# POLYNOMIAL HULLS OF GRAPHS ON THE TORUS IN C ${ }^{2}$ 

TOSHIYA JIMBO

Received May 24, 2005; revised July 15, 2005


#### Abstract

We describe the polynomial hulls of graphs on the torus which are defined by the complex conjugate functions of polynomials in $\mathbb{C}^{2}$.


1. Introduction. Let $X$ be a compact subset in $\mathbb{C}^{N}$ and $\hat{X}$ the polynomial hull of $X$. We denote by $C(X)$ the Banach algebra of all continuous functions on $X$ with sup-norm $\left\|\|_{X}\right.$ and by $P(X)$ the closure in $C(X)$ of the polynomials in the coordinates.

Let $p(z, w)$ be an arbitrary polynomial in $\mathbb{C}^{2}$ and $f$ the restriction of the complex conjugate of $p$ to the unit torus $\mathbb{T}^{2}=\left\{(z, w) \in \mathbb{C}^{2}:|z|=1,|w|=1\right\}$. Let $G(f)$ denote the graph in $\mathbb{C}^{3}$ of $f$ on $\mathbb{T}^{2}$, i.e.,

$$
G(f)=\left\{(z, w, f(z, w)) \in \mathbb{C}^{3}:(z, w) \in \mathbb{T}^{2}\right\}
$$

H. Alexander([1]) and P. Ahern - W. Rudin ([2]) studied the structure of polynomial hulls of graphs on the unit sphere in $\mathbb{C}^{n}$. In this paper we consider the structure of polynomial hulls of graphs on $\mathbb{T}^{2}$ which are defined by the complex conjugates of polynomials in $\mathbb{C}^{2}$.

Assume that the degrees of $p(z, w)=\sum_{i=0}^{m} \sum_{j=0}^{n} a_{i j} z^{i} w^{j}$ in $z$ and $w$ respectively are $m$ and $n$. We consider a polynomial $k(z, w)=\sum_{i=0}^{m} \sum_{j=0}^{n} \overline{a_{i j}} z^{m-i} w^{n-j}$ and rational function $h(z, w)=z^{-m} w^{-n} k(z, w)$. We have, for $(z, w) \in \mathbb{T}^{2}$,

$$
\sum_{i=0}^{m} \sum_{j=0}^{n} \overline{a_{i j}} \frac{1}{z^{i}} \frac{1}{w^{j}}=\frac{1}{z^{m} w^{n}} k(z, w)=h(z, w)
$$

We set

$$
\Delta(z, w)=\left|\begin{array}{ll}
\frac{\partial p}{\partial z}(z, w) & \frac{\partial p}{\partial w}(z, w) \\
\frac{\partial h}{\partial z}(z, w) & \frac{\partial h}{\partial w}(z, w)
\end{array}\right|
$$

We can write as a product

$$
\Delta(z, w)=\frac{1}{z^{m+1} w^{n+1}} \prod_{i=1}^{t} q_{i}(z, w)^{n_{i}}
$$

where $q_{i}(z, w)$ are irreducible polynomials. Let $\mathbb{D}$ be the open unit disk in $\mathbb{C}, \mathbb{T}$ its boundary and $\mathbb{D}^{2}$ the open unit polydisk in $\mathbb{C}^{2}$. For each $q_{i}(z, w)$ put

$$
\begin{aligned}
& Z\left(q_{i}\right)=\left\{(z, w) \in \mathbb{C}^{2}: q_{i}(z, w)=0\right\} \\
& Q_{i}=Z\left(q_{i}\right) \cap \mathbb{T}^{2}, \quad R_{i}=Z\left(q_{i}\right) \cap \overline{\mathbb{D}^{2}}
\end{aligned}
$$

We put $L=(\overline{\mathbb{D}} \times\{0\}) \cup(\{0\} \times \overline{\mathbb{D}})$ and

$$
V=\left\{(z, w) \in \overline{\mathbb{D}^{2}} \backslash\left(\mathbb{T}^{2} \cup L\right): \overline{p(z, w)}=h(z, w)\right\}
$$

2000 Mathematics Subject Classification. Primary 32E20.
Key words and phrases. Polynomial hulls.

Let $\left[z, w, f ; \mathbb{T}^{2}\right]$ be the uniform algebra genarated by the coodinate functions $z, w$ and $f$ on $T^{2}$. Our result is that the polynomial hull of the graph $G(f)$ can be deteremined as follows.

Theorem. Assume that $\Delta(z, w) \not \equiv 0$ on $\mathbb{D}^{2} \backslash L$. We put

$$
J=\left\{i \in\{1,2, \cdots, t\}: \emptyset \neq Q_{i} \neq \widehat{Q_{i}}, \widehat{Q_{i}} \backslash\left(\mathbb{T}^{2} \cup L\right) \subset V\right\}
$$

(a) If $J \neq \emptyset$, then we have $\widehat{G(f)}=\bigcup_{i \in J}\left\{(z, w, \overline{p(z, w)}):(z, w) \in \widehat{Q_{i}}\right\} \cup G(f)$.

