UNIQUENESS OF MEROMORPHIC FUNCTIONS *

Weiling Xiong, Weichuan Lin and Seiki Mori

Received January 31, 2005; revised June 17, 2005

Abstract

In this paper, we deal with the uniqueness problems on meromorphic functions concerning differential polynomials that share a small meromorphic function. Moreover, we improve some former results.

1 Introduction and Results In this paper, we assume all the functions are nonconstant meromorphic functions in the complex plane C. We shall use the standard notations of Nevanlinna theory of meromorphic functions such as $T(r, f), m(r, f), N(r, f)$, $\bar{N}(r, f), S(r, f)$, etc. \cdots.

It is well known that if f and g share four distinct values CM , then f is a Möbius transformation of g. Recently, corresponding to one famous question of Hayman [1], many uniqueness theorems for some certain types of differential polynomials sharing one value were obtained (See $[2,3,4,5]$).

In 2001, M. Fang and W. Hong proved:
Theorem A [3]. Let f and g be two transcendental entire functions, $n \geq 11$ an integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share 1 CM , then $f(z) \equiv g(z)$.

Afterwards, W. Lin and H. X. Yi improved Theorem A and obtained the following results:
Theorem B [4]. Let f and g be two transcendental entire functions, $n \geq 7$ an integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share 1 CM , then $f(z) \equiv g(z)$.
Theorem C [4]. Let f and g be two transcendental meromorphic functions, $n \geq 12$ an integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share 1 CM , then either $f(z) \equiv g(z)$ or $f=$ $\left\{(n+2) h\left(1-h^{n+1}\right)\right\} /\left\{(n+1)\left(1-h^{n+2}\right)\right\}$ and $g=\left\{(n+2)\left(1-h^{n+1}\right)\right\} /\left\{(n+1)\left(1-h^{n+2}\right)\right\}$, where h is a nonconstant meromorphic function.

Recently, W. Lin and H. X. Yi extended Theorem B and Theorem C concerning to fix-points (See [5]).

In this paper, some uniqueness problems of meromorphic functions are investigated, which are improvement and complementary results for the above theorems.

Throughout this paper, we use the following notations:
Let $E(f)=\{z \mid f(z)=0\}$, where a zero of f with multiplicity m is counted m times. If $E(f-\alpha)=E(g-\alpha)$, then we say that f and g share α CM, especially, we say that $f(z)$ and $g(z)$ have the same fixed-points if $\alpha(z)=z$. Let $E_{k)}(f)=\{z \mid$ zeros of $f(z)$ with multiplicity at most $k\}$, where a zero with multiplicity $m(\leq k)$ is counted m times. Obviously, if $E(f)=E(g)$, then $E_{k)}(f)=E_{k)}(g)$, for $k=1,2, \cdots$.

Let f be a meromorphic function. We denote by $n_{k)}(r, f)$ the number of poles of f with multiplicity at most k in $|z|<r$ counting its multiplicities. We denote by $n_{(k}(r, f)$

[^0]the number of poles of f with multiplicity at least k in $|z|<r$ counting its multiplicities. We denote by $n_{2}(r, f)$ the number of poles of f in $|z|<r$, where a simple pole is counted once and a multiple pole is counted two times. We denote by $\bar{n}(r, f)$ as the counting function of poles of f counted with ignoring multiplicities. $N_{k)}(r, f), N_{(k}(r, f), N_{2}(r, f)$, $\bar{N}_{k)}(r, f), \bar{N}_{(k}(r, f), N_{k)}(r, 1 /(f-a)), N_{(k}(r, 1 /(f-a)), N_{2}(r, 1 /(f-a))$ and so on are defined in the usual way, respectively.

Let f, g and α be meromorphic functions. Let $\Psi_{f}(z)=f^{n+1}(z)\left(f^{m}(z)+a\right)+\alpha(z)$, where a is a constant. We note that

$$
\Psi_{f}^{\prime}(z)=(n+m+1)\left\{f^{n}(z)\left(f^{m}(z)+a_{1}\right) f^{\prime}(z)+\alpha_{1}(z)\right\}
$$

where $a_{1}=(n+1) a /(n+m+1)$ and $\alpha_{1}(z)=\alpha^{\prime}(z) /(n+m+1)$.
Theorem 1. Let f and g be two transcendental entire functions, α be a meromorphic function such that $T\left(r, \alpha_{1}\right)=o(T(r, f)+T(r, g))$ and $\alpha_{1} \not \equiv 0, \infty$. Let $\Psi_{f}(z)$ be as above, and a be a nonzero constant. Suppose that m, n and k are positive integers such that $(k-1) n>7+3 m+k(5+m)$. If $E_{k)}\left(\Psi_{f}^{\prime}\right)=E_{k)}\left(\Psi_{g}^{\prime}\right)$, then $f(z) \equiv g(z)$.
Remark 1. Under the condition of Theorem 1, letting $k \rightarrow \infty$, we obtain that $f(z) \equiv g(z)$ if $E\left(\Psi_{f}^{\prime}\right)=E\left(\Psi_{g}^{\prime}\right)$ and $n>5+m$. Obviously, Theorem 1 improves Theorem A and Theorem B.

