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POLYNOMIAL HULLS OF GRAPHS ON THE TORUS IN C2
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Abstract. We describe the polynomial hulls of graphs on the torus which are defined
by the complex conjugate functions of polynomials in �2 .

1. Introduction. Let X be a compact subset in CN and X̂ the polynomial hull of X . We
denote by C(X) the Banach algebra of all continuous functions on X with sup-norm ‖ ‖X

and by P (X) the closure in C(X) of the polynomials in the coordinates.
Let p(z, w) be an arbitrary polynomial in C2 and f the restriction of the complex conju-

gate of p to the unit torus T2 = {(z, w) ∈ C2 : |z| = 1, |w| = 1}. Let G(f) denote the graph
in C3 of f on T2, i.e.,

G(f) = {(z, w, f(z, w)) ∈ C3 : (z, w) ∈ T2}.
H. Alexander([1]) and P. Ahern - W. Rudin ([2]) studied the structure of polynomial hulls

of graphs on the unit sphere in Cn. In this paper we consider the structure of polynomial
hulls of graphs on T2 which are defined by the complex conjugates of polynomials in C2.

Assume that the degrees of p(z, w) =
∑m

i=0

∑n
j=0 aijz

iwj in z and w respectively are m
and n. We consider a polynomial k(z, w) =

∑m
i=0

∑n
j=0 aijz

m−iwn−j and rational function
h(z, w) = z−mw−nk(z, w). We have, for (z, w) ∈ T2,

m∑
i=0

n∑
j=0

aij
1
zi

1
wj

=
1

zmwn
k(z, w) = h(z, w)

We set

∆(z, w) =

∣∣∣∣∣∣∣∣∣

∂p

∂z
(z, w)

∂p

∂w
(z, w)

∂h

∂z
(z, w)

∂h

∂w
(z, w)

∣∣∣∣∣∣∣∣∣
.

We can write as a product

∆(z, w) =
1

zm+1wn+1

t∏
i=1

qi(z, w)ni

where qi(z, w) are irreducible polynomials. Let D be the open unit disk in C, T its boundary
and D2 the open unit polydisk in C2. For each qi(z, w) put

Z(qi) = {(z, w) ∈ C2 : qi(z, w) = 0},
Qi = Z(qi) ∩ T2, Ri = Z(qi) ∩ D2.

We put L = (D × {0}) ∪ ({0} × D) and

V = {(z, w) ∈ D2 \ (T2 ∪ L) : p(z, w) = h(z, w)}.
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Let [z, w, f ; T2] be the uniform algebra genarated by the coodinate functions z, w and
f on T 2. Our result is that the polynomial hull of the graph G(f) can be deteremined as
follows.

Theorem. Assume that ∆(z, w) �≡ 0 on D2 \ L. We put

J = {i ∈ {1, 2, · · · , t} : ∅ �= Qi �= Q̂i, Q̂i \ (T2 ∪ L) ⊂ V }.

(a) If J �= ∅, then we have Ĝ(f) =
⋃
i∈J

{(z, w, p(z, w)) : (z, w) ∈ Q̂i} ∪G(f).

In this case p(z, w) = ci (constant) on Q̂i.

(b) If J = ∅, then we have

Ĝ(f) = G(f), and [z, w, f ; T2] = C(T2).

2. Facts and lemmas. Let M be a C∞ real submanifold of an open set U in CN . For
a point η ∈ M we denote by TηM the real tangent space of M at η. M is called totally
real at η if TηM contains no non-trivial complex subspaces. M is called totally real if M
is totally real at every point of M . For a subset S of C2 and a continuous function g on S,
we denote by G(g;S) the graph of g on S, i.e.,

G(g;S) = {(z, w, g(z, w)) ∈ C3 : (z, w) ∈ S}.

When M is a totally real submanifold of U in C2 and g is a C∞ function in U , it is known
that the graph G(g;M) is totally real. For the graph G(f) = G(p̄; T2) we have that Ĝ(f)
is connected and so it does not contain any isolated points, since the polynomial hull of
a compact connected set is connected. We need several facts and lemmas to decide the
polynomial hull of Ĝ(f).

Theorem 2.1. ([4], [7]). Let M be a C∞ totally real submanifold of U in CN .
(a) If X is a compact polynomialy convex subset of M , then P (X) = C(X).
(b) For a point η ∈ M there exsists a small ball B0 centered at η such that B̄0 ∩M is

polynomially convex.

