorem 3, letting k → ∞, we have

Remark 3. Let f and g be two transcendental meromorphic functions, α be a meromorphic
function such that T (r, α) = o(T (r, f)+T (r, g)) and α �≡ 0,∞. Let a be a nonzero constant,
and m, n (m ≥ 2, n ≥ 10 + m) be positive integers. If E(Ψ′

f ) = E(Ψ′
g) and Θ(∞, f) > 0,

then f(z) ≡ g(z).
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Corollary. Let f and g be two transcendental meromorphic functions, α be a meromorphic
function such that T (r, α) = o(T (r, f)+T (r, g)) and α �≡ 0,∞. Let a be a nonzero constant.
Suppose that Θ(∞, f) > 2/(n + 1) holds. If E(Ψ′

f ) = E(Ψ′
g) holds for positive integers m

and n ≥ 10 + m, then f(z) ≡ g(z).

Remark 4. In the case m = 1, the following example shows that the condition of
Θ(∞, f) > 2/(n + 1) is necessary.
Example. Let

f =
(n + 2)h(hn+1 − 1)
(n + 1)(hn+2 − 1)

g =
(n + 2)(hn+1 − 1)
(n + 1)(hn+2 − 1)

,

where u = exp{(2πi)/(n+2)} and h = (u2ez−u)/(ez−1). It is easy to find E(Ψ′
f ) = E(Ψ′

g)
and Θ(∞, f) = 2/(n + 1), but f(z) �≡ g(z).

2 Lemmas For proving the theorems, we need the following lemmas.

Lemma 1 [6]. Let f(z) be a nonconstant meromorphic function, and

R(f) =
n∑

k=0

akfk
/ m∑

j=0

bjf
j

be an irreducible rational function in f with constant coefficients {ak} and {bj}, where
an �= 0 and bm �= 0. Then

T (r,R(f)) = dT (r, f) + S(r, f),

where d = max {n, m}.
Lemma 2. Let f and g be two nonconstant meromorphic functions, and α be a meromor-
phic function such that T (r, α) = o(T (r, f) + T (r, g)) and α �≡ 0,∞. Let a be a nonzero
constant, and n and m be positive integers. Set

F = fn(fm − a1)f ′, G = gn(gm − a1)g′.

If Ek)(F−α) = Ek)(G−α) and (n−6)k−m > 4, then S(r, f) and S(r, g) are equivalent, that
is, if A(r) = S(r, f), then A(r) = S(r, g), and also if A(r) = S(r, g), then A(r) = S(r, f).

Proof. By Lemma 1, we have

(n + m)T (r, f) = T (r, fn(fm + a)) + S(r, f) ≤ T (r, F ) + T (r, f ′) + S(r, f).

Therefore we have
T (r, F ) ≥ (n + m − 2)T (r, f) + S(r, f).

By the second fundamental theorem, we have

T (r, F ) ≤ N(r, F ) + N
(
r,

1
F

)
+ N

(
r,

1
F − α

)
+ S(r, F )

≤ N(r, F ) + N
(
r,

1
F

)
+ Nk)

(
r,

1
F − α

)
+ N (k+1

(
r,

1
F − α

)
+ S(r, f)

≤ N(r, F ) + N
(
r,

1
F

)
+ Nk)

(
r,

1
G − α

)
+

1
k + 1

N
(
r,

1
F − α

)
+ S(r, f)

≤ (4 + m)T (r, f) +
1

k + 1
T (r, F ) + T (r,G) + S(r, f)
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Noting that T (r,G) ≤ T (r, gn(gm − 1)) + T (r, g′) ≤ (n + m + 2)T (r, g)+ S(r, g), we deduce
that (k(n + m − 2)

k + 1
− 4 − m

)
T (r, f) ≤ (n + m + 2)T (r, g) + S(r, f) + S(r, g).

We note that k(n+m−2)/(k+1)−4−m > 0 and the conditions for f and g are symmetric.
Thus S(r, f) and S(r, g) are equivalent.

Lemma 3. Let F and G be two nonconstant meromorphic functions such that Ek)(F−1) =
Ek)(G − 1), and let

H =
(F ′′

F ′ − 2F ′

F − 1

)
−

(G′′

G′ − 2G′

G − 1

)
.

If H �≡ 0, then

1
2

{
T (r, F ) + T (r,G)

}
≤ N2(r, F ) + N2

(
r,

1
F

)
+ N2(r,G) + N2

(
r,

1
G

)

+N (k+1

(
r,

1
F − 1

)
+ N (k+1

(
r,

1
G − 1

)
+ S(r),

where T (r) = max{T (r, F ), T (r,G)
}
, S(r) = o(T (r)) (r → ∞, r �∈ E) and E is a set of

finite linear measure.