Theorem 2. Let f and g be two transcendental meromorphic functions, α_{1} be a meromorphic function such that $T(r, \alpha)=o(T(r, f)+T(r, g))$ and $\alpha \not \equiv 0, \infty$. Let a be a nonzero constant. Suppose that m, n and k are positive integers such that $(k-1) n>14+3 m+k(10+m)$. If $E_{k)}\left(\Psi_{f}^{\prime}\right)=E_{k)}\left(\Psi_{g}^{\prime}\right)$, then
(i) if $m \geq 2$, then $f(z) \equiv g(z)$;
(ii) if $m=1$, either $f(z) \equiv g(z)$ or f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(\varpi_{1}, \varpi_{2}\right)=(n+1)\left(\varpi_{1}^{n+2}-\varpi_{2}^{n+2}\right)-(n+2)\left(\varpi_{1}^{n+1}-\varpi_{2}^{n+1}\right)$.

Remark 2. Under the condition of Theorem 2, letting $k \rightarrow \infty$, we obtain that the result of Theorem 2 is still valid if $E\left(\Psi_{f}^{\prime}\right)=E\left(\Psi_{g}^{\prime}\right)$ and $n>10+m$. Obviously, Theorem 2 improves Theorem C.

Theorem 3. Let f and g be two transcendental meromorphic functions, α be a meromorphic function such that $T(r, \alpha)=o(T(r, f)+T(r, g))$ and $\alpha \not \equiv 0, \infty$. Let a be a nonzero constant. Suppose that $\Theta(\infty, f)+\Theta(\infty, g)>(2 / 5)\{10+m-n+2(n+m+2) /(k+1)\}$ holds for positive integers m, n, k such that $k \geq 2$ and $n \geq 10+m$. If $E_{k)}\left(\Psi_{f}^{\prime}\right)=E_{k)}\left(\Psi_{g}^{\prime}\right)$, then
(i) if $m \geq 2, f(z) \equiv g(z)$;
(ii) if $m=1$, either $f(z) \equiv g(z)$, or f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(\varpi_{1}, \varpi_{2}\right)=(n+1)\left(\varpi_{1}^{n+2}-\varpi_{2}^{n+2}\right)-(n+2)\left(\varpi_{1}^{n+1}-\varpi_{2}^{n+1}\right)$.

As the consequence of Theorem 2 and Theorem 3, letting $k \rightarrow \infty$, we have
Remark 3. Let f and g be two transcendental meromorphic functions, α be a meromorphic function such that $T(r, \alpha)=o(T(r, f)+T(r, g))$ and $\alpha \not \equiv 0, \infty$. Let a be a nonzero constant, and $m, n(m \geq 2, n \geq 10+m)$ be positive integers. If $E\left(\Psi_{f}^{\prime}\right)=E\left(\Psi_{g}^{\prime}\right)$ and $\Theta(\infty, f)>0$, then $f(z) \equiv g(z)$.

Corollary. Let f and g be two transcendental meromorphic functions, α be a meromorphic function such that $T(r, \alpha)=o(T(r, f)+T(r, g))$ and $\alpha \not \equiv 0, \infty$. Let a be a nonzero constant. Suppose that $\Theta(\infty, f)>2 /(n+1)$ holds. If $E\left(\Psi_{f}^{\prime}\right)=E\left(\Psi_{g}^{\prime}\right)$ holds for positive integers m and $n \geq 10+m$, then $f(z) \equiv g(z)$.
Remark 4. In the case $m=1$, the following example shows that the condition of $\Theta(\infty, f)>2 /(n+1)$ is necessary.

Example. Let

$$
f=\frac{(n+2) h\left(h^{n+1}-1\right)}{(n+1)\left(h^{n+2}-1\right)} \quad g=\frac{(n+2)\left(h^{n+1}-1\right)}{(n+1)\left(h^{n+2}-1\right)}
$$

where $u=\exp \{(2 \pi i) /(n+2)\}$ and $h=\left(u^{2} e^{z}-u\right) /\left(e^{z}-1\right)$. It is easy to find $E\left(\Psi_{f}^{\prime}\right)=E\left(\Psi_{g}^{\prime}\right)$ and $\Theta(\infty, f)=2 /(n+1)$, but $f(z) \not \equiv g(z)$.