Lemma 2.2. ([5]). If (z0, w0) is a point in V with ∆(z0, w0) �= 0, then there is an open
ball B0 centered at (z0, w0) such that B0 ∩ V is totally real in B0.

Lemma 2.3. ([5]). Let X be a compact connected subset of CN and U an open subset of
CN with U ∩X = ∅. If X̂ ∩ U is contained in a totally real submanifold M of U , then we
have X̂ ∩ U = ∅.

The proof of next lemma is obtained by the same way ([2]) in the case of the unit ball.

Lemma 2.4. Let g be a continuous function on T2. If (z0, w0) ∈ T2 and (z0, w0, ζ0) ∈
Ĝ(g; T2), then ζ0 = g(z0, w0).

Next lemma is a special case of Lemma 1 in [6]. By using the results of uniform algebras
it is also proved as follows.
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Lemma 2.5. Let g1 and g2 be holomorphic functions on D2 and f = (ḡ1 + g2)|T2 . Then
we have

Ĝ(f) ⊂ G(ḡ1 + g2; D2).

Proof. Let A = [z, w, ḡ1 + g2; T2] = [z, w, ḡ1; T2] and MA the maximal ideal space of A.
We denote by X the joint spectrum of z, w, ḡ1 + g2. Since a point evaluation of T2 belongs
MA, G(f) is contained in X , and so Ĝ(f) ⊂ X̂ = X (cf.[3]). For a point (z0, w0, ζ0) in
Ĝ(f) there is a ϕ ∈ MA such that z0 = ϕ(z), w0 = ϕ(w) and ζ0 = ϕ(ḡ1 + g2). Then
|z0| = |ϕ(z)| ≤ ‖z‖T2 = 1 and similarly |w0| ≤ 1. By using the polynomial approximation
of gi we have that ϕ(gi) = gi(z0, w0), i = 1, 2. Let µ be the representing measure on T2 for
ϕ. Then

ϕ(ḡ1) =
∫

T2
ḡdµ =

∫
T2
g1dµ = ϕ(g1).

Thus we have that ϕ(ḡ1 + g2) = ϕ(g1) + ϕ(g2) = g1(z0, w0) + g2(z0, w0) and (z0, w0, ζ0) is
contained in G(ḡ1 + g2; D2).

3. Proof of Theorem. @ We write I = {1, 2, · · · , t},

Ei = {(z, w) ∈ Ri \ (T2 ∪ L) :
∂qi
∂z

(z, w) = 0, or
∂qi
∂w

(z, w) = 0},

Fi =
⋃

j∈I\{i}
(Ri ∩Rj) \ (T2 ∪ L),

R∗
i = Ri \ (T2 ∪ L ∪ Ei ∪ Fi),

Σ =
⋃
i∈I

Ri \ (T2 ∪ L).

It is known that the sets Ei and Ri ∩ Rj (i �= j) are finite at most, respectively, and
Z(qi) \ (Ei ∪ Fi) is a connected set in C2.

Step I. Ĝ(f) \G(p̄; T2 ∪ L) ⊂ G(p̄; Σ ∩ V ).

Proof. Let ζ be the third coordinate of C3. By Lemma 2.5 we have that

Ĝ(f) ⊂ {(z, w, ζ) : (z, w) ∈ D2, ζ = p(z, w) }
and by the definition of k(z, w)

Ĝ(f) ⊂ {(z, w, ζ) : (z, w) ∈ D2, |ζ| ≤ ‖p‖T2, zmwnζ − k(z, w) = 0 }.
Hence we have Ĝ(f)\G(p̄; T2∪L) ⊂ G(p̄;V ). If a point (z0, w0) ∈ V \Σ, then ∆(z0, w0) �= 0.
By Lemma 2.2 there is a ball B0 centered at (z0, w0) such that B0∩(T2∪L) = ∅ and B0∩V
is a totally real submanifold of B0. Thus the graph G(p̄;B0 ∩ V ) is also totally real and
(B0 × C) ∩G(f) = ∅. It follows from Lemma 2.3 that

G(p̄;B0 ∩ V ) ∩ Ĝ(f) = ∅,
and so

G(p̄;V \ Σ) ∩ Ĝ(f) = ∅,
which proves Step I.

