ON COMPARISONS OF NORMS AND THE NUMERICAL RANGES OF AN OPERATOR WITH ITS GENERALIZED ALUTHGE TRANSFORMATION

Sharandas M. Patel and Takeaki Yamazaki

Received March 10, 2005

ABSTRACT. In the present article, we have attempted to reveal some relationships between a bounded linear operator T acting on a Hilbert space and its generalized Aluthge transformation T(s,t) in terms of their numerical ranges and norms. In fact, we have shown the following relations:

- (i) $\overline{W(f(T(t,1-t)))} \subseteq \overline{W(T)}$ for $t \in [0,1]$ and any rational function f.
- (ii) For an $n \times n$ matrix T, T is convexoid iff W(T) = W(T(t, 1-t,)) for all $t \in [0, 1]$.
- (ii) is an extension of Ando's result in [2].

1 Introduction Let T be a bounded linear operator acting on a complex Hilbert space \mathcal{H} , and let $B(\mathcal{H})$ denote the Banach algebra of bounded linear operators on \mathcal{H} . By the polar decomposition of $T \in B(\mathcal{H})$, we mean the expression T = U|T|, where U is a partial isometry and |T| is the positive square root of T^*T such that ker U = ker |T|. In [1], Aluthge introduced the class of *p*-hyponormal operators that generalizes the widely studied class of hyponormal operators. In order to reveal some important features of *p*-hyponormal operators, he exploited the operator \tilde{T} which is now popularly known as the Aluthge Transformation and which is defined as

$$\widetilde{T} = |T|^{\frac{1}{2}} U |T|^{\frac{1}{2}}.$$

Motivated by this article [1], several authors explored and studied new classes of operators closely connected to *p*-hyponormal operators with the help of the Aluthge transformation and its generalization, known as the generalized Aluthge transformation. By the generalized Aluthge transformation of $T \in B(\mathcal{H})$, we mean the bounded operator T(s,t) on \mathcal{H} for which

$$T(s,t) = |T|^s U|T|^t$$
, where $s \ge 0$ and $t \ge 0$.

Especially, $T(1,0) = |T|^1 U|T|^0 = |T|UU^*U = |T|U$ and $T(0,1) = |T|^0 U|T|^1 = U^*UU|T|$. In recent years, one can find number of articles in which various relations among T, \widetilde{T} and T(s,t) are obtained. It is obvious that $\|\widetilde{T}\| \leq \|T\|$. Okubo [13] gave a non-obvious extension of this inequality by deriving $\|f(\widetilde{T})\| \leq \|f(T)\|$ for any polynomial f(t) by proving more general result. As a corollary to this inequality, he showed that $W(f(\widetilde{T})) \subseteq W(f(T))$, extending some results known to be true [10] or in case either f(t) = t [15, 18]. According to [11, 19], the iterated Aluthge transformation, called the *n* th Aluthge transformation and written as $\widetilde{T_n}$ is defined by

$$\widetilde{T_1} = \widetilde{T}$$
 and $\widetilde{T_n} = (\widetilde{\widetilde{T_{n-1}}})$ for $n > 1$.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A12. Secondly 47B49, 47A30.

Key words and phrases. Aluthge transform, Growth condition, Convexoid operators, Numerical range, ρ -Radius.

In [17], the second author proved that the norm of the iterated Aluthge transformations converges to the spectral radius r(T) of T. Ando [2] proved that for a square matrix T of order n, the sequence of the closure of the numerical ranges of iterated Aluthge transformations of T converges to the convex hull of the spectrum $\sigma(T)$ of T. In [3], it was shown that every iterated Aluthge transformation of a matrix of order 2 converges to a normal matrix. Our main object of the present paper is to compare the numerical range of T with that of T(s,t) for some restricted values of s and t.

A bounded operator T is said to satisfy the growth condition (G_1) or called a (G_1) operator if

$$\|(T-zI)^{-1}\| = \frac{1}{\operatorname{dist}(z,\sigma(T))} \quad \text{for all } z \notin \sigma(T).$$

It is well known that the hyponormal operators satisfy the growth condition (G_1) , a result still not known for *p*-hyponormal operators. Moreover, (G_1) operators are convexoid operators. The corresponding fact for *p*-hyponormal operators remains as an open problem.