2 Lemmas For proving the theorems, we need the following lemmas.
Lemma 1 [6]. Let $f(z)$ be a nonconstant meromorphic function, and

$$
R(f)=\sum_{k=0}^{n} a_{k} f^{k} / \sum_{j=0}^{m} b_{j} f^{j}
$$

be an irreducible rational function in f with constant coefficients $\left\{a_{k}\right\}$ and $\left\{b_{j}\right\}$, where $a_{n} \neq 0$ and $b_{m} \neq 0$. Then

$$
T(r, R(f))=d T(r, f)+S(r, f)
$$

where $d=\max \{n, m\}$.
Lemma 2. Let f and g be two nonconstant meromorphic functions, and α be a meromorphic function such that $T(r, \alpha)=o(T(r, f)+T(r, g))$ and $\alpha \not \equiv 0, \infty$. Let a be a nonzero constant, and n and m be positive integers. Set

$$
F=f^{n}\left(f^{m}-a_{1}\right) f^{\prime}, \quad G=g^{n}\left(g^{m}-a_{1}\right) g^{\prime}
$$

If $E_{k)}(F-\alpha)=E_{k)}(G-\alpha)$ and $(n-6) k-m>4$, then $S(r, f)$ and $S(r, g)$ are equivalent, that is, if $A(r)=S(r, f)$, then $A(r)=S(r, g)$, and also if $A(r)=S(r, g)$, then $A(r)=S(r, f)$.
Proof. By Lemma 1, we have

$$
(n+m) T(r, f)=T\left(r, f^{n}\left(f^{m}+a\right)\right)+S(r, f) \leq T(r, F)+T\left(r, f^{\prime}\right)+S(r, f)
$$

Therefore we have

$$
T(r, F) \geq(n+m-2) T(r, f)+S(r, f)
$$

By the second fundamental theorem, we have

$$
\begin{aligned}
T(r, F) & \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-\alpha}\right)+S(r, F) \\
& \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}_{k)}\left(r, \frac{1}{F-\alpha}\right)+\bar{N}_{(k+1}\left(r, \frac{1}{F-\alpha}\right)+S(r, f) \\
& \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}_{k)}\left(r, \frac{1}{G-\alpha}\right)+\frac{1}{k+1} N\left(r, \frac{1}{F-\alpha}\right)+S(r, f) \\
& \leq(4+m) T(r, f)+\frac{1}{k+1} T(r, F)+T(r, G)+S(r, f)
\end{aligned}
$$

Noting that $T(r, G) \leq T\left(r, g^{n}\left(g^{m}-1\right)\right)+T\left(r, g^{\prime}\right) \leq(n+m+2) T(r, g)+S(r, g)$, we deduce that

$$
\left(\frac{k(n+m-2)}{k+1}-4-m\right) T(r, f) \leq(n+m+2) T(r, g)+S(r, f)+S(r, g)
$$

We note that $k(n+m-2) /(k+1)-4-m>0$ and the conditions for f and g are symmetric. Thus $S(r, f)$ and $S(r, g)$ are equivalent.
Lemma 3. Let F and G be two nonconstant meromorphic functions such that $E_{k)}(F-1)=$ $E_{k)}(G-1)$, and let

$$
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right)
$$

If $H \not \equiv 0$, then

$$
\begin{aligned}
\frac{1}{2}\{T(r, F)+T(r, G)\} \leq & N_{2}(r, F)+N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, G)+N_{2}\left(r, \frac{1}{G}\right) \\
& +\bar{N}_{(k+1}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(k+1}\left(r, \frac{1}{G-1}\right)+S(r)
\end{aligned}
$$

where $T(r)=\max \{T(r, F), T(r, G)\}, S(r)=o(T(r))(r \rightarrow \infty, r \notin E)$ and E is a set of finite linear measure.

Proof. By the second fundamental theorem, we have

$$
T(r, F) \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-1}\right)-N_{0}\left(r, \frac{1}{F^{\prime}}\right)+S(r, F)
$$

and

$$
T(r, G) \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)-N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, G)
$$

where $N_{0}\left(r, 1 / F^{\prime}\right)$ is the counting function of the zeros of F^{\prime} in $|z|<r$ that is not the zeros of $F-1$ and F. In the same way, we can define $N_{0}\left(r, 1 / G^{\prime}\right)$. Thus we have

$$
\begin{align*}
T(r, F)+T(r, G) \leq & \bar{N}(r, F)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}\left(r, \frac{1}{G-1}\right)-N_{0}\left(r, \frac{1}{F^{\prime}}\right)-N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r) \tag{1}
\end{align*}
$$