Note. It is sufficient to investigate G(p̄;V ∩ Σ), since the graph Ĝ(f) is connected and
Ĝ(f) ⊂ G(p̄; T2) ∪G(p̄;V ∩ Σ) ∪G(p̄;L).
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Assume that for some i ∈ I, V ∩ R∗
i �= ∅. For a point (z0, w0) in V ∩ R∗

i , there exist
a neighborhood U0 of (z0, w0) in R∗

i and holomorphic functions ϕ(λ) and ψ(λ) on D̄ such
that (z0, w0) = (ϕ(0), ψ(0)) and

U0 = {(ϕ(λ), ψ(λ)) : λ ∈ D}.

Step II. The case that ϕ(λ) and ψ(λ) satisfy the condition

p(ϕ(λ), ψ(λ)) − h(ϕ(λ), ψ(λ)) ≡ 0 on D. (1)

In this case, qi(z, w) is a common factor of p(z, w)−p(z0, w0) and k(z, w)− zmwnp(z0, w0),
and so

Ri \ (T2 ∪ L) ⊂ V. (2)
Proof. We obtain the power series on D̄

p(ϕ(λ), ψ(λ)) = a0 + a1λ+ a2λ
2 + · · · ,

h(ϕ(λ), ψ(λ)) = b0 + b1λ+ b2λ
2 + · · · .

It follows from the assumption that for every polynomial q(λ)

0 =
∫
|λ|=1

{p(ϕ(λ), ψ(λ)) − h((ϕ(λ), ψ(λ))}q(λ)dλ

=
∫
|λ|=1

{(ā0 + ā1λ̄+ ā2λ̄
2 + · · · ) − b0}q(λ)dλ.

Thus ā1 = ā2 = · · · = 0, ā0 = p(z0, w0) = b0 and a0 − h(ϕ(λ), ψ(λ)) ≡ 0 on D̄. Since a0

depends on qi, we put ci = a0. Then we can write that

k(z, w) − c̄iz
mwn = qi(z, w)ki(z, w),

p(z, w) − ci = qi(z, w)pi(z, w)
for some polynomials pi(z, w) and ki(z, w). Thus (2) follows.

Step III. The case that (1) does not holds, i.e.,

p(ϕ(λ), ψ(λ)) − h(ϕ(λ), ψ(λ)) �≡ 0 on D. (3)

In this case, we have

Ĝ(f) \G(p̄; T2 ∪ L) ⊂ G(p̄; Σi ∩ V ) (4)

where Σi =
⋃

j∈I\{i}
Rj \ (T2 ∪ L).

To show this we consider the condition (3) from two viewpoints of (5), (6) of Step IV
and V.

Step IV. If
p(ϕ(λ), ψ(λ)) − ci ≡ 0 on D, (5)

then we have G(p̄; (V ∩Ri) \ Σi) ∩ Ĝ(f) = ∅.
Proof. Since qi(z, w) is an irreducible polynomial, it is a factor of p(z, w) − ci. Thus

p(z, w) − ci ≡ 0 on Ri and ci − h(z, w) �≡ 0 on D2 \ (T2 ∪ L). Thus the set

V ∩Ri = {(z, w) ∈ D2 \ (T2 ∪ L) : ci − h(z, w) = 0, qi(z, w) = 0}
is finite. Thus G(p̄;V ∩ Ri) is the set of isolated points. Since Ĝ(f) does not contain any
isolated points, we have G(p̄;V ∩Ri \ Σi) ∩ Ĝ(f) = ∅, which proves (5).
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Step V. Now let (z0, w0) ∈ R∗
i . Assume that

p(ϕ(λ), ψ(λ)) − p(z0, w0) �≡ 0 on D. (6)

We can assume that ϕ(λ) = z0 + λ in ρD for some positive ρD. We put

W0 = {(ϕ(λ), ψ(λ)) : λ ∈ ρD}
and

W ∗
0 = {(z0 + λ, ψ(λ)) : λ ∈ ρD,

∂p

∂z
(ϕ(λ), ψ(λ)) +

∂p

∂w
(ϕ(λ), ψ(λ))

dψ(λ)
dλ

�= 0}.
Step VI. If (6) holds, then G(p̄;W ∗

0 ) is totally real, and so

G(p̄;Ri \ (T2 ∪ L ∪ Σi)) ∩ Ĝ(f) = ∅. (7)

Proof. We put λ = x + iy and p = u + iv (x, y, u, v real). The real tangent vectors at

(z0 + λ, ψ(λ), p(z0 + λ, ψ(λ))) to G(p̄;W0) for
∂

∂x
,
∂

∂y
are as follows.

v1 =
(
1, 0,

∂Reψ
∂x

(λ),
∂Imψ
∂x

(λ),
∂u

∂x
,−∂v

∂x
),

v2 =
(
0, 1,

∂Reψ
∂y

(λ),
∂Imψ
∂y

(λ),
∂u

∂y
,−∂u

∂y

)
.