Proof. By the second fundamental theorem, we have

T (r, F ) ≤ N(r, F ) + N
(
r,

1
F

)
+ N

(
r,

1
F − 1

)
− N0

(
r,

1
F ′

)
+ S(r, F )

and
T (r,G) ≤ N(r,G) + N

(
r,

1
G

)
+ N

(
r,

1
G − 1

)
− N0

(
r,

1
G′

)
+ S(r,G),

where N0(r, 1/F ′) is the counting function of the zeros of F ′ in |z| < r that is not the zeros
of F − 1 and F . In the same way, we can define N0(r, 1/G′). Thus we have

T (r, F ) + T (r,G) ≤ N(r, F ) + N(r,G) + N
(
r,

1
F

)
+ N

(
r,

1
G

)
+ N

(
r,

1
F − 1

)

+N
(
r,

1
G − 1

)
− N0

(
r,

1
F ′

)
− N0

(
r,

1
G′

)
+ S(r). (1)

We also have

N
(
r,

1
F − 1

)
+ N

(
r,

1
G − 1

)

≤ Nk)

(
r,

1
F − 1

)
+ Nk)

(
r,

1
G − 1

)
+ N (k+1

(
r,

1
F − 1

)
+ N (k+1

(
r,

1
G − 1

)

≤ 1
2

{
N1)

(
r,

1
F − 1

)
+ Nk)

(
r,

1
F − 1

)
+ N1)

(
r,

1
G − 1

)
+ Nk)

(
r,

1
G − 1

)}

+N (k+1

(
r,

1
F − 1

)
+ N (k+1

(
r,

1
G − 1

)
.

Let z0 be a simple pole of F. By a simple calculation , we know that z0 is not a pole of
F ′′/F ′ − 2F ′/(F − 1). Let z1 be a zero of F − 1 with multiplicity t, where 1 ≤ t ≤ k.

We know also that z1 is not a pole of H , especially, z1 is a simple zero of H if k = 1. In
fact, by a simple calculation, we can prove that any common simple 1-point of F and G is
a zero of

H =
(F ′′

F ′ − 2F ′

F − 1

)
−

(G′′

G′ − 2G′

G − 1

)
.
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Let z0 be a common simple 1-point of F and G. If we expand F in a neighborhood of z0 as

F = 1 + A(z − z0) + B(z − z0)2 + D(z − z0)3 + O((z − z0)4), (A �= 0).

Then we have
F ′′

F ′ − 2F ′

F − 1
=

−1
z − z0

+ O(z − z0).

Similarly, we have
G′′

G′ − 2G′

G − 1
=

−1
z − z0

+ O(z − z0).

Thus we obtain that

H(z) =
(F

′′

F ′ − 2F
′

F − 1

)
−

(G
′′

G′ − 2G
′

G − 1

)
= O(z − z0),

that is, z0 is a zero of H .
Similarly, by a simple calculation, we can also prove that any simple pole of F is not a

pole of F
′′
/F

′ −2F
′
/(F −1), and any simple pole of G is not a pole of G

′′
/G

′ −2G
′
/(G−1).

Thus we have

N1)

(
r,

1
F − 1

)
≤ N

(
r,

1
H

)
≤ T (r,H) + S(r, F ) = N(r,H) + S(r, F )

≤ N (2(r, F ) + N (2(r,G) + N (k+1

(
r,

1
F − 1

)
+ N (k+1

(
r,

1
G − 1

)

+N0

(
r,

1
F ′

)
+ N0

(
r,

1
G′

)
+ N (2

(
r,

1
F

)
+ N (2

(
r,

1
G

)
+ S(r, F ). (2)

Similarly we have

N1)

(
r,

1
G − 1

)
≤ N (2(r, F ) + N (2(r,G) + N (k+1

(
r,

1
F − 1

)
+ N (k+1

(
r,

1
G − 1

)

+N0

(
r,

1
F ′

)
+ N0

(
r,

1
G′

)
+ N (2

(
r,

1
F

)
+ N (2

(
r,

1
G

)
+ S(r,G). (3)

By (1), (2) and (3), we have the desired inequality.

Lemma 4[7]. Let H be defined as in Lemma 3. If H ≡ 0 and

lim sup
r→∞
r∈I

N
(
r, 1/F

)
+ N

(
r, 1/G

)
+ N(r, F ) + N(r,G)

T (r)
< 1,

where I is a set of infinite linear measure, then FG ≡ 1 or F ≡ G.