We also have

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{F-1}\right) \quad & \bar{N}\left(r, \frac{1}{G-1}\right) \\
\leq & \bar{N}_{k)}\left(r, \frac{1}{F-1}\right)+\bar{N}_{k)}\left(r, \frac{1}{G-1}\right)+\bar{N}_{(k+1}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(k+1}\left(r, \frac{1}{G-1}\right) \\
\leq & \frac{1}{2}\left\{N_{1)}\left(r, \frac{1}{F-1}\right)+N_{k)}\left(r, \frac{1}{F-1}\right)+N_{1)}\left(r, \frac{1}{G-1}\right)+N_{k)}\left(r, \frac{1}{G-1}\right)\right\} \\
& +\bar{N}_{(k+1}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(k+1}\left(r, \frac{1}{G-1}\right)
\end{aligned}
$$

Let z_{0} be a simple pole of F. By a simple calculation, we know that z_{0} is not a pole of $F^{\prime \prime} / F^{\prime}-2 F^{\prime} /(F-1)$. Let z_{1} be a zero of $F-1$ with multiplicity t, where $1 \leq t \leq k$.

We know also that z_{1} is not a pole of H, especially, z_{1} is a simple zero of H if $k=1$. In fact, by a simple calculation, we can prove that any common simple 1-point of F and G is a zero of

$$
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right)
$$

Let z_{0} be a common simple 1-point of F and G. If we expand F in a neighborhood of z_{0} as

$$
F=1+A\left(z-z_{0}\right)+B\left(z-z_{0}\right)^{2}+D\left(z-z_{0}\right)^{3}+O\left(\left(z-z_{0}\right)^{4}\right), \quad(A \neq 0)
$$

Then we have

$$
\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}=\frac{-1}{z-z_{0}}+O\left(z-z_{0}\right)
$$

Similarly, we have

$$
\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}=\frac{-1}{z-z_{0}}+O\left(z-z_{0}\right)
$$

Thus we obtain that

$$
H(z)=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right)=O\left(z-z_{0}\right)
$$

that is, z_{0} is a zero of H.
Similarly, by a simple calculation, we can also prove that any simple pole of F is not a pole of $F^{\prime \prime} / F^{\prime}-2 F^{\prime} /(F-1)$, and any simple pole of G is not a pole of $G^{\prime \prime} / G^{\prime}-2 G^{\prime} /(G-1)$.

Thus we have

$$
\begin{align*}
N_{1)}\left(r, \frac{1}{F-1}\right) \leq & \bar{N}\left(r, \frac{1}{H}\right) \leq T(r, H)+S(r, F)=N(r, H)+S(r, F) \\
\leq & \bar{N}_{(2}(r, F)+\bar{N}_{(2}(r, G)+\bar{N}_{(k+1}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(k+1}\left(r, \frac{1}{G-1}\right) \\
& +N_{0}\left(r, \frac{1}{F^{\prime}}\right)+N_{0}\left(r, \frac{1}{G^{\prime}}\right)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+S(r, F) \tag{2}
\end{align*}
$$

Similarly we have

$$
\begin{align*}
N_{1)}\left(r, \frac{1}{G-1}\right) \leq & \bar{N}_{(2}(r, F)+\bar{N}_{(2}(r, G)+\bar{N}_{(k+1}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(k+1}\left(r, \frac{1}{G-1}\right) \\
& +N_{0}\left(r, \frac{1}{F^{\prime}}\right)+N_{0}\left(r, \frac{1}{G^{\prime}}\right)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+S(r, G) \tag{3}
\end{align*}
$$

By (1), (2) and (3), we have the desired inequality.
Lemma 4[7]. Let H be defined as in Lemma 3. If $H \equiv 0$ and

$$
\limsup _{\substack{r \rightarrow \infty \\ r \in I}} \frac{\bar{N}(r, 1 / F)+\bar{N}(r, 1 / G)+\bar{N}(r, F)+\bar{N}(r, G)}{T(r)}<1
$$

where I is a set of infinite linear measure, then $F G \equiv 1$ or $F \equiv G$.

3 Proof of Theorems

(I) Proof of Theorem 2.

$$
\begin{align*}
& \text { Let } \\
& \qquad \begin{array}{l}
F=\frac{f^{n}\left(f^{m}+a_{1}\right) f^{\prime}}{\alpha_{1}(z)}, \quad G=\frac{g^{n}\left(g^{m}+a_{1}\right) g^{\prime}}{\alpha_{1}(z)} \\
F_{1}=\frac{1}{n+m+1} f^{n+m+1}+\frac{a_{1}}{n+1} f^{n+1}, \quad G_{1}=\frac{1}{n+m+1} g^{n+m+1}+\frac{a_{1}}{n+1} g^{n+1}
\end{array} \tag{4}
\end{align*}
$$

and

$$
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right)
$$

Here $a_{1}=(n+1) a /(n+m+1)$ and $\alpha_{1}=\left(-\alpha^{\prime}\right) /(n+m+1)$. Then $E_{k)}(F-1)=E_{k)}(G-1)$. By Lemma 1 and Lemma 2, we have $S(r, f)=S(r, g)(=S(r)$, say) and

$$
\begin{equation*}
T\left(r, F_{1}\right)=(n+m+1) T(r, f)+S(r, f), \quad T\left(r, G_{1}\right)=(n+m+1) T(r, g)+S(r, g) \tag{6}
\end{equation*}
$$

