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ON IMPLICATIVE IDEALS OF PSEUDO MV -ALGEBRAS
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Abstract. In the theory of MV -algebras, implicative ideals are studied by Hoo
and Sessa. In this paper we investigate implicative ideals of pseudo MV -algebras.
(Pseudo MV -algebras are a noncommutative generalization of MV -algebras.) Some
characterizations of such ideals are given. We prove that every ideal extension of an
implicative ideal is implicative. It is also shown that if an ideal is prime and implicative,
then it is maximal.

1. Preliminaries

The notion of pseudo MV -algebra has been introduced independently by Georgescu
and Iorgulescu [1] and by Rach̊unek [7] (in [7], the term ”generalized MV -algebra” has
been applied).

Let A =(A;⊕,−,∼, 0, 1) be an algebra of type (2, 1, 1, 0, 0). For x, y ∈ A we put x · y =
(y− ⊕ x−)∼. We consider that the operation ” · ” has priority to the operation ⊕, i.e., we
will write x⊕ y · z instead of x⊕ (y · z). The algebra A is called a pseudo MV-algebra if the
following conditions are satisfied for each x, y, z ∈ A :

(A1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z;
(A2) x ⊕ 0 = 0 ⊕ x = x;
(A3) x ⊕ 1 = 1 ⊕ x = 1;
(A4) 1∼ = 0; 1− = 0;
(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−;
(A6) x ⊕ x∼ · y = y ⊕ y∼ · x = x · y− ⊕ y = y · x− ⊕ x;
(A7) x · (x− ⊕ y) = (x ⊕ y∼) · y;
(A8) (x−)∼ = x.

Throughout this paper, A shall denote a pseudo MV -algebra. For any x ∈ A we put

x0 = 1 and xn+1 = xn · x = x · xn(n = 0, 1, 2, ...).

We will denote by B(A) the set of all idempotents of A, that is,

B(A) = {x ∈ A : x ⊕ x = x}.

By Proposition 4.2 of [1], B(A) = {x ∈ A : x ∧ x− = 0}.

Proposition 1.1. (Georgescu and Iorgulescu [1].) The following properties hold for any
x, y, z ∈ A :
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(i) (x∼)− = x;
(ii) x · 1 = 1 · x = x;
(iii) x ⊕ x∼ = 1; x− ⊕ x = 1;
(iv) x · x− = 0; x∼ · x = 0;
(v) x · (y · z) = (x · y) · z.

As always in algebra, associativity of · (see Proposition 1.1(v)) makes it possible to write
x1 · x2 · . . . · xn without using parenthess.

We define

x ≤ y ⇔ x− ⊕ y = 1.

In [1] it is proved that (A;≤) is a lattice in which the join x ∨ y and the meet x ∧ y of any
two elements x and y are given by:

x ∨ y = x ⊕ x∼ · y = x · y− ⊕ y,(1)
x ∧ y = x · (x− ⊕ y) = (x ⊕ y∼) · y.(2)

Proposition 1.2. (Georgescu and Iorgulescu [1].) For every pseudo MV-algebra A the
algebra L(A) =(A;∨,∧, 0, 1) is a bounded distributive lattice.

Proposition 1.3. (Georgescu and Iorgulescu [1].) Let x, y, z ∈ A. Then the following
statements hold:

(i) x · y ≤ x ∧ y ≤ x ∨ y ≤ x ⊕ y;
(ii) (x ∨ y)− = x− ∧ y−;
(iii) x ≤ y ⇒ z · x ≤ z · y, x · z ≤ y · z;
(iv) z ⊕ (x ∧ y) = (z ⊕ x) ∧ (z ⊕ y);
(v) z · (x ⊕ y) ≤ z · x ⊕ y.

2. Ideals. Definition and properties

Definition 2.1. An ideal of A is a subset I of A satisfying the following conditions:
(I1) 0 ∈ I,
(I2) If x, y ∈ I, then x ⊕ y ∈ I,
(I3) If x ∈ I, y ∈ A and y ≤ x, then y ∈ I.

Under this definition, {0} and A are the simplest examples of ideals.