The rank of the matrix defined by components of v1, v2, iv1, iv2 is 4, since∣∣∣∣∣∣∣∣
1 0 ux −vx

0 1 uy −vy

0 1 vx ux

−1 0 vy uy

∣∣∣∣∣∣∣∣
= −4(u2

x + v2
x) = −4

∣∣∣∣dpdλ
∣∣∣∣
2

.

Thus G(p̄;W ∗
0 ) is a totally real manifold. It follows from Lemma 2.3 that

G(p̄;W ∗
0 \ Σi) ∩ Ĝ(f) = ∅.

Since W0 \W ∗
0 is a set of isolated points, by connectivity of Ĝ(f) we have

G(p̄;W0 \ (W ∗
0 ∪ Σi)) ∩ Ĝ(f) = ∅.

When points (z0, w0) run in R∗
i , the coresponding neighborhoods U0 cover R∗

i . Thus
G(p̄;R∗

i \ (Σi ∪ T2 ∪ L) ∩ Ĝ(f) = ∅. Since the set G(p̄;Ri \ (R∗
i ∪ T2 ∪ L)) is finite, we

have
G(p̄;Ri \ (R∗

i ∪ Σi ∪ T2 ∪ L)) ∩ Ĝ(f) = ∅,
and the assertion (7) is proved. From (5) and (7) we obtain (4) of Step III.

By the above facts we obtain the following:

Step VII. If we put

I0 = {i ∈ {1, 2, · · · , t} : ∅ �= Ri \ (T2 ∪ L) ⊂ V },
then

Ĝ(f) \G(p̄; T2 ∪ L) ⊂ G(p̄;∪i∈I0Ri ∩ V ).

For i ∈ I0, we consider the following cases:

(i). Qi = ∅, Ri �= ∅. (ii). ∅ �= Qi = Q̂i �= Ri.

(iii). ∅ �= Qi �= Q̂i = Ri. (iv). ∅ �= Qi �= Q̂i �= Ri.



354 Toshiya JIMBO

Step VIII. Assume that (ii) holds for i ∈ I0, then

G(p̄;Ri \ (T2 ∪ L ∪ Λi) ∩ Ĝ(f) = ∅, (8)

where Λi =
⋃

j∈I0\{i}Rj .

Proof. We denote mi by the maximal order of an irreducible factor qi(z, w) in p(z, w),
and we define a polynomial p1(z, w) by

p(z, w) − ci = p1(z, w)qi(z, w)mi .

By using p1(z, w) we put K = {(z, w) ∈ D2 : p1(z, w) = 0}. For a point (z0, w0) ∈
Ri \ (K ∪ T2 ∪ L), we put

p2(z, w) =
1

p1(z0, w0)
p1(z, w).

Since Qi and {(z0, w0)} are disjoint polynomially convex sets, there exist a polynomial
p0(z, w), a neighborhood U of Qi and a neighborhood W of K in T2 such that

p0(z0, w0) = 1, and |p0(z, w)p2(z, w)| < 1
2

on U,

|p0(z, w)p2(z, w)| < 1
2

on W.

If we put M = ‖p− ci‖T2, K1 = {(z, w) ∈ D2 : p(z, w) − ci = 0}, and put

g1(z, w, ζ) = 1 − 1
2M 2

(ζ − ci)(p(z, w) − ci),

then we have
g1(z, w, ζ) = 1 on G(p̄;K1).

Since |g1| < 1 on G(p̄; T2 \ (U ∪W )), there exists a positive integer k such that

|p2(z, w)p0(z, w)g1(z, w, ζ)k| < 1
2

on G(p̄; T2 \ (U ∪W )).

If we put g(z, w, ζ) = p2(z, w)p0(z, w)g1(z, w, ζ)k, then

|g(z, w, ζ)| < 1
2

on G(f), and g(z0, w0, p(z0, w0)) = 1.

Thus (z0, w0, p(z0, w0)) /∈ Ĝ(f) and so G(p̄;Ri \ (K ∪ T2 ∪ L)) ∩ Ĝ(f) = ∅. Since a set
(Ri ∩K) \ (T2 ∪ L) is finite, by connectivity of G(f) we have

G(p̄;Ri \ (Λi ∪ T2 ∪ L) ∩ Ĝ(f) = ∅.
which proves (8).