Let C_{ρ} ($\rho > 0$) be the class of all bounded operators with unitary ρ -dilations in the sense of B.Sz._Nagy and C. Foiaş [12]. According to Holbrook [9], an operator radius $w_{\rho}(T)$ of Tis defined as $w_{\rho}(T) = \inf\{a > 0 \text{ and } a^{-1}T \in C_{\rho}\}$. For further properties of operator radii, we refer to [9].

In section 2, some results are given that will be of use in the succeeding sections. Section 3 is devoted to establishing inclusion relations among the numerical ranges of rational functions of operators T(0,1), T(1,0) and T. The inequality that says $||f(\tilde{T})|| \leq ||f(T)||$ for every polynomial f is extended further in section 4 by proving $||f(T(s,t))|| \leq ||f(T)||$ with s + t = 1 for every rational function f for which f(T) exists. Finally, in section 5, we introduce a numerical range value function on [0, 1] and obtain an improvement over a characterization of convexoid matrices due to Ando [2].

In what follows, we assume, unless it is stated otherwise, that f will be a rational function with poles off $\sigma(T)$.

2 Fundamental properties

Lemma 2.2.1 Let T = U|T| be the polar decomposition of T. Then dim ker $T \leq \dim \ker T^*$ if and only if there exists an isometry V such that V|T| = U|T|.

Although our first lemma is well known [6, p. 75], [16, p. 4], we would like to present it with a proof.

Proof. Let $\mathcal{H} = \overline{R(|T|)} \oplus R(|T|)^{\perp} = \overline{R(T)} \oplus R(T)^{\perp}$. Then U is an isometry from $\overline{R(|T|)}$ to $\overline{R(T)}$. On the other hand, there exists an isometry $U_1 : R(|T|)^{\perp} \longrightarrow R(T)^{\perp}$ if and only if $\dim(R(|T|)^{\perp}) \leq \dim(R(T)^{\perp})$. By $R(|T|)^{\perp} = \ker |T| = \ker T$ and $R(T)^{\perp} = \ker T^*$, it is equivalent to dim ker $T \leq \dim \ker T^*$. So the underlying kernel condition ensures the existence of an isometry $U_1 : R(|T|)^{\perp} \longrightarrow R(T)^{\perp}$. Let

$$V = UU^*U + U_1(I - U^*U) = U + U_1(I - U^*U).$$

The facts that $I - U^*U$ is the projection onto $\ker U = \ker T = \ker |T| = R(|T|)^{\perp} = (\ker U_1)^{\perp}, U_1^*U_1x = x$ on $R(|T|)^{\perp}$ and $R(U_1) \subseteq R(T)^{\perp} = \ker T^* = \ker U^*$ will give

$$\begin{split} V^*V &= \{U + U_1(I - U^*U)\}^*\{U + U_1(I - U^*U)\} \\ &= U^*U + (I - U^*U)U_1^*U + U^*U_1(I - U^*U) + (I - U^*U)U_1^*U_1(I - U^*U) \\ &= U^*U + \{U^*U_1(I - U^*U)\}^* + U^*U_1(I - U^*U) + I - U^*U \\ &= U^*U + I - U^*U \\ &= I. \end{split}$$

Thus V is an isometry. Moreover,

$$V|T| = \{U + U_1(I - U^*U)\}|T| = U|T|.$$

Lemma 2.2.2 Let $A \in B(\mathcal{H})$. Then the following assertions hold:

(i) If P is a projection with PAP = AP, then

$$f(AP) = Pf(A)P + f(0)(I - P).$$

(ii) If V is an isometry, then

$$f(VAV^*) = Vf(A)V^* + f(0)(I - VV^*).$$

Proof. (i). Let $\mathcal{H} = (\ker P)^{\perp} \oplus \ker P$. Then by the assumption PAP = AP, A can be expressed as follows:

$$A = \begin{pmatrix} X & Y \\ 0 & Z \end{pmatrix}$$
 on $\mathcal{H} = (\ker P)^{\perp} \oplus \ker P$.