Proposition 2.2. Let I be a nonvoid subset of A. I is an ideal of A if and only if I
satisfies conditions (I2) and

(I3’) If x ∈ I, y ∈ A, then x ∧ y ∈ I.

Proof. If I is an ideal of A, then it is clear that I satisfies (I3’). Let I satisfy (I2) and (I3’).
Let x ∈ I, y ∈ A and y ≤ x. Then 0 = x ∧ 0 ∈ I and y = x ∧ y ∈ I.
Thus I is an ideal of A. �

We denote by Id(A) the set of ideals of A.
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Proposition 2.3. Let I ∈ Id(A).

(i) If x, y ∈ I, then x · y, x ∧ y, x ∨ y ∈ I.
(ii) I is an ideal of the lattice L(A).
(iii) For x, y ∈ A, x, y ∈ I if and only if x ∨ y ∈ I.

Proof. Let x, y ∈ I. We have (i), because x · y ≤ x ∧ y ≤ x ∨ y ≤ x ⊕ y and x ⊕ y ∈ I. (ii)
and (iii) are obvious. �

Theorem 2.4. Let I be a subset of A containing 0. Then the following statements are
equivalent:

(i) I ∈ Id(A);
(ii) ∀x ∈ I ∀y ∈ A (x∼ · y ∈ I ⇒ y ∈ I);
(iii) ∀x ∈ I ∀y ∈ A (y · x− ∈ I ⇒ y ∈ I).

Proof. (i) ⇒ (ii). Let x ∈ I and x∼ · y ∈ I. Applying (1) we have y ≤ x∨ y = x⊕x∼ · y ∈ I,
and hence y ∈ I.

(ii) ⇒ (iii). Suppose that (ii) holds. We show first that the implication

(x ∈ I and y ≤ x) ⇒ y ∈ I(3)

is satisfied. If y ≤ x, then by Propositions 1.3(iii) and 1.1(iv) we get x∼ · y ≤ x∼ · x = 0,
and hence x∼ · y = 0 ∈ I. From (ii) it follows that y ∈ I. Thus (3) holds. Let now x ∈ I
and y · x− ∈ I. We set a = y · x−. Applying Propositions 1.3(v) and 1.1(iv) we obtain

a∼ · (a ⊕ x) ≤ a∼ · a ⊕ x = 0 ⊕ x = x.

Therefore, a∼ · (a⊕ x) ∈ I, by (3). We conclude from (ii) that a⊕ x ∈ I, i.e., y ·x− ⊕ x ∈ I.
But y · x− ⊕ x = x ⊕ x∼ · y ≥ x∼ · y, and hence x∼ · y ∈ I. (ii) now shows that y ∈ I.

(iii) ⇒ (i). Let y ≤ x ∈ I. Then, by Propositions 1.3(iii) and 1.1(iv), we get y · x− ≤
x ·x− = 0. This gives y · x− = 0 ∈ I. From (iii) we see that y ∈ I. Thus (I3) holds. Observe
that (I2) is also satisfied. Let x, y ∈ I. Then x∧y− = (x⊕ (y−)∼) ·y− = (x⊕ y) ·y−, by (2)
and (A8). Consequently, (x⊕y) ·y− ≤ x ∈ I. Applying (I3) we deduce that (x⊕y) ·y− ∈ I,
and hence x ⊕ y ∈ I. Therefore, (I2) holds, and thus I is an ideal of A. �
Definition 2.5. Let I be a proper ideal of A (i.e., I �= A).
(i) I is called prime if, for all I1, I2 ∈ Id(A), I = I1 ∩ I2 implies I = I1 or I = I2.
(ii) I is maximal iff whenever J is an ideal such that I ⊆ J ⊆ A, then either I = J or
J = A.

Proposition 2.6. (Georgescu and Iorgulescu [1].) For I ∈ Id(A), the following are equiv-
alent:
(i) I is prime;
(ii) If x ∧ y ∈ I, then x ∈ I or y ∈ I.

Lemma 2.7. If I ∈ Id(A) is maximal, then I is prime.