Since $F_{1}^{\prime}=\alpha_{1}(z) F$ and $G_{1}^{\prime}=\alpha_{1}(z) G$, we deduce that

$$
\begin{align*}
T\left(r, F_{1}\right)+ & T\left(r, G_{1}\right) \leq T(r, F)+N\left(r, \frac{1}{F_{1}}\right)-N\left(r, \frac{1}{F}\right) \\
& +T(r, G)+N\left(r, \frac{1}{G_{1}}\right)-N\left(r, \frac{1}{G}\right)+S(r) \\
= & T(r, F)+(n+1) N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{m}+a}\right) \\
& -n N\left(r, \frac{1}{f}\right)-N\left(r, \frac{1}{f^{m}+a_{1}}\right)-N\left(r, \frac{1}{f^{\prime}}\right) \\
& +T(r, G)+(n+1) N\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{g^{m}+a}\right) \\
& -n N\left(r, \frac{1}{g}\right)-N\left(r, \frac{1}{g^{m}+a_{1}}\right)-N\left(r, \frac{1}{g^{\prime}}\right)+S(r) \\
= & T(r, F)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{m}+a}\right)-N\left(r, \frac{1}{f^{m}+a_{1}}\right) \\
& -N\left(r, \frac{1}{f^{\prime}}\right)+T(r, G)+N\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{g^{m}+a}\right) \\
& -N\left(r, \frac{1}{g^{m}+a_{1}}\right)-N\left(r, \frac{1}{g^{\prime}}\right)+S(r) . \tag{7}
\end{align*}
$$

If $H \not \equiv 0$, by Lemma 3, we have

$$
\begin{align*}
T(r, F)+T(r, G) \leq & 2\left\{N_{2}(r, F)+N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, G)+N_{2}\left(r, \frac{1}{G}\right)\right. \\
& \left.+\bar{N}_{(k+1}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(k+1}\left(r, \frac{1}{G-1}\right)\right\}+S(r) \tag{8}
\end{align*}
$$

It follows from (4) that

$$
\begin{align*}
N_{2}(r, F)+ & N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, G)+N_{2}\left(r, \frac{1}{G}\right) \\
\leq & 2\left\{\bar{N}(r, f)+N\left(r, \frac{1}{f}\right)\right\}+N\left(r, \frac{1}{f^{m}+a_{1}}\right)+N\left(r, \frac{1}{f^{\prime}}\right) \\
& +2\left\{\bar{N}(r, g)+N\left(r, \frac{1}{g}\right)\right\}+N\left(r, \frac{1}{g^{m}+a_{1}}\right)+N\left(r, \frac{1}{g^{\prime}}\right)+S(r) \tag{9}
\end{align*}
$$