Hence

$$f(AP) = f\begin{pmatrix} X & 0\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} f(X) & 0\\ 0 & f(0)I \end{pmatrix}.$$

On the other hand,

$$f(A) = f\begin{pmatrix} X & Y \\ 0 & Z \end{pmatrix}) = \begin{pmatrix} f(X) & Y' \\ 0 & f(Z) \end{pmatrix}.$$

Hence we have

$$Pf(A)P + f(0)(I - P) = \begin{pmatrix} f(X) & 0\\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0\\ 0 & f(0)I \end{pmatrix} = f(AP).$$

(*ii*). For an isometry V, note that $\begin{pmatrix} V & I - VV^* \\ 0 & V^* \end{pmatrix}$ is unitary. Then we have

$$\begin{pmatrix} f(VAV^*) & 0\\ 0 & f(0)I \end{pmatrix} = f(\begin{pmatrix} VAV^* & 0\\ 0 & 0 \end{pmatrix})$$

$$= f(\begin{pmatrix} V & I - VV^*\\ 0 & V^* \end{pmatrix} \begin{pmatrix} A & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} V^* & 0\\ I - VV^* & V \end{pmatrix})$$

$$= \begin{pmatrix} V & I - VV^*\\ 0 & V^* \end{pmatrix} f(\begin{pmatrix} A & 0\\ 0 & 0 \end{pmatrix}) \begin{pmatrix} V^* & 0\\ I - VV^* & V \end{pmatrix}$$

$$= \begin{pmatrix} V & I - VV^*\\ 0 & V^* \end{pmatrix} \begin{pmatrix} f(A) & 0\\ 0 & f(0)I \end{pmatrix} \begin{pmatrix} V^* & 0\\ I - VV^* & V \end{pmatrix}$$

$$= \begin{pmatrix} Vf(A)V^* + f(0)(I - VV^*) & 0\\ 0 & f(0)I \end{pmatrix}.$$

Hence

$$f(VAV^*) = Vf(A)V^* + f(0)(I - VV^*).$$

The following result is a modification of [10, Proposition 4.5].

319

Proposition 2.2.3 Let $A, B \in B(\mathcal{H})$. Then the following assertions are mutually equivalent:

- (i) $\overline{W(f(A))} \subseteq \overline{W(f(B))}$ for all f.
- (ii) $w(f(A)) \leq w(f(B))$ for all f.
- (*iii*) $||f(A)|| \le ||f(B)||$ for all f.

The proof is almost identical to the one given for Proposition 4.5 of [10].

3 Numerical ranges of T(0,1) and T(1,0) The primary object of the present section is to establish the connection among the numerical ranges of T, T(0,1) and T(1,0).

Theorem 3.3.1 Let $T \in B(\mathcal{H})$. Then the following assertions hold:

(i) $W(f(T(0,1))) \subseteq W(f(T)).$ (ii) $W(f(T(1,0))) \subseteq W(f(T)).$

Proof. (i). Let T = U|T| be the polar decomposition of T, and $\mathcal{H} = (\ker T)^{\perp} \oplus \ker T$. Then

$$T(0,1) = U^*UU|T| = U^*UT = U^*UTU^*U.$$

Since U^*U is a projection, (i) of Lemma 2.2.2 yields

(3.1)
$$f(T(0,1)) = U^* U f(T) U^* U + f(0) (I - U^* U).$$

In case ker $T = \{0\}$. In this case U must be isometry. Then by (3.1), f(T(0, 1)) = f(T), and hence

$$W(f(T(0,1))) = W(f(T)).$$

In case ker $T \neq \{0\}$. By (3.1), we obtain

$$W(f(T(0,1))) \subseteq \text{conv} \{W(f(T)) \cup \{f(0)\}\}.$$

Here by ker $T \neq \{0\}$, we have $f(0) \in W(f(T))$, and

$$W(f(T(0,1))) \subseteq \operatorname{conv} \{W(f(T)) \cup \{f(0)\}\} = W(f(T)).$$

(*ii*). Step 1. We shall show the following equality:

(3.2)
$$f(T(1,0)) = U^* f(T)U + f(0)(I - U^*U).$$

We shall establish this equality separately for each of the cases when dim ker $T \leq \dim \ker T^*$ and dim ker $T \geq \dim \ker T^*$.

(a) The case dim ker $T \leq \dim \ker T^*$. By the Lemma 2.2.1, there is an isometry V satisfying U|T| = V|T|. Note that in the proof of Lemma 2.2.1,

(3.3)
$$V = U + U_1(I - U^*U)$$
, where U_1 is isometry with $R(U_1) \subseteq \ker T^*$

Then by (3.3), we have

$$UU^*TUU^* = TUU^* = U|T|UU^* = V|T|UV^*.$$

Hence by (ii) Lemma 2.2.2, we obtain

$$f(TUU^*) = f(V|T|UV^*) = Vf(|T|U)V^* + f(0)(I - VV^*).$$

Moreover since V is isometry, we have

$$f(|T|U) = V^* f(TUU^*)V.$$

Therefore

$$\begin{aligned} f(|T|U) &= V^* f(TUU^*)V \\ &= V^* \{UU^* f(T)UU^* + f(0)(I - UU^*)\}V \quad \text{by (i) of Lemma 2.2.2} \\ &= U^* f(T)U + f(0)(I - U^*U) \quad \text{by (3.3).} \end{aligned}$$