Proof. Let I be a maximal ideal of A and let I = I1 ∩ I2 for I1, I2 ∈ Id(A). Then I ⊆ I1

and I ⊆ I2. Since I is proper, I1 �= A or I2 �= A. Let, for example I1 �= A. As I is maximal
we have I = I1. Thus I is prime. �
Definition 2.8. An ideal I of a pseudo MV -algebra A is called normal if it satisfies the
condition:
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(N) For all x, y ∈ A, x · y− ∈ I ⇐⇒ y∼ · x ∈ I.

To any normal ideal I of A we can associate a binary relation on A defined by:

x ∼I y ⇐⇒ x · y− ∨ y · x− ∈ I.(4)

By Theorem 3.8 of [1], ∼I is a congruence of A. We denote by x/I the congruence class of
an element x ∈ A. Let A/I = {x/I : x ∈ A} and we define on the set A/I the operations:

x/I ⊕ y/I = (x ⊕ y)/I, (x/I)− = (x−)/I, (x/I)∼ = (x∼)/I.

We remark that the algebra A/I = (A/I;⊕,−,∼, 0/I, 1/I) becomes a pseudo MV -algebra,
called the quotient algebra of A by the normal ideal I. Observe that for all x, y ∈ A,

x/I · y/I = (x · y)/I.(5)

Indeed, x/I ·y/I = (y−/I⊕x−/I)∼ = ((y−⊕x−)/I)∼ = (y−⊕x−)∼/I = (x·y)/I. Similarly,

x/I ∧ y/I = (x ∧ y)/I(6)

and

x/I ∨ y/I = (x ∨ y)/I.(7)

For x, y ∈ A we have

x ∼I y ⇔ x · y− ∨ y · x− ∈ I (by (4))
⇔ x · y−, y · x− ∈ I (use Proposition 2.3(iii))
⇔ y∼ · x, x∼ · y ∈ I (by (N))
⇔ x∼ · y ∨ y∼ · x ∈ I.

Now it is easily seen that:

x/I = y/I ⇐⇒ x · y− ∨ y · x− ∈ I ⇐⇒ x∼ · y ∨ y∼ · x ∈ I;(8)
x/I = 0/I ⇐⇒ x ∈ I;(9)
x/I = 1/I ⇐⇒ x− ∈ I ⇐⇒ x∼ ∈ I.(10)

3. Implicative ideals

In the theory of MV -algebras, implicative ideals are defined and studied in [2]-[6].

Definition 3.1. An ideal I of a pseudo MV -algebra A is called implicative if it satisfies
the following condition (x, y, z ∈ A):

(Im) (x · y · z ∈ I and z∼ · y ∈ I) ⇒ x · y ∈ I.

Proposition 3.2. Let I be a subset of A containing 0. If the condition (Im) holds for all
x, y, z ∈ A, then I is an ideal.

Proof. Let y · x− ∈ I and x ∈ I. Then, by (A8) and Proposition 1.1(ii), we conclude that
y · 1 ·x− ∈ I and (x−)∼ · 1 = x · 1 = x ∈ I. From (Im) it follows that y = y · 1 ∈ I. Therefore
I is an ideal by Theorem 2.4. �
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Proposition 3.3. The implication (Im) is equivalent to

(Im′) For all x, y, z ∈ A, if x · y · z− ∈ I and z · y ∈ I, then x · y ∈ I.

Proof. (Im) ⇒ (Im′). Let x · y · z− ∈ I and z · y ∈ I. We put t = z−. Then x · y · t ∈ I and
by (A8), t∼ · y ∈ I. Applying (Im) we see that x · y ∈ I.

(Im′) ⇒ (Im). If x · y · z, z∼ · y ∈ I, then x · y · (z∼)− ∈ I and z∼ · y ∈ I. From (Im′) we
deduce that x · y ∈ I. Therefore (Im) holds. �
Theorem 3.4. Let I ∈ Id(A). Then the following statements are equivalent:

(i) I is implicative;
(ii) If x, y ∈ A and x · y · y ∈ I, then x · y ∈ I;
(iii) If xn ∈ I for some n ≥ 1, then x ∈ I;
(iv) {x ∈ A : x2 = 0} ⊆ I;
(v) x ∧ x− ∈ I for all x ∈ A;
(vi) x ∧ x∼ ∈ I for all x ∈ A.