In this case $\overline{p(z, w)}=\overline{c_{i}}$ (constant) on $\widehat{Q_{i}}$.
(b) If $J=\emptyset$, then we have

$$
\widehat{G(f)}=G(f), \text { and }\left[z, w, f ; \mathbb{T}^{2}\right]=C\left(\mathbb{T}^{2}\right)
$$

2. Facts and lemmas. Let $M$ be a $C^{\infty}$ real submanifold of an open set $U$ in $\mathbb{C}^{N}$. For a point $\eta \in M$ we denote by $T_{\eta} M$ the real tangent space of $M$ at $\eta . M$ is called totally real at $\eta$ if $T_{\eta} M$ contains no non-trivial complex subspaces. $M$ is called totally real if $M$ is totally real at every point of $M$. For a subset $S$ of $\mathbb{C}^{2}$ and a continuous function $g$ on $S$, we denote by $G(g ; S)$ the graph of $g$ on $S$, i.e.,

$$
G(g ; S)=\left\{(z, w, g(z, w)) \in \mathbb{C}^{3}:(z, w) \in S\right\}
$$

When $M$ is a totally real submanifold of $U$ in $\mathbb{C}^{2}$ and $g$ is a $C^{\infty}$ function in $U$, it is known that the graph $G(g ; M)$ is totally real. For the graph $G(f)=G\left(\bar{p} ; \mathbb{T}^{2}\right)$ we have that $\widehat{G(f)}$ is connected and so it does not contain any isolated points, since the polynomial hull of a compact connected set is connected. We need several facts and lemmas to decide the polynomial hull of $\widehat{G(f)}$.

Theorem 2.1. ([4], [7]). Let $M$ be a $C^{\infty}$ totally real submanifold of $U$ in $\mathbb{C}^{N}$.
(a) If $X$ is a compact polynomialy convex subset of $M$, then $P(X)=C(X)$.
(b) For a point $\eta \in M$ there exsists a small ball $B_{0}$ centered at $\eta$ such that $\bar{B}_{0} \cap M$ is polynomially convex.

Lemma 2.2. ([5]). If $\left(z^{0}, w^{0}\right)$ is a point in $V$ with $\Delta\left(z^{0}, w^{0}\right) \neq 0$, then there is an open ball $B_{0}$ centered at $\left(z^{0}, w^{0}\right)$ such that $B_{0} \cap V$ is totally real in $B_{0}$.

Lemma 2.3. ([5]). Let $X$ be a compact connected subset of $\mathbb{C}^{N}$ and $U$ an open subset of $\mathbb{C}^{N}$ with $U \cap X=\emptyset$. If $\hat{X} \cap U$ is contained in a totally real submanifold $M$ of $U$, then we have $\hat{X} \cap U=\emptyset$.

The proof of next lemma is obtained by the same way ([2]) in the case of the unit ball.

Lemma 2.4. Let $g$ be a continuous function on $\mathbb{T}^{2}$. If $\left(z^{0}, w^{0}\right) \in \mathbb{T}^{2}$ and $\left(z^{0}, w^{0}, \zeta^{0}\right) \in$ $\widehat{G\left(g ; \mathbb{T}^{2}\right)}$, then $\zeta^{0}=g\left(z^{0}, w^{0}\right)$.

Next lemma is a special case of Lemma 1 in [6]. By using the results of uniform algebras it is also proved as follows.

Lemma 2.5. Let $g_{1}$ and $g_{2}$ be holomorphic functions on $\overline{\mathbb{D}^{2}}$ and $f=\left.\left(\bar{g}_{1}+g_{2}\right)\right|_{\mathbb{T}^{2}}$. Then we have

$$
\widehat{G(f)} \subset G\left(\bar{g}_{1}+g_{2} ; \overline{\mathbb{D}^{2}}\right) .
$$