Then we have from $(6) \sim(9)$

$$
\left.\left.\begin{array}{rl}
(n+m+ & 1)\{T(r, f)+T(r, g)\}=\left\{T\left(r, F_{1}\right)+T\left(r, G_{1}\right)\right\}+S(r) \\
\leq & T(r, F)+T(r, G)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g}\right) \\
& +N\left(r, \frac{1}{f^{m}+a}\right)+N\left(r, \frac{1}{g^{m}+a}\right)-N\left(r, \frac{1}{f^{m}+a_{1}}\right) \\
& -N\left(r, \frac{1}{g^{m}+a_{1}}\right)-N\left(r, \frac{1}{f^{\prime}}\right)-N\left(r, \frac{1}{g^{\prime}}\right)+S(r) \\
\leq & 4\{\bar{N}(r, f)+\bar{N}(r, g)\}+5\left\{N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g}\right)\right\} \\
& +2\left\{N\left(r, \frac{1}{f^{m}+a_{1}}\right)+N\left(r, \frac{1}{g^{m}+a_{1}}\right)\right\}+2\left\{N\left(r, \frac{1}{f^{\prime}}\right)+N\left(r, \frac{1}{g^{\prime}}\right)\right\} \\
& +2\left\{\bar{N}\left(k+1\left(r, \frac{1}{F-1}\right)+\bar{N}_{(k+1}\left(r, \frac{1}{G-1}\right)\right\}+N\left(r, \frac{1}{f^{m}+a}\right)+N\left(r, \frac{1}{g^{m}+a}\right)\right. \\
& -N\left(r, \frac{1}{f^{m}+a_{1}}\right)-N\left(r, \frac{1}{g^{m}+a_{1}}\right)-N\left(r, \frac{1}{f^{\prime}}\right)-N\left(r, \frac{1}{g^{\prime}}\right)+S(r) \\
\leq & 4\{\bar{N}(r, f)+\bar{N}(r, g)\}+5\left\{N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g}\right)\right\}+\left\{N\left(r, \frac{1}{f^{\prime}}\right)+N\left(r, \frac{1}{g^{\prime}}\right)\right\} \\
& +N\left(r, \frac{1}{f^{m}+a_{1}}\right)+N\left(r, \frac{1}{g^{m}+a_{1}}\right)+2\left\{\overline { N } \left(k+1\left(r, \frac{1}{F-1}\right)+\bar{N}\right.\right. \\
\left(k+1\left(r, \frac{1}{G-1}\right)\right\} \\
& +N\left(r, \frac{1}{f^{m}+a}\right)+N\left(r, \frac{1}{g^{m}+a}\right)+S(r) \\
\leq & 4\{\bar{N}(r, f)+\bar{N}(r, g)\}+5\left\{N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g}\right)\right\} \\
& +\left\{T\left(r, f^{\prime}\right)+T\left(r, g^{\prime}\right)\right\}+N\left(r, \frac{1}{f^{m}+a_{1}}\right)+N\left(r, \frac{1}{g^{m}+a_{1}}\right) \\
\leq & 4 \\
& \frac{2}{k+1}\{\bar{N}(r, f)+\bar{N}(r, g)\}+5\left\{N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g}\right)\right\} \\
& +2\{T(r, f)+T(r, g)\}+\frac{2}{k+1}\{T(r, F)+T(r, G)\} \\
& +2 m\{T(r, f)+T(r, g)\}+S(r) \\
\hline & \left.11+2 m+\frac{2(m+n+2)}{k+1}\right\}\{T(r, f)+T(r, g)\}+S(r) . \\
f^{m}+a
\end{array}\right)+N\left(r, \frac{1}{g^{m}+a}\right)+S(r)\right\}
$$

Hence we have,

$$
(n+m+1)(T(r, f)+T(r, g)) \leq\left\{11+2 m+\frac{2(m+n+2)}{k+1}\right\}(T(r, f)+T(r, g))+S(r)
$$

Thus we have $n+m+1 \leq 11+2 m+\{2(m+n+2) /(k+1)\}$, which contradicts $(k-1) n>$ $14+3 m+(10+m) k$. Therefore we have $H \equiv 0$, that is,

$$
\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1} \equiv \frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}
$$

Hence we see

$$
\frac{1}{G-1} \equiv \frac{A}{F-1}+B
$$

where $A \neq 0$ and B are constants. Thus $E(F-1)=E(G-1)$, and

$$
\begin{equation*}
T(r, F)=T(r, G)+S(r) \tag{10}
\end{equation*}
$$

Since

$$
\begin{aligned}
\bar{N}(r, F)= & \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right) \\
\leq & \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}\left(r, \frac{1}{f^{m}+a_{1}}\right) \\
& +\bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g}\right)+\bar{N}\left(r, \frac{1}{g^{\prime}}\right)+\bar{N}\left(r, \frac{1}{g^{m}+a_{1}}\right)+S(r) \\
\leq & (m+4)\{T(r, f)+T(r, g)\}+S(r) \\
\leq & \frac{2(m+4)}{n+m-2} T(r)+S(r)
\end{aligned}
$$

we have

$$
\limsup _{\substack{r \rightarrow \infty \\ r \in I}} \frac{\bar{N}(r, 1 / F)+\bar{N}(r, 1 / G)+\bar{N}(r, F)+\bar{N}(r, G)}{T(r)}<1
$$

by Lemma 4 we get $F G \equiv 1$ or $F \equiv G$.
We next discuss the following two cases.
Case 1. Suppose that $F G \equiv 1$, that is,

$$
\begin{equation*}
f^{n}\left(f^{m}+a_{1}\right) f^{\prime} g^{n}\left(g^{m}+a_{1}\right) g^{\prime} \equiv \alpha^{2}(z) \tag{11}
\end{equation*}
$$