3 Proof of Theorems

(I) Proof of Theorem 2.
Let

F =
fn(fm + a1)f ′

α1(z)
, G =

gn(gm + a1)g′

α1(z)
, (4)

F1 =
1

n + m + 1
fn+m+1 +

a1

n + 1
fn+1, G1 =

1
n + m + 1

gn+m+1 +
a1

n + 1
gn+1, (5)

and

H =
(F ′′

F ′ − 2F ′

F − 1

)
−

(G′′

G′ − 2G′

G − 1

)
.
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Here a1 = (n+1)a/(n+m+1) and α1 = (−α′)/(n+m+1). Then Ek)(F −1) = Ek)(G−1).
By Lemma 1 and Lemma 2, we have S(r, f) = S(r, g) (= S(r), say) and

T (r, F1) = (n + m + 1)T (r, f) + S(r, f), T (r,G1) = (n + m + 1)T (r, g) + S(r, g). (6)

Since F ′
1 = α1(z)F and G′

1 = α1(z)G, we deduce that

T (r, F1) + T (r,G1) ≤ T (r, F ) + N
(
r,

1
F1

)
− N

(
r,

1
F

)

+T (r,G) + N
(
r,

1
G1

)
− N

(
r,

1
G

)
+ S(r)

= T (r, F ) + (n + 1)N
(
r,

1
f

)
+ N

(
r,

1
fm + a

)

−nN
(
r,

1
f

)
− N

(
r,

1
fm + a1

)
− N

(
r,

1
f ′

)

+T (r,G) + (n + 1)N
(
r,

1
g

)
+ N

(
r,

1
gm + a

)

−nN
(
r,

1
g

)
− N

(
r,

1
gm + a1

)
− N

(
r,

1
g′

)
+ S(r)

= T (r, F ) + N
(
r,

1
f

)
+ N

(
r,

1
fm + a

)
− N

(
r,

1
fm + a1

)

−N
(
r,

1
f ′

)
+ T (r,G) + N

(
r,

1
g

)
+ N

(
r,

1
gm + a

)

−N
(
r,

1
gm + a1

)
− N

(
r,

1
g′

)
+ S(r). (7)

If H �≡ 0, by Lemma 3, we have

T (r, F ) + T (r,G) ≤ 2
{
N2(r, F ) + N2

(
r,

1
F

)
+ N2(r,G) + N2

(
r,

1
G

)

+N (k+1

(
r,

1
F − 1

)
+ N (k+1

(
r,

1
G − 1

)}
+ S(r). (8)

It follows from (4) that

N2(r, F ) + N2

(
r,

1
F

)
+ N2(r,G) + N2

(
r,

1
G

)

≤ 2
{
N(r, f) + N

(
r,

1
f

)}
+ N

(
r,

1
fm + a1

)
+ N

(
r,

1
f ′

)

+2
{
N(r, g) + N

(
r,

1
g

)}
+ N

(
r,

1
gm + a1

)
+ N

(
r,

1
g′

)
+ S(r). (9)
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Then we have from (6) ∼ (9)

(n + m + 1)
{
T (r, f) + T (r, g)

}
=

{
T (r, F1) + T (r,G1)

}
+ S(r)

≤ T (r, F ) + T (r,G) + N
(
r,

1
f

)
+ N

(
r,

1
g

)

+N
(
r,

1
fm + a

)
+ N

(
r,

1
gm + a

)
− N

(
r,

1
fm + a1

)

−N
(
r,

1
gm + a1

)
− N

(
r,

1
f ′

)
− N

(
r,

1
g′

)
+ S(r)

≤ 4
{
N(r, f) + N(r, g)

}
+ 5

{
N

(
r,

1
f

)
+ N

(
r,

1
g

)}

+2
{
N

(
r,

1
fm + a1

)
+ N

(
r,

1
gm + a1

)}
+ 2

{
N

(
r,

1
f ′

)
+ N

(
r,

1
g′

)}

+2
{
N (k+1

(
r,

1
F − 1

)
+ N (k+1

(
r,

1
G − 1

)}
+ N

(
r,

1
fm + a

)
+ N

(
r,

1
gm + a

)

−N
(
r,

1
fm + a1

)
− N

(
r,

1
gm + a1

)
− N

(
r,

1
f ′

)
− N

(
r,

1
g′

)
+ S(r)

≤ 4
{
N(r, f) + N(r, g)

}
+ 5

{
N

(
r,

1
f

)
+ N

(
r,

1
g

)}
+

{
N

(
r,

1
f ′

)
+ N

(
r,

1
g′

)}

+N
(
r,

1
fm + a1

)
+ N

(
r,

1
gm + a1

)
+ 2

{
N (k+1

(
r,

1
F − 1

)
+ N (k+1

(
r,

1
G − 1

)}

+N
(
r,

1
fm + a

)
+ N

(
r,

1
gm + a

)
+ S(r)