On the other hand, by (3.3),

$$U|T^*| = UU^*UU|T|U^* = VU^*UTV^*.$$

Then by Lemma 2.2.2, we obtain

$$f(U|T^*|) = f(VU^*UTV^*)$$

= $Vf(U^*UT)V^* + f(0)(I - VV^*)$ by (ii) of Lemma 2.2.2
(3.4) = $V\{U^*Uf(T)U^*U + f(0)(I - U^*U)\}V^* + f(0)(I - VV^*)$
by (i) of Lemma 2.2.2
= $Uf(T)U^* + f(0)(I - UU^*)$ by (3.3).

(b) The case dim ker
$$T \ge \dim \ker T^*$$
. Replacing T by T^* in (3.4), we have

$$f(U^*|T|) = U^*f(T^*)U + f(0)(I - U^*U) \iff f(|T|U) = U^*f(T)U + f(0)(I - U^*U).$$

Step 2. In case ker $T = \{0\}$. In this case U must be isometry. Then by (3.2), $f(T(1,0)) = f(|T|U) = U^* f(T)U$, and hence

$$W(f(T(1,0))) \subseteq W(f(T)).$$

In case ker $T \neq \{0\}$. By (3.2), we obtain

$$W(f(T(1,0))) = W(f(|T|U)) \subseteq \text{conv} \{W(f(T)) \cup \{f(0)\}\}.$$

Here by ker $T \neq \{0\}$, we have $f(0) \in W(f(T))$, and

$$W(f(T(1,0))) \subseteq \text{conv} \{W(f(T)) \cup \{f(0)\}\} = W(f(T)).$$

Hence the proof is complete.

Corollary 3.3.2 Let T = U|T|. Then

- (i) W(T(1,0)) = W(T) if ker $T^* \subseteq \ker T$.
- (ii) W(T(0,1)) = W(T) if ker $T \subseteq \ker T^*$.

(iii) $W(T(0,1)) \subseteq W(T(1,0))$ if ker $T^* \subseteq \ker T$.

(iv) $W(T(1,0)) \subseteq W(T(0,1))$ if ker $T \subseteq \ker T^*$.

Proof. (i). In view of Theorem 3.3.1, only we have to prove $W(T) \subseteq W(T(1,0))$. If ker $T^* \subseteq \ker T$, then $T = U|T| = U|T|UU^* = UT(1,0)U^*$, and we have

 $W(T) \subseteq \operatorname{conv}\{W(T(1,0)) \cup \{0\}\}.$

If ker $T \neq \{0\}$, then $0 \in W(T(1,0))$ and we have

$$W(T) \subseteq \operatorname{conv}\{W(T(1,0)) \cup \{0\}\} = W(T(1,0)).$$

If ker $T = \{0\}$, then $\{0\} = \ker T \supset \ker T^*$, and U^* must be an isometry. Hence we have $W(T) \subseteq W(T(1,0))$.

(ii). If ker $T \subseteq \ker T^*$, then $U^*UU = U$ holds. Hence $T(0, 1) = U^*UU|T| = U|T| = T$, and W(T(0, 1)) = W(T).

(iii). If ker $T^* \subseteq \ker T$, then by (i) and Theorem 3.3.1, we have

$$W(T(0,1)) \subseteq W(T) = W(T(1,0)).$$

(iv). If ker $T \subseteq \ker T^*$, then by (ii) and Theorem 3.3.1, we have

$$W(T(1,0)) \subseteq W(T) = W(T(0,1)).$$

Remark 3.3.3 If we drop the kernel condition from the statements of Corollary 3.3.2, then we may not get the same conclusions as following indicate.

Example 3.3.4 Let $T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Then $|T| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and U = T. Clearly $W(T(1,0)) = \{0\} \neq W(T)$.

Example 3.3.5 For $\alpha > 0$, let

$$T = \begin{pmatrix} 0 & \alpha & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Then

Also $W(T(0,1)) = \{z \in \mathbb{C} : |z| \leq \frac{\alpha}{2}\}$ and $W(T(1,0)) = \{z \in \mathbb{C} : |z| \leq \frac{1}{2}\}$. Then

(i) for
$$\alpha \in (0, 1)$$
, $W(T(0, 1)) \subsetneq W(T(1, 0))$,

(*ii*) for $\alpha > 1$, $W(T(1,0)) \subsetneq W(T(0,1))$.