Proof. Let $A=\left[z, w, \bar{g}_{1}+g_{2} ; \mathbb{T}^{2}\right]=\left[z, w, \bar{g}_{1} ; \mathbb{T}^{2}\right]$ and $M_{A}$ the maximal ideal space of $A$. We denote by $X$ the joint spectrum of $z, w, \bar{g}_{1}+g_{2}$. Since a point evaluation of $\mathbb{T}^{2}$ belongs $M_{A}, G(f)$ is contained in $X$, and so $\widehat{G(f)} \subset \hat{X}=X$ (cf.[3]). For a point $\left(z_{0}, w_{0}, \zeta_{0}\right)$ in $\widehat{G(f)}$ there is a $\varphi \in M_{A}$ such that $z_{0}=\varphi(z), w_{0}=\varphi(w)$ and $\zeta_{0}=\varphi\left(\bar{g}_{1}+g_{2}\right)$. Then $\left|z_{0}\right|=|\varphi(z)| \leq\|z\|_{\mathbb{T}^{2}}=1$ and similarly $\left|w_{0}\right| \leq 1$. By using the polynomial approximation of $g_{i}$ we have that $\varphi\left(g_{i}\right)=g_{i}\left(z_{0}, w_{0}\right), i=1,2$. Let $\mu$ be the representing measure on $\mathbb{T}^{2}$ for $\varphi$. Then

$$
\varphi\left(\bar{g}_{1}\right)=\int_{\mathbb{T}^{2}} \bar{g} d \mu=\overline{\int_{\mathbb{T}^{2}} g_{1} d \mu}=\overline{\varphi\left(g_{1}\right)} .
$$

Thus we have that $\varphi\left(\bar{g}_{1}+g_{2}\right)=\overline{\varphi\left(g_{1}\right)}+\varphi\left(g_{2}\right)=\overline{g_{1}\left(z_{0}, w_{0}\right)}+g_{2}\left(z_{0}, w_{0}\right)$ and $\left(z_{0}, w_{0}, \zeta_{0}\right)$ is contained in $G\left(\bar{g}_{1}+g_{2} ; \overline{\mathbb{D}^{2}}\right)$.
3. Proof of Theorem. @ We write $I=\{1,2, \cdots, t\}$,

$$
\begin{aligned}
& E_{i}=\left\{(z, w) \in R_{i} \backslash\left(\mathbb{T}^{2} \cup L\right): \frac{\partial q_{i}}{\partial z}(z, w)=0, \text { or } \frac{\partial q_{i}}{\partial w}(z, w)=0\right\}, \\
& F_{i}=\bigcup_{j \in I \backslash\{i\}}\left(R_{i} \cap R_{j}\right) \backslash\left(\mathbb{T}^{2} \cup L\right), \\
& R_{i}^{*}=R_{i} \backslash\left(\mathbb{T}^{2} \cup L \cup E_{i} \cup F_{i}\right), \\
& \Sigma=\bigcup_{i \in I} R_{i} \backslash\left(\mathbb{T}^{2} \cup L\right) .
\end{aligned}
$$

It is known that the sets $E_{i}$ and $R_{i} \cap R_{j}(i \neq j)$ are finite at most, respectively, and $Z\left(q_{i}\right) \backslash\left(E_{i} \cup F_{i}\right)$ is a connected set in $\mathbb{C}^{2}$.
Step I. $\widehat{G(f)} \backslash G\left(\bar{p} ; \mathbb{T}^{2} \cup L\right) \subset G(\bar{p} ; \Sigma \cap V)$.
Proof. Let $\zeta$ be the third coordinate of $\mathbb{C}^{3}$. By Lemma 2.5 we have that

$$
\widehat{G(f)} \subset\left\{(z, w, \zeta):(z, w) \in \overline{\mathbb{D}^{2}}, \zeta=\overline{p(z, w)}\right\}
$$

and by the definition of $k(z, w)$

$$
\widehat{G(f)} \subset\left\{(z, w, \zeta): \quad(z, w) \in \overline{\mathbb{D}^{2}},|\zeta| \leq\|p\|_{\mathbb{T}^{2}}, z^{m} w^{n} \zeta-k(z, w)=0\right\} .
$$

Hence we have $\widehat{G(f)} \backslash G\left(\bar{p} ; \mathbb{T}^{2} \cup L\right) \subset G(\bar{p} ; V)$. If a point $\left(z^{0}, w^{0}\right) \in V \backslash \Sigma$, then $\Delta\left(z^{0}, w^{0}\right) \neq 0$. By Lemma 2.2 there is a ball $B_{0}$ centered at $\left(z^{0}, w^{0}\right)$ such that $B_{0} \cap\left(\mathbb{T}^{2} \cup L\right)=\emptyset$ and $B_{0} \cap V$ is a totally real submanifold of $B_{0}$. Thus the graph $G\left(\bar{p} ; B_{0} \cap V\right)$ is also totally real and $\left(B_{0} \times \mathbb{C}\right) \cap G(f)=\emptyset$. It follows from Lemma 2.3 that

$$
G\left(\bar{p} ; B_{0} \cap V\right) \cap \widehat{G(f)}=\emptyset,
$$

and so

$$
G(\bar{p} ; V \backslash \Sigma) \cap \widehat{G(f)}=\emptyset
$$

which proves Step I.
Note. It is sufficient to investigate $G(\bar{p} ; V \cap \Sigma)$, since the graph $\widehat{G(f)}$ is connected and $\widehat{G(f)} \subset G\left(\bar{p} ; \mathbb{T}^{2}\right) \cup G(\bar{p} ; V \cap \Sigma) \cup G(\bar{p} ; L)$.