≤ 4
{
N(r, f) + N(r, g)

}
+ 5

{
N

(
r,

1
f

)
+ N

(
r,

1
g

)}

+
{
T (r, f ′) + T (r, g′)

}
+ N

(
r,

1
fm + a1

)
+ N

(
r,

1
gm + a1

)

+
2

k + 1

{
N

(
r,

1
F − 1

)
+ N

(
r,

1
G − 1

)}
+ N

(
r,

1
fm + a

)
+ N

(
r,

1
gm + a

)
+ S(r)

≤ 4
{
N(r, f) + N(r, g)

}
+ 5

{
N

(
r,

1
f

)
+ N

(
r,

1
g

)}

+2
{
T (r, f) + T (r, g)

}
+

2
k + 1

{
T (r, F ) + T (r,G)

}

+2m
{
T (r, f) + T (r, g)

}
+ S(r)

≤
{
11 + 2m +

2(m + n + 2)
k + 1

}{
T (r, f) + T (r, g)

}
+ S(r).

Hence we have,

(n + m + 1)
(
T (r, f) + T (r, g)

)
≤

{
11 + 2m +

2(m + n + 2)
k + 1

}(
T (r, f) + T (r, g)

)
+ S(r).

Thus we have n+m+1 ≤ 11 +2m+ {2(m+n+2)/(k +1)}, which contradicts (k− 1)n >
14 + 3m + (10 + m)k. Therefore we have H ≡ 0, that is,

F ′′

F ′ − 2F ′

F − 1
≡ G′′

G′ − 2G′

G − 1
.
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Hence we see
1

G − 1
≡ A

F − 1
+ B,

where A �= 0 and B are constants. Thus E(F − 1) = E(G − 1), and

T (r, F ) = T (r,G) + S(r). (10)

Since

N(r, F ) + N
(
r,

1
F

)
+ N(r,G) + N

(
r,

1
G

)

≤ N(r, f) + N
(
r,

1
f

)
+ N

(
r,

1
f ′

)
+ N

(
r,

1
fm + a1

)

+N(r, g) + N
(
r,

1
g

)
+ N

(
r,

1
g′

)
+ N

(
r,

1
gm + a1

)
+ S(r)

≤ (m + 4){T (r, f) + T (r, g)}+ S(r)

≤ 2(m + 4)
n + m − 2

T (r) + S(r),

we have

lim sup
r→∞
r∈I

N
(
r, 1/F

)
+ N

(
r, 1/G

)
+ N(r, F ) + N(r,G)

T (r)
< 1,

by Lemma 4 we get FG ≡ 1 or F ≡ G.
We next discuss the following two cases.
Case 1. Suppose that FG ≡ 1, that is,

fn(fm + a1)f ′gn(gm + a1)g′ ≡ α2(z). (11)

(a) Let z0 be a zero of f of order p such that α(z0) �≡ 0,∞. From (11) we know that z0 is
a pole of g. Suppose that z0 is a pole of g of order q. From (11) we obtain that

(i) If p = 1, then n = nq + mq + q + 1. This is a contradiction.

(ii) If p > 1, then np+ p− 1 = nq +mq + q +1. This implies (n+1)(p− q) = mq +2 > 0.
Hence p ≥ q + 1. Thus we have np + p− 1 < (n + m + 1)(p− 1) + 1. Therefore we see
p ≥ (n + m − 1)/m.

(b) Let z1 be a zero of fm + a1 of order p1 such that α(z1) �≡ 0,∞. From (11) we know
that z1 is a pole of g. From (11) we obtain that

(i) If p1 = 1, then 1 = nq1 + mq1 + q1 + 1. This is a contradiction.

(ii) If p1 > 1, then p1 + p1 − 1 = nq1 + mq1 + q1 + 1. Thus p1 ≥ (n + m + 3)/2.

(c) Let z2 be a zero of f ′ of order p2 such that α(z2) �≡ 0,∞ that is not a zero of f(fm +a1).
From (11) we know that z2 is a pole of g. Suppose that z2 is a pole of g of order q2. From
(11) we obtain that p2 = nq2 + mq2 + q2 + 1. Thus p2 ≥ n + m + 2.