Proof. (i) ⇒ (ii). Let x · y · y ∈ I. By Proposition 1.1(iv), y∼ · y = 0 ∈ I. From (Im) we
conclude that x · y ∈ I, and hence (ii) holds.

(ii) ⇒ (iii). (iii) is obviously true in case n = 1. If x2 ∈ I, then 1 · x · x ∈ I. By
(ii), x = 1 · x ∈ I. We may now assume that n ≥ 2, and suppose that (iii) holds for all
positive intergers ≤ n. Let xn+1 ∈ I. We have xn+1 = (xn−1 ·x) ·x. From (ii) it follows that
xn = xn−1 · x ∈ I, and hence, by induction hypothesis, x ∈ I.

(iii) ⇒ (iv). If x2 = 0, then x2 ∈ I, and we conclude from (iii) that x ∈ I.
(iv) ⇒ (v). By Propositions 1.3(iii) and 1.1(iv), (x∧x−)2 = (x∧x−)·(x∧x−) ≤ x·x− = 0.

Consequently, (x ∧ x−)2 = 0. Hence x ∧ x− ∈ I.
(v) ⇒ (vi). x∧x∼ = x∼∧x = x∼∧ (x∼)−, by Proposition 1.1(i). Since x∼∧ (x∼)− ∈ I,

we have (vi).
(vi) ⇒ (i). Let x · y · z ∈ I and z∼ · y ∈ I. By Proposition 1.3 and (1) we have

x · y · y ≤ x · y · (z ∨ y) = x · y · (z ⊕ z∼ · y) ≤ x · y · z ⊕ z∼ · y.

Since I is an ideal we deduce that x · y · y ∈ I. From (vi) it follows that y ∧ y∼ ∈ I. Then
a = x·y ·y⊕(y∧y∼) ∈ I. Applying Proposition 1.3(iv) we get a = (x·y ·y⊕y)∧(x·y ·y⊕y∼) ≥
y ∧ (x · y · y ⊕ y∼). But x · y · y ⊕ y∼ = x · y · (y∼)− ⊕ y∼ = x · y ∨ y∼, by Proposition 1.1(i)
and (1). Therefore,

x · y ≤ y ∧ (x · y · y ⊕ y∼) ≤ a ∈ I.

Hence x · y ∈ I, and we obtain (Im). Thus I is implicative. �
Let Inf(A) = {x ∈ A : x2 = 0} and N(A) = {x ∈ A : xn = 0 for some interger n ≥ 1}.

Elements of N(A) are called the nilpotent elements of A. It is obvious that Inf(A) ⊆ N(A).
It was shown in Corollary 3.2 of [3] that if A is a MV -algebra, then N(A) is contained in
every implicative ideal of A. Theorem 3.4 implies

Corollary 3.5. Let I be an ideal of a pseudo MV-algebra A. Then the following three
conditions are equivalent:

(i) I is implicative;
(ii) N(A) ⊆ I;
(iii) Inf(A) ⊆ I.

Hence we obtain
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Corollary 3.6. If Inf(A) is an ideal, then Inf(A) is implicative.

Corollary 3.7. (Extension property for implicative ideals.) Let I be implicative and
suppose that J is an ideal of A such that I ⊆ J. Then J is implicative.

Proof. Follows from Corollary 3.5. �
Remark 3.8. The preceding result generalizes Corollary 2.14 of [4], since MV -algebras
are pseudo MV -algebras.

Theorem 3.9. Let I be a proper ideal of A. Then the following statements are equivalent:

(i) I is maximal and implicative;
(ii) I is prime and implicative;
(iii) ∀x ∈ A (x ∈ I or x− ∈ I);
(iv) ∀x ∈ A (x ∈ I or x∼ ∈ I);
(v) ∀x ∈ A (x ∈ I or x− ∈ I or x∼ ∈ I).