(a) Let z_{0} be a zero of f of order p such that $\alpha\left(z_{0}\right) \not \equiv 0, \infty$. From (11) we know that z_{0} is a pole of g. Suppose that z_{0} is a pole of g of order q. From (11) we obtain that
(i) If $p=1$, then $n=n q+m q+q+1$. This is a contradiction.
(ii) If $p>1$, then $n p+p-1=n q+m q+q+1$. This implies $(n+1)(p-q)=m q+2>0$. Hence $p \geq q+1$. Thus we have $n p+p-1<(n+m+1)(p-1)+1$. Therefore we see $p \geq(n+m-1) / m$.
(b) Let z_{1} be a zero of $f^{m}+a_{1}$ of order p_{1} such that $\alpha\left(z_{1}\right) \not \equiv 0, \infty$. From (11) we know that z_{1} is a pole of g. From (11) we obtain that
(i) If $p_{1}=1$, then $1=n q_{1}+m q_{1}+q_{1}+1$. This is a contradiction.
(ii) If $p_{1}>1$, then $p_{1}+p_{1}-1=n q_{1}+m q_{1}+q_{1}+1$. Thus $p_{1} \geq(n+m+3) / 2$.
(c) Let z_{2} be a zero of f^{\prime} of order p_{2} such that $\alpha\left(z_{2}\right) \not \equiv 0, \infty$ that is not a zero of $f\left(f^{m}+a_{1}\right)$. From (11) we know that z_{2} is a pole of g. Suppose that z_{2} is a pole of g of order q_{2}. From (11) we obtain that $p_{2}=n q_{2}+m q_{2}+q_{2}+1$. Thus $p_{2} \geq n+m+2$.

Moreover, in the same method as above, we have the similar results for the zeros of $g\left(g^{m}+a_{1}\right) g^{\prime}$. On the other hand, we suppose that z_{3} is a pole of f such that $\alpha\left(z_{3}\right) \not \equiv 0, \infty$.

From (11) we obtain that z_{3} is a zero of $g\left(g^{m}+a_{1}\right) g^{\prime}$. Thus we have

$$
\begin{aligned}
\bar{N}(r, f) & \leq \bar{N}\left(r, \frac{1}{g}\right)+\bar{N}\left(r, \frac{1}{g^{m}+a_{1}}\right)+\bar{N}_{\star}\left(r, \frac{1}{g^{\prime}}\right) \\
& \leq \frac{m}{n+m-1} N\left(r, \frac{1}{g}\right)+\frac{2}{n+m+3} N\left(r, \frac{1}{g^{m}+a_{1}}\right)+\frac{1}{n+m+2} N\left(r, \frac{1}{g^{\prime}}\right) \\
& \leq\left(\frac{m}{n+m-1}+\frac{2 m}{n+m+3}+\frac{2}{n+m+2}\right) T(r, g)+S(r, g),
\end{aligned}
$$

where $n_{\star}(r, g)$ is defined the number of zeros of g^{\prime} that is not zero of $g\left(g^{m}+a_{1}\right)$ in $|z| \leq r$, a zero point with multiplicity m is counted m times in the set. $N_{\star}(r, 1 / g)$ is defined in the terms of $n_{\star}(r, 1 / g)$ in the usual manner.

Hence

$$
\begin{aligned}
m T(r, f)< & \bar{N}(r, f)+\sum_{j=1}^{m} \bar{N}\left(r, \frac{1}{f-c_{j}}\right)+\bar{N}\left(r, \frac{1}{f}\right)+S(r) \\
\leq & \left(\frac{m}{n+m-1}+\frac{2 m}{n+m+3}+\frac{2}{n+m+2}\right) T(r, g) \\
& +\frac{m}{n+m-1} N\left(r, \frac{1}{f}\right)+\sum_{j=1}^{m} \frac{2}{n+m+3} N\left(r, \frac{1}{f-c_{j}}\right)+S(r) \\
= & \left(\frac{m}{n+m-1}+\frac{2 m}{n+m+3}+\frac{2}{n+m+2}\right) T(r, g) \\
& +\left(\frac{m}{n+m-1}+\frac{2 m}{n+m+3}\right) T(r, f)+S(r),
\end{aligned}
$$

where $f^{m}-a_{1}=\left(f-c_{1}\right)\left(f-c_{2}\right) \cdots\left(f-c_{m}\right)$. Similarly we have

$$
\begin{aligned}
m T(r, g)< & \left(\frac{m}{n+m-1}+\frac{2 m}{n+m+3}+\frac{2}{n+m+2}\right) T(r, f) \\
& +\left(\frac{m}{n+m-1}+\frac{2 m}{n+m+3}\right) T(r, g)+S(r)
\end{aligned}
$$

Thus we have
$m(T(r, f)+T(r, g)) \leq\left(\frac{2 m}{n+m-1}+\frac{4 m}{n+m+3}+\frac{2}{n+m+2}\right)(T(r, f)+T(r, g))+S(r)$.
Hence we have

$$
m<\frac{2 m}{n+m-1}+\frac{4 m}{n+m+3}+\frac{2}{n+m+2}
$$

which contradicts with $n>m+10$.
Case 2. Suppose that $F \equiv G$, then

$$
\begin{equation*}
F_{1} \equiv G_{1}+C \tag{12}
\end{equation*}
$$

where C is a constant and

$$
F_{1}=\frac{1}{n+m+1} f^{n+m+1}+\frac{a_{1}}{n+1} f^{n+1}, \quad G_{1}=\frac{1}{n+m+1} g^{n+m+1}+\frac{a_{1}}{n+1} g^{n+1}
$$