Moreover, in the same method as above, we have the similar results for the zeros of
g(gm + a1)g′. On the other hand, we suppose that z3 is a pole of f such that α(z3) �≡ 0,∞.
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From (11) we obtain that z3 is a zero of g(gm + a1)g′.Thus we have

N(r, f) ≤ N
(
r,

1
g

)
+ N

(
r,

1
gm + a1

)
+ N�

(
r,

1
g′

)

≤ m

n + m − 1
N

(
r,

1
g

)
+

2
n + m + 3

N
(
r,

1
gm + a1

)
+

1
n + m + 2

N
(
r,

1
g′

)

≤
( m

n + m − 1
+

2m

n + m + 3
+

2
n + m + 2

)
T (r, g) + S(r, g),

where n�(r, g) is defined the number of zeros of g′ that is not zero of g(gm + a1) in | z |≤ r,
a zero point with multiplicity m is counted m times in the set. N�(r, 1/g) is defined in the
terms of n�(r, 1/g) in the usual manner.

Hence

mT (r, f) < N(r, f) +
m∑

j=1

N
(
r,

1
f − cj

)
+ N

(
r,

1
f

)
+ S(r)

≤
( m

n + m − 1
+

2m

n + m + 3
+

2
n + m + 2

)
T (r, g)

+
m

n + m − 1
N

(
r,

1
f

)
+

m∑
j=1

2
n + m + 3

N
(
r,

1
f − cj

)
+ S(r)

=
( m

n + m − 1
+

2m

n + m + 3
+

2
n + m + 2

)
T (r, g)

+
( m

n + m − 1
+

2m

n + m + 3

)
T (r, f) + S(r),

where fm − a1 = (f − c1)(f − c2) · · · (f − cm). Similarly we have

mT (r, g) <
( m

n + m − 1
+

2m

n + m + 3
+

2
n + m + 2

)
T (r, f)

+
( m

n + m − 1
+

2m

n + m + 3

)
T (r, g) + S(r).

Thus we have

m
(
T (r, f) + T (r, g)

)
≤

( 2m

n + m − 1
+

4m

n + m + 3
+

2
n + m + 2

)(
T (r, f) + T (r, g)

)
+ S(r).

Hence we have
m <

2m

n + m − 1
+

4m

n + m + 3
+

2
n + m + 2

,

which contradicts with n > m + 10.
Case 2. Suppose that F ≡ G, then

F1 ≡ G1 + C, (12)

where C is a constant and

F1 =
1

n + m + 1
fn+m+1 +

a1

n + 1
fn+1, G1 =

1
n + m + 1

gn+m+1 +
a1

n + 1
gn+1.

By Lemma 1 we have

T (r, F1) = (n + m + 1)T (r, f) + S(r), T (r,G1) = (n + m + 1)T (r, g) + S(r).
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It follows that
T (r, f) = T (r, g) + S(r). (13)

Suppose that C �= 0. By (13) we have

(n + m + 1)T (r, g) = T (r,G1)

< N
(
r,

1
G1

)
+ N

(
r,

1
G1 + C

)
+ N(r,G1) + S(r)

≤ N(r, g) + N
(
r,

1
gm + a

)
+ N

(
r,

1
fm + a

)

+N
(
r,

1
f

)
+ N

(
r,

1
g

)
+ S(r)

≤ (2m + 3)T (r, g) + S(r).

Thus n + m + 1 ≤ 2m + 3, which contradicts with n > m + 10. Therefore F1 ≡ G1, that is,

fn+1
(
fm + a

)
≡ gn+1

(
gm + a

)
. (14)

Thus f and g share ∞ CM. Let h = f/g. If h �≡ 1, we have

gm ≡ −a(hn+1 − 1)
hn+m+1 − 1

.

If m ≥ 2, we have

(n − 1)T (r, h) ≤
n+1∑
j=1

N
(
r,

1
h − dj

)
+ S(r, h)

≤ n + 1
m

T (r, h) + S(r, h),

where hn+m+1 − 1 = (h − 1)(h− d1) · · · (h− dn+m). In fact, since each zero point of h− di

has multiplicity at least m, N(r, 1/(h− di)) ≤ (1/m)N (r, 1/(h− di)) ≤ (1/m)T (r, h). Thus
(n − 1) ≤ (n + 1)/m, which contradicts with n > m + 10. Therefore h ≡ 1. Then f ≡ g.

If m = 1, by (14), f and g satisfy the algebraic relation R(f, g) ≡ 0, where R(�1, �2) =
(n + 1)(�n+2

1 − �n+2
2 ) − (n + 2)(�n+1

1 − �n+1
2 ). This completes the proof of Theorem 2.

(II) Proof of Theorem 1 and Theorem 3
By making use of Lemma 3 and a similar method to the proof of Theorem 2, we easily

obtain the proof of Theorem 1 and Theorem 3.
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