In the case (i), if we choose a point (z∗, w∗) in T2 \Λi, and put Qi = {(z∗, w∗)}, then we
similarly obtain the proof of (i).

Step IX. Assume the (iii) holds, then

G(p̄;Ri) ⊂ Ĝ(f). (9)

Proof. Since G(p̄;Qi) ⊂ G(f) = G(p̄; T2) and G(p̄;Qi) ⊂ {(z, w, ζ) ∈ C3 : ζ = ci}, then we

obtain (9).

Step X. Assume that (iv) holds. Then we have

G(p̄;Ri \ (L ∪ T2 ∪ Q̂i)) ∩ Ĝ(f) = ∅. (10).

Proof. Let (z0, w0) be a point of Ri \ (L ∪ T2 ∪ Q̂i). If Qi in (ii) is replaced by Q̂i, we
similarly have (10).
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5. Examples.

Example 5.1. If p(z, w) = {(z+ 1)− (w+ 1)2}{(z+1)w2 − z(w+ 1)2} and f = p̄|T2 , then

h(z, w) =
1

z2w4
p(z, w) and

∆(z, w) =
2p(z, w)
z3w5

g(z, w)

where

g(z, w) = wpw(z, w) − 2zpz(z, w)

= 2[(w + 1)z2 + w2(2w + 3)z − w3(2w + 3)].

The polynomial g(z, w) is irreducible. The sets defined by the section 1 are as follows:
Q1 = {(z, w) ∈ T2 : z − w2 − 2w = 0} = {(−1,−1)} = Q̂1.

R1 = {(z, w) ∈ D
2

: z − w2 − 2w = 0}.
Q2 = {(z, w) ∈ T2 : w2 − z − 2zw = 0} = {(−1,−1)} = Q̂2.

R2 = {(z, w) ∈ D2 : w2 − z − 2zw = 0}.
R3 = {(z, w) ∈ D2 : g(z, w) = 0}.

Then we have that Rj \ (T2 ∪ L) ⊂ V and ∅ �= Qj = Q̂j �= Rj , j = 1, 2. Since g(z, w)
and p(z, w) − c for every c ∈ C are relatively prime polynomials. Thus R3 \ (T2 ∪ L) is not
contained in V . Since I0 = {1, 2} and J = ∅, by the theorem we have

Ĝ(f) = G(f).

Example 5.2. If p(z, w) = (z + w)(w + 2)(2w + 1) and f = p̄|T2 , then we have that

h(z, w) =
1
zw3

(z + w)(w + 2)(2w + 1) and

∆(z, w) =
2
zw3

(z + w)(w + 2)(2w + 1)g(z, w)

where g(z, w) = −z(w2 + 5w + 3) + w(3w2 + 5w + 1). Since the polynomial g(z, w) is
irreducible, the sets {(z, w) ∈ D2 \ (T2 ∪ L) : z + w = 0} and {(z, w) ∈ D2 \ (T2 ∪ L) :
2w + 1 = 0} are contained in V , it follows from the theorem that

Ĝ(f) = G(f) ∪ {(z, w, 0) ∈ D̄2 : z + w = 0}.

Example 5.3. ([5]). Let p(z, w) be a homogeneous polynomial:

P (z, w) = czmwn(zk + a1z
k−1w + a2z

k−2w2 + · · · + akw
k)(ak �= 0)

= c(z − λ1w)(z − λ2w) · · · (z − λkw)zmwn

where k is a positive integer, m and n are nonnegative integers, and c, λ1, λ2, · · · , λk are
some constants with cλ1λ2 · · ·λk �= 0. We put

J = {j ∈ {1, 2, · · · , k} : |λj | = 1}.

(1) If J �= ∅, then Ĝ(f) =
⋃

j∈J{(z, w, 0); z − λjw = 0, w ∈ D} ∪G(f).

(2) If J = ∅, then Ĝ(f) = G(f), and moreover [z, w, f ; T2] = C(T2).
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Example 5.4. If p(z, w) = (z2 − 1)w + z and f = p̄|T2 , then h(z, w) = (1−z2)+zw
z2w and

∆(z, w) =
1

z3w2
(z2 − 1)g(z, w)

where g(z, w) = zw2 + 2(z2 + 1)w + z. We have that z − 1 is a factor of p(z, w) − 1 and
z + 1 is a factor of p(z, w) + 1 and g(z, w) is an irreducible polynomial. Thus

Ĝ(f) = G(f) ∪ {(1, w, 1) : w ∈ D} ∪ {(−1, w,−1) : w ∈ D}.
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