4 Norm inequality involving a rational function of T and T(s,t).

Theorem 4.4.1 Let $T \in B(\mathcal{H})$. Then

$$||f(T(s,t))|| \le ||f(T)||$$

holds for $s, t \ge 0$ with s + t = 1.

Proof. Let T = U|T| be the polar decomposition of T. Let $|T_{\varepsilon}| = |T| + \varepsilon I > 0$. Note that

$$\lim_{\varepsilon \to +0} |T_{\varepsilon}|^{-1} |T| = \lim_{\varepsilon \to +0} (|T| + \varepsilon I)^{-1} |T| = U^* U.$$

We prepare the important inequality due to [7]. For $X \in B(\mathcal{H})$ and positive operators A and B,

(4.1)
$$||A^s X B^s|| \le ||A X B||^s ||X||^{1-s}$$

holds for $s \in [0, 1]$. Then we have

$$\begin{split} \|f(T(s,t))\| &= \|f(|T|^{s}U|T|^{t})\| \\ &= \|f(|T_{\varepsilon}|^{s}|T_{\varepsilon}|^{-s}|T|^{s}U|T|^{t}|T_{\varepsilon}|^{s}|T_{\varepsilon}|^{-s})\| \\ &= \||T_{\varepsilon}|^{s}f(|T_{\varepsilon}|^{-s}|T|^{s}U|T|^{t}|T_{\varepsilon}|^{s})|T_{\varepsilon}|^{-s}\| \\ &\leq \||T_{\varepsilon}|f(|T_{\varepsilon}|^{-s}|T|^{s}U|T|^{t}|T_{\varepsilon}|^{s})|T_{\varepsilon}|^{-1}\|^{s}\|f(|T_{\varepsilon}|^{-s}|T|^{s}U|T|^{t}|T_{\varepsilon}|^{s})\|^{t} \quad \text{by (4.1)} \\ &= \|f(|T_{\varepsilon}|^{1-s}|T|^{s}U|T|^{t}|T_{\varepsilon}|^{s-1})\|^{s}\|f(|T_{\varepsilon}|^{-s}|T|^{s}U|T|^{t}|T_{\varepsilon}|^{s})\|^{t} \\ &\longrightarrow \|f(|T|UU^{*}U)\|^{s}\|f(U^{*}UU|T|)\|^{t} \quad \text{as } \varepsilon \to +0 \\ &= \|f(T(1,0))\|^{s}\|f(T(0,1))\|^{t} \\ &\leq \|f(T)\| \quad \text{by Theorem 3.3.1 and Proposition 2.2.3.} \end{split}$$

Hence the proof is complete.

Remark 4.4.2

- (i) Above theorem is not true if $s + t \neq 1$ as can be illustrated with the following Example 4.4.3.
- (ii) Notice that a simple consequence of Theorem 4.4.1 shows that the sequence $\{\|f(T_n)\|\}$ is a non-increasing sequence in positive numbers and therefore is convergent to a positive number. In particular, when f(t) = t, the second author [17] proved that the limit of the sequence is r(T), the spectral radius of T. However, in general situation, whether the sequence $\{\|f(\widetilde{T_n})\|\}$ converges to r(f(T)) remains as an open problem to us.

Example 4.4.3 Let $T = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ on $\mathcal{H} = \mathbb{C}^2$. Then $U = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ and $|T| = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Also $T(2,1) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. It easy to find that $\overline{W(T(2,1))} = [0,2]$. Moreover $\overline{W(T)}$ is a closed elliptic disc with foci at 0 and 1, and the major axis $\sqrt{2}$ and the minor axis 1. This fact shows that $\overline{W(T)}$ excludes 2 and therefore $\overline{W(T(2,1))}$ is not a subset of $\overline{W(T)}$. If the theorem were true for $s + t \neq 1$, then we would have in particular, $||T(s,t) - zI|| \leq ||T - zI||$ for all z. Then $\overline{W(T(s,t))} \subseteq W(T)$, which is not correct. As simple consequence of Proposition 2.2.3 and Theorem 4.4.1, we obtain the following corollary.

Corollary 4.4.4 Let $T \in B(\mathcal{H})$. Then