Assume that for some $i \in I, V \cap R_{i}^{*} \neq \emptyset$. For a point $\left(z^{0}, w^{0}\right)$ in $V \cap R_{i}^{*}$, there exist a neighborhood $\overline{U_{0}}$ of $\left(z^{0}, w^{0}\right)$ in $R_{i}^{*}$ and holomorphic functions $\varphi(\lambda)$ and $\psi(\lambda)$ on $\overline{\mathbb{D}}$ such that $\left(z^{0}, w^{0}\right)=(\varphi(0), \psi(0))$ and

$$
U_{0}=\{(\varphi(\lambda), \psi(\lambda)): \lambda \in \mathbb{D}\}
$$

Step II. The case that $\varphi(\lambda)$ and $\psi(\lambda)$ satisfy the condition

$$
\begin{equation*}
\overline{p(\varphi(\lambda), \psi(\lambda))}-h(\varphi(\lambda), \psi(\lambda)) \equiv 0 \text { on } \overline{\mathbb{D}} . \tag{1}
\end{equation*}
$$

In this case, $q_{i}(z, w)$ is a common factor of $p(z, w)-p\left(z^{0}, w^{0}\right)$ and $k(z, w)-z^{m} w^{n} \overline{p\left(z^{0}, w^{0}\right)}$, and so

$$
\begin{equation*}
R_{i} \backslash\left(\mathbb{T}^{2} \cup L\right) \subset V \tag{2}
\end{equation*}
$$

Proof. We obtain the power series on $\overline{\mathbb{D}}$

$$
\begin{aligned}
& p(\varphi(\lambda), \psi(\lambda))=a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+\cdots \\
& h(\varphi(\lambda), \psi(\lambda))=b_{0}+b_{1} \lambda+b_{2} \lambda^{2}+\cdots
\end{aligned}
$$

It follows from the assumption that for every polynomial $q(\lambda)$

$$
\begin{aligned}
0 & =\int_{|\lambda|=1}\{\overline{p(\varphi(\lambda), \psi(\lambda))}-h((\varphi(\lambda), \psi(\lambda))\} q(\lambda) d \lambda \\
& =\int_{|\lambda|=1}\left\{\left(\bar{a}_{0}+\bar{a}_{1} \bar{\lambda}+\bar{a}_{2} \bar{\lambda}^{2}+\cdots\right)-b_{0}\right\} q(\lambda) d \lambda
\end{aligned}
$$

Thus $\bar{a}_{1}=\bar{a}_{2}=\cdots=0, \bar{a}_{0}=\overline{p\left(z^{0}, w^{0}\right)}=b_{0}$ and $\bar{a}_{0}-h(\varphi(\lambda), \psi(\lambda)) \equiv 0$ on $\overline{\mathbb{D}}$. Since $a_{0}$ depends on $q_{i}$, we put $c_{i}=a_{0}$. Then we can write that

$$
\begin{gathered}
k(z, w)-\bar{c}_{i} z^{m} w^{n}=q_{i}(z, w) k_{i}(z, w) \\
\overline{p(z, w)}-\overline{c_{i}}=\overline{q_{i}(z, w) p_{i}(z, w)}
\end{gathered}
$$

for some polynomials $p_{i}(z, w)$ and $k_{i}(z, w)$. Thus (2) follows.
Step III. The case that (1) does not holds, i.e.,

$$
\begin{equation*}
\overline{p(\varphi(\lambda), \psi(\lambda))}-h(\varphi(\lambda), \psi(\lambda)) \not \equiv 0 \text { on } \overline{\mathbb{D}} . \tag{3}
\end{equation*}
$$

In this case, we have

$$
\begin{equation*}
\widehat{G(f)} \backslash G\left(\bar{p} ; \mathbb{T}^{2} \cup L\right) \subset G\left(\bar{p} ; \Sigma_{i} \cap V\right) \tag{4}
\end{equation*}
$$

where $\quad \Sigma_{i}=\bigcup_{j \in I \backslash\{i\}} R_{j} \backslash\left(\mathbb{T}^{2} \cup L\right)$.
To show this we consider the condition (3) from two viewpoints of (5), (6) of Step IV and V .
Step IV. If

$$
\begin{equation*}
\overline{p(\varphi(\lambda), \psi(\lambda))}-c_{i} \equiv 0 \quad \text { on } \mathbb{D} \tag{5}
\end{equation*}
$$