Proof. (i) ⇒ (ii). Follows from Lemma 2.7.
(ii) ⇒ (iii). Let x ∈ A. Since I is implicative, Theorem 3.4 implies x ∧ x− ∈ I. By

Proposition 2.6, x ∈ I or x− ∈ I.
(iii) ⇒ (iv). Let x ∈ A and suppose that x /∈ I. Then (x∼)− = x /∈ I. From (iii) it

follows that x∼ ∈ I.
(iv) ⇒ (v). Obvious.
(v) ⇒ (i). Let I satisfy (v) and let x ∈ A. Suppose that x ∧ x− /∈ I. Therefore x /∈ I

and x− /∈ I. From (v) we conclude that x∼ ∈ I. We have x∧ x∼ ∈ I, because x∧ x∼ ≤ x∼.
By Theorem 3.4, I is implicative. Observe that I is also maximal. Let J be an ideal of A
such that I ⊂ J. For every z ∈ J − I, we have by (v) that z− ∈ I or z∼ ∈ I. Consequently,
z− ∈ J or z∼ ∈ J. Then z−⊕z ∈ J or z⊕z∼ ∈ J. But z−⊕z = z⊕z∼ = 1 (see Proposition
1.1(iii)). Hence 1 ∈ J and thus J = A. �
Remark 3.10. Theorem 3.9 implies Theorem 3.7 of [2] and Proposition 3.7 of [3] (see also
[5], p. 463).

As an immediate consequence of Theorem 3.9 we obtain

Corollary 3.11. Let I be a proper implicative ideal. Then I is prime if and only if I is
maximal.

Lemma 3.12. Suppose that an ideal I ofA is normal and implicative. Then x−/I = x∼/I
for all x ∈ A.

Proof. Let x ∈ A. Since I is implicative and x− · x ≤ x ∧ x−, we conclude that x− · x ∈ I.
Similarly, (x−)− ·x− ≤ x−∧(x−)− ∈ I, and hence (x−)− ·x− ∈ I. Then we have x∼ ·(x−)− ∈
I, because I is normal. Therefore,

x− · (x∼)− ∨ x∼ · (x−)− = x− · x ∨ x∼ · (x−)− ∈ I.

From (8) we obtain x−/I = x∼/I. �
Theorem 3.13. Let I be a normal ideal of a pseudo MV-algebra A. Then the following
statements are equivalent:

(i) L(A/I) is a Boolean lattice in which x−/I = x∼/I is the complement of x/I;



ON IMPLICATIVE IDEALS OF PSEUDO MV -ALGEBRAS 369

(ii) B(A/I) = A/I;
(iii) I is implicative.

Proof. (i) ⇒ (ii).We choose to note by x−/I the complement of x/I in L(A/I). We have
x/I ∧ x−/I = 0/I, and hence x/I ∈ B(A/I) for all x ∈ A. Thus (ii) holds.

(ii) ⇒ (iii). Let x ∈ A. Since x/I ∈ B(A/I), we conclude that x/I ∧ x−/I = 0/I. From
(6) we obtain (x∧x−)/I = 0/I. By (9), x∧x− ∈ I. Theorem 3.4 shows that I is implicative.

(iii) ⇒ (i). Proposition 1.2 implies that L(A/I) is a bounded distributive lattice. By
Lemma 3.12, x−/I = x∼/I for all x ∈ A. Since I is implicative, we see that x ∧ x− ∈ I.
Applying (6) we get (x ∧ x−)/I = 0/I, and therefore x/I ∧ x−/I = 0/I. Observe that

(x ∨ x∼)− ∈ I.(11)

Indeed, applying Propositions 1.3(ii) and 1.1(i) we obtain

(x ∨ x∼)− = x− ∧ (x∼)− = x− ∧ x ∈ I.

Applying (7) and combining (10) with (11) we get

x/I ∨ x−/I = x/I ∨ x∼/I = (x ∨ x∼)/I = 1/I.

Consequently, x−/I = x∼/I is the complement of x/I in L(A/I) and L(A/I) is a Boolean
lattice. �
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