By Lemma 1 we have

$$
T\left(r, F_{1}\right)=(n+m+1) T(r, f)+S(r), \quad T\left(r, G_{1}\right)=(n+m+1) T(r, g)+S(r)
$$

It follows that

$$
\begin{equation*}
T(r, f)=T(r, g)+S(r) \tag{13}
\end{equation*}
$$

Suppose that $C \neq 0$. By (13) we have

$$
\begin{aligned}
(n+m+1) T(r, g)= & T\left(r, G_{1}\right) \\
< & \bar{N}\left(r, \frac{1}{G_{1}}\right)+\bar{N}\left(r, \frac{1}{G_{1}+C}\right)+\bar{N}\left(r, G_{1}\right)+S(r) \\
\leq & \bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g^{m}+a}\right)+\bar{N}\left(r, \frac{1}{f^{m}+a}\right) \\
& +\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)+S(r) \\
\leq & (2 m+3) T(r, g)+S(r)
\end{aligned}
$$

Thus $n+m+1 \leq 2 m+3$, which contradicts with $n>m+10$. Therefore $F_{1} \equiv G_{1}$, that is,

$$
\begin{equation*}
f^{n+1}\left(f^{m}+a\right) \equiv g^{n+1}\left(g^{m}+a\right) \tag{14}
\end{equation*}
$$

Thus f and g share ∞ CM. Let $h=f / g$. If $h \not \equiv 1$, we have

$$
g^{m} \equiv \frac{-a\left(h^{n+1}-1\right)}{h^{n+m+1}-1}
$$

If $m \geq 2$, we have

$$
\begin{aligned}
(n-1) T(r, h) & \leq \sum_{j=1}^{n+1} \bar{N}\left(r, \frac{1}{h-d_{j}}\right)+S(r, h) \\
& \leq \frac{n+1}{m} T(r, h)+S(r, h)
\end{aligned}
$$

where $h^{n+m+1}-1=(h-1)\left(h-d_{1}\right) \cdots\left(h-d_{n+m}\right)$. In fact, since each zero point of $h-d_{i}$ has multiplicity at least $m, \bar{N}\left(r, 1 /\left(h-d_{i}\right)\right) \leq(1 / m) N\left(r, 1 /\left(h-d_{i}\right)\right) \leq(1 / m) T(r, h)$. Thus $(n-1) \leq(n+1) / m$, which contradicts with $n>m+10$. Therefore $h \equiv 1$. Then $f \equiv g$.

If $m=1$, by (14), f and g satisfy the algebraic relation $R(f, g) \equiv 0$, where $R\left(\varpi_{1}, \varpi_{2}\right)=$ $(n+1)\left(\varpi_{1}^{n+2}-\varpi_{2}^{n+2}\right)-(n+2)\left(\varpi_{1}^{n+1}-\varpi_{2}^{n+1}\right)$. This completes the proof of Theorem 2 .

(II) Proof of Theorem 1 and Theorem 3

By making use of Lemma 3 and a similar method to the proof of Theorem 2, we easily obtain the proof of Theorem 1 and Theorem 3.

References

[1] W. K. Hayman, Research Problems in Function Theory, Athlone Press, London, 1967.
[2] C. C. Yang and X. Hua, Uniqueness and value-shareing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 22 (1997), 395-406.
[3] M. L. Fang and W. Hong, A unicity theorem for entire functions concerning differential polynomials, Indian J. Pure Appl. Math., 32 (2001), 1343-1348.
[4] W. Lin and H. X. Yi, Uniqueness theorems for meromorphic functions. Indian J. Pure Appl. Math., 35(2) (2004), 121-132.
[5] W. Lin and H. X. Yi, Uniqueness theorems for meromorphic functions concerning fixed-points. Complex Variables, 49(11) (2004), 793-806.
[6] A. Z. Mokhon'ko, The Nevanlinna characteristics of certain meromorphic functions, Theory of Functions, Functional Analysis and Their Applications, 14 (1971), 83-87.(Russian)
[7] H. X. Yi, Meromorphic functions that share one or two values, Complex Variables, 28 (1995), 1-11.

Weiling Xiong : Deptartment of Information and Computing Science, GuangXi Institute of Technology, Liuzhou Guangxi, 545006, P. R. China

Weichuan Lin : Deptartment of Mathematical Sciences, Yamagata UniverSity, Yamagata, 990-8560, Japan

Seiki Mori : Deptartment of Mathematical Sciences, Yamagata University, Yamagata, 990-8560, Japan

[^0]: *Research of the first author supported by NSF of Guangxi China(0339018). Research of the second author supported by the JSPS Post Doctoral Fellowship Program.

 2000 Mathematics Subject Classification. 30D35.
 Key words and phrases. uniqueness, meromorphic function, entire function, share value.