then we have $G\left(\bar{p} ;\left(V \cap R_{i}\right) \backslash \Sigma_{i}\right) \cap \widehat{G(f)}=\emptyset$.
Proof. Since $q_{i}(z, w)$ is an irreducible polynomial, it is a factor of $p(z, w)-c_{i}$. Thus $p(z, w)-c_{i} \equiv 0$ on $R_{i}$ and $\overline{c_{i}}-h(z, w) \not \equiv 0$ on $\overline{\mathbb{D}^{2}} \backslash\left(\mathbb{T}^{2} \cup L\right)$. Thus the set

$$
V \cap R_{i}=\left\{(z, w) \in \overline{\mathbb{D}^{2}} \backslash\left(\mathbb{T}^{2} \cup L\right): \overline{c_{i}}-h(z, w)=0, q_{i}(z, w)=0\right\}
$$

is finite. Thus $G\left(\bar{p} ; V \cap R_{i}\right)$ is the set of isolated points. Since $\widehat{G(f)}$ does not contain any isolated points, we have $G\left(\bar{p} ; V \cap R_{i} \backslash \Sigma_{i}\right) \cap \widehat{G(f)}=\emptyset$, which proves (5).

Step V. Now let $\left(z^{0}, w^{0}\right) \in R_{i}^{*}$. Assume that

$$
\begin{equation*}
\overline{p(\varphi(\lambda), \psi(\lambda))}-\overline{p\left(z^{0}, w^{0}\right)} \not \equiv 0 \text { on } \mathbb{D} . \tag{6}
\end{equation*}
$$

We can assume that $\varphi(\lambda)=z_{0}+\lambda$ in $\rho \mathbb{D}$ for some positive $\rho \mathbb{D}$. We put

$$
W_{0}=\{(\varphi(\lambda), \psi(\lambda)): \lambda \in \rho \mathbb{D}\}
$$

and

$$
W_{0}^{*}=\left\{\left(z_{0}+\lambda, \psi(\lambda)\right): \lambda \in \rho \mathbb{D}, \frac{\partial p}{\partial z}(\varphi(\lambda), \psi(\lambda))+\frac{\partial p}{\partial w}(\varphi(\lambda), \psi(\lambda)) \frac{d \psi(\lambda)}{d \lambda} \neq 0\right\}
$$

Step VI. If (6) holds, then $G\left(\bar{p} ; W_{0}^{*}\right)$ is totally real, and so

$$
\begin{equation*}
G\left(\bar{p} ; R_{i} \backslash\left(\mathbb{T}^{2} \cup L \cup \Sigma_{i}\right)\right) \cap \widehat{G(f)}=\emptyset \tag{7}
\end{equation*}
$$

Proof. We put $\lambda=x+i y$ and $p=u+i v(x, y, u, v$ real). The real tangent vectors at $\left(z_{0}+\lambda, \psi(\lambda), \overline{p\left(z_{0}+\lambda, \psi(\lambda)\right)}\right)$ to $G\left(\bar{p} ; W_{0}\right)$ for $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$ are as follows.

$$
\begin{aligned}
& v_{1}=\left(1,0, \frac{\partial \operatorname{Re} \psi}{\partial x}(\lambda), \frac{\partial \operatorname{Im} \psi}{\partial x}(\lambda), \frac{\partial u}{\partial x},-\frac{\partial v}{\partial x}\right) \\
& v_{2}=\left(0,1, \frac{\partial \operatorname{Re} \psi}{\partial y}(\lambda), \frac{\partial \operatorname{Im} \psi}{\partial y}(\lambda), \frac{\partial u}{\partial y},-\frac{\partial u}{\partial y}\right)
\end{aligned}
$$

The rank of the matrix defined by components of $v_{1}, v_{2}, i v_{1}, i v_{2}$ is 4 , since

$$
\left|\begin{array}{cccc}
1 & 0 & u_{x} & -v_{x} \\
0 & 1 & u_{y} & -v_{y} \\
0 & 1 & v_{x} & u_{x} \\
-1 & 0 & v_{y} & u_{y}
\end{array}\right|=-4\left(u_{x}^{2}+v_{x}^{2}\right)=-4\left|\frac{d p}{d \lambda}\right|^{2}
$$

Thus $G\left(\bar{p} ; W_{0}^{*}\right)$ is a totally real manifold. It follows from Lemma 2.3 that

$$
G\left(\bar{p} ; W_{0}^{*} \backslash \Sigma_{i}\right) \cap \widehat{G(f)}=\emptyset
$$

Since $W_{0} \backslash W_{0}^{*}$ is a set of isolated points, by connectivity of $\widehat{G(f)}$ we have

$$
G\left(\bar{p} ; W_{0} \backslash\left(W_{0}^{*} \cup \Sigma_{i}\right)\right) \cap \widehat{G(f)}=\emptyset
$$

When points $\left(z_{0}, w_{0}\right)$ run in $R_{i}^{*}$, the coresponding neighborhoods $U_{0}$ cover $R_{i}^{*}$. Thus $G\left(\bar{p} ; R_{i}^{*} \backslash\left(\Sigma_{i} \cup \mathbb{T}^{2} \cup L\right) \cap \widehat{G(f)}=\emptyset\right.$. Since the set $G\left(\bar{p} ; R_{i} \backslash\left(R_{i}^{*} \cup \mathbb{T}^{2} \cup L\right)\right)$ is finite, we have

$$
G\left(\bar{p} ; R_{i} \backslash\left(R_{i}^{*} \cup \Sigma_{i} \cup \mathbb{T}^{2} \cup L\right)\right) \cap \widehat{G(f)}=\emptyset
$$

and the assertion (7) is proved. From (5) and (7) we obtain (4) of Step III.
By the above facts we obtain the following:
Step VII. If we put

$$
I_{0}=\left\{i \in\{1,2, \cdots, t\}: \emptyset \neq R_{i} \backslash\left(\mathbb{T}^{2} \cup L\right) \subset V\right\}
$$

then

$$
\widehat{G(f)} \backslash G\left(\bar{p} ; \mathbb{T}^{2} \cup L\right) \subset G\left(\bar{p} ; \cup_{i \in I_{0}} R_{i} \cap V\right)
$$

For $i \in I_{0}$, we consider the following cases:

$$
\begin{array}{cc}
\text { (i). } Q_{i}=\emptyset, R_{i} \neq \emptyset . & \text { (ii). } \emptyset \neq Q_{i}=\hat{Q}_{i} \neq R_{i} \\
\text { (iii). } \emptyset \neq Q_{i} \neq \hat{Q}_{i}=R_{i} . & \text { (iv). } \emptyset \neq Q_{i} \neq \hat{Q}_{i} \neq R_{i}
\end{array}
$$

Step VIII. Assume that (ii) holds for $i \in I_{0}$, then

$$
\begin{equation*}
G\left(\bar{p} ; R_{i} \backslash\left(\mathbb{T}^{2} \cup L \cup \Lambda_{i}\right) \cap \widehat{G(f)}=\emptyset\right. \tag{8}
\end{equation*}
$$

where $\Lambda_{i}=\bigcup_{j \in I_{0} \backslash\{i\}} R_{j}$.
Proof. We denote $m_{i}$ by the maximal order of an irreducible factor $q_{i}(z, w)$ in $p(z, w)$, and we define a polynomial $p_{1}(z, w)$ by

$$
p(z, w)-c_{i}=p_{1}(z, w) q_{i}(z, w)^{m_{i}}
$$

By using $p_{1}(z, w)$ we put $K=\left\{(z, w) \in \overline{\mathbb{D}^{2}}: p_{1}(z, w)=0\right\}$. For a point $\left(z^{0}, w^{0}\right) \in$ $R_{i} \backslash\left(K \cup \mathbb{T}^{2} \cup L\right)$, we put

$$
p_{2}(z, w)=\frac{1}{p_{1}\left(z^{0}, w^{0}\right)} p_{1}(z, w)
$$

Since $Q_{i}$ and $\left\{\left(z^{0}, w^{0}\right)\right\}$ are disjoint polynomially convex sets, there exist a polynomial $p_{0}(z, w)$, a neighborhood U of $Q_{i}$ and a neighborhood $W$ of $K$ in $\mathbb{T}^{2}$ such that

$$
\begin{gathered}
p_{0}\left(z^{0}, w^{0}\right)=1, \text { and }\left|p_{0}(z, w) p_{2}(z, w)\right|<\frac{1}{2} \text { on } U, \\
\left|p_{0}(z, w) p_{2}(z, w)\right|<\frac{1}{2} \text { on } W .
\end{gathered}
$$

If we put $M=\left\|p-c_{i}\right\|_{\mathbb{T}^{2}}, K_{1}=\left\{(z, w) \in \overline{\mathbb{D}^{2}}: p(z, w)-c_{i}=0\right\}$, and put

$$
g_{1}(z, w, \zeta)=1-\frac{1}{2 M^{2}}\left(\zeta-\overline{c_{i}}\right)\left(p(z, w)-c_{i}\right)
$$

then we have

$$
g_{1}(z, w, \zeta)=1 \text { on } G\left(\bar{p} ; K_{1}\right)
$$

Since $\left|g_{1}\right|<1$ on $G\left(\bar{p} ; \mathbb{T}^{2} \backslash(U \cup W)\right)$, there exists a positive integer $k$ such that

$$
\left|p_{2}(z, w) p_{0}(z, w) g_{1}(z, w, \zeta)^{k}\right|<\frac{1}{2} \text { on } G\left(\bar{p} ; \mathbb{T}^{2} \backslash(U \cup W)\right)
$$

If we put $g(z, w, \zeta)=p_{2}(z, w) p_{0}(z, w) g_{1}(z, w, \zeta)^{k}$, then

$$
|g(z, w, \zeta)|<\frac{1}{2} \text { on } G(f), \quad \text { and } g\left(z^{0}, w^{0}, \overline{p\left(z^{0}, w^{0}\right)}\right)=1
$$

Thus $\left(z^{0}, w^{0}, \overline{p\left(z^{0}, w^{0}\right)}\right) \notin \widehat{G(f)}$ and so $G\left(\bar{p} ; R_{i} \backslash\left(K \cup \mathbb{T}^{2} \cup L\right)\right) \cap \widehat{G(f)}=\emptyset$. Since a set $\left(R_{i} \cap K\right) \backslash\left(\mathbb{T}^{2} \cup L\right)$ is finite, by connectivity of $G(f)$ we have

$$
G\left(\bar{p} ; R_{i} \backslash\left(\Lambda_{i} \cup \mathbb{T}^{2} \cup L\right) \cap \widehat{G(f)}=\emptyset\right.
$$

which proves (8).
In the case (i), if we choose a point $\left(z^{*}, w^{*}\right)$ in $\mathbb{T}^{2} \backslash \Lambda_{i}$, and put $Q_{i}=\left\{\left(z^{*}, w^{*}\right)\right\}$, then we similarly obtain the proof of (i).
Step IX. Assume the (iii) holds, then

$$
\begin{equation*}
G\left(\bar{p} ; R_{i}\right) \subset \widehat{G(f)} \tag{9}
\end{equation*}
$$

Proof. Since $G\left(\bar{p} ; Q_{i}\right) \subset G(f)=G\left(\bar{p} ; \mathbb{T}^{2}\right)$ and $G\left(\bar{p} ; Q_{i}\right) \subset\left\{(z, w, \zeta) \in \mathbb{C}^{3}: \zeta=c_{i}\right\}$, then we obtain (9).
Step X. Assume that (iv) holds. Then we have

$$
\begin{equation*}
G\left(\bar{p} ; R_{i} \backslash\left(L \cup \mathbb{T}^{2} \cup \hat{Q}_{i}\right)\right) \cap \widehat{G(f)}=\emptyset \tag{10}
\end{equation*}
$$

Proof. Let $\left(z^{0}, w^{0}\right)$ be a point of $R_{i} \backslash\left(L \cup \mathbb{T}^{2} \cup \hat{Q}_{i}\right)$. If $Q_{i}$ in (ii) is replaced by $\hat{Q}_{i}$, we similarly have (10).

## 5. Examples.

Example 5.1. If $p(z, w)=\left\{(z+1)-(w+1)^{2}\right\}\left\{(z+1) w^{2}-z(w+1)^{2}\right\}$ and $f=\left.\bar{p}\right|_{\mathbb{T}^{2}}$, then $h(z, w)=\frac{1}{z^{2} w^{4}} p(z, w)$ and

$$
\Delta(z, w)=\frac{2 p(z, w)}{z^{3} w^{5}} g(z, w)
$$

where

$$
\begin{aligned}
g(z, w) & =w p_{w}(z, w)-2 z p_{z}(z, w) \\
& =2\left[(w+1) z^{2}+w^{2}(2 w+3) z-w^{3}(2 w+3)\right]
\end{aligned}
$$

The polynomial $g(z, w)$ is irreducible. The sets defined by the section 1 are as follows:

$$
\begin{aligned}
& Q_{1}=\left\{(z, w) \in \mathbb{T}^{2}: z-w^{2}-2 w=0\right\}=\{(-1,-1)\}=\hat{Q}_{1} \\
& R_{1}=\left\{(z, w) \in \overline{\mathbb{D}}^{2}: z-w^{2}-2 w=0\right\} \\
& Q_{2}=\left\{(z, w) \in \mathbb{T}^{2}: w^{2}-z-2 z w=0\right\}=\{(-1,-1)\}=\hat{Q}_{2} \\
& R_{2}=\left\{(z, w) \in \overline{\mathbb{D}^{2}}: w^{2}-z-2 z w=0\right\} \\
& R_{3}=\left\{(z, w) \in \overline{\mathbb{D}^{2}}: g(z, w)=0\right\}
\end{aligned}
$$

Then we have that $R_{j} \backslash\left(\mathbb{T}^{2} \cup L\right) \subset V$ and $\emptyset \neq Q_{j}=\hat{Q}_{j} \neq R_{j}, j=1,2$. Since $g(z, w)$ and $p(z, w)-c$ for every $c \in \mathbb{C}$ are relatively prime polynomials. Thus $R_{3} \backslash\left(\mathbb{T}^{2} \cup L\right)$ is not contained in $V$. Since $I_{0}=\{1,2\}$ and $J=\emptyset$, by the theorem we have

$$
\widehat{G(f)}=G(f)
$$

Example 5.2. If $p(z, w)=(z+w)(w+2)(2 w+1)$ and $f=\left.\bar{p}\right|_{\mathbb{T}^{2}}$, then we have that $h(z, w)=\frac{1}{z w^{3}}(z+w)(w+2)(2 w+1)$ and

$$
\Delta(z, w)=\frac{2}{z w^{3}}(z+w)(w+2)(2 w+1) g(z, w)
$$

where $g(z, w)=-z\left(w^{2}+5 w+3\right)+w\left(3 w^{2}+5 w+1\right)$. Since the polynomial $g(z, w)$ is irreducible, the sets $\left\{(z, w) \in \overline{\mathbb{D}^{2}} \backslash\left(\mathbb{T}^{2} \cup L\right): z+w=0\right\}$ and $\left\{(z, w) \in \overline{\mathbb{D}^{2}} \backslash\left(\mathbb{T}^{2} \cup L\right)\right.$ : $2 w+1=0\}$ are contained in $V$, it follows from the theorem that

$$
\widehat{G(f)}=G(f) \cup\left\{(z, w, 0) \in \overline{\mathbb{D}}^{2}: z+w=0\right\}
$$

Example 5.3. ([5]). Let $p(z, w)$ be a homogeneous polynomial:

$$
\begin{gathered}
P(z, w)=c z^{m} w^{n}\left(z^{k}+a_{1} z^{k-1} w+a_{2} z^{k-2} w^{2}+\cdots+a_{k} w^{k}\right)\left(a_{k} \neq 0\right) \\
=c\left(z-\lambda_{1} w\right)\left(z-\lambda_{2} w\right) \cdots\left(z-\lambda_{k} w\right) z^{m} w^{n}
\end{gathered}
$$

where $k$ is a positive integer, $m$ and $n$ are nonnegative integers, and $c, \lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}$ are some constants with $c \lambda_{1} \lambda_{2} \cdots \lambda_{k} \neq 0$. We put

$$
J=\left\{j \in\{1,2, \cdots, k\}:\left|\lambda_{j}\right|=1\right\}
$$

(1) If $J \neq \emptyset$, then $\widehat{G(f)}=\bigcup_{j \in J}\left\{(z, w, 0) ; z-\lambda_{j} w=0, w \in D\right\} \cup G(f)$.
(2) If $J=\emptyset$, then $\widehat{G(f)}=G(f)$, and moreover $\left[z, w, f ; \mathbb{T}^{2}\right]=C\left(\mathbb{T}^{2}\right)$.

Example 5.4. If $p(z, w)=\left(z^{2}-1\right) w+z$ and $f=\left.\bar{p}\right|_{\mathbb{T}^{2}}$, then $h(z, w)=\frac{\left(1-z^{2}\right)+z w}{z^{2} w}$ and

$$
\Delta(z, w)=\frac{1}{z^{3} w^{2}}\left(z^{2}-1\right) g(z, w)
$$

where $g(z, w)=z w^{2}+2\left(z^{2}+1\right) w+z$. We have that $z-1$ is a factor of $p(z, w)-1$ and $z+1$ is a factor of $p(z, w)+1$ and $g(z, w)$ is an irreducible polynomial. Thus

$$
\widehat{G(f)}=G(f) \cup\{(1, w, 1): w \in \mathbb{D}\} \cup\{(-1, w,-1): w \in \mathbb{D}\}
$$

## Acknowledgements

The author wishes to thank Professor Akira Sakai for variable suggestions for improving the manuscript.

## References

1. H. Alexander, Polynomial hulls of graphs, Pacific J. Math., 147 (1991), 201-212.
2. P. Ahern and W. Rudin, Hulls of 3-spheres in $\mathbb{C}^{3}$ I, Contemporary Mathematics, 137 (1992), 1-27.
3. L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland Publishing Company,(1973).
4. L. Hörmander and J. Wermer, Uniform approximation on compact sets in $\mathbf{C}^{n}$, Math. Scand., 23 (1968), 5-21.
5. T. Jimbo, Polynomial hulls of graphs of antiholomorphic functions, Scientiae Mathmaticae Japonicae, 57 (2003), 157-163.
6. T. Jimbo and A. Sakai, Polynomially convex hulls of graphs on the sphere, Proc. Amer. Math. Soc., 127 (1999), 2697-2702.
7. R. Nirenberg and R. O. Wells, Jr, Approximation theorems on differentiable submanifolds of a complex manifolds, Trans Amer. Math. Soc., 142 (1969), 15-35.

Department of Mathematics, Nara University of Education, Takabatake, Nara 630-8528, JAPAN

E-mail address: jimbo@nara-edu.ac.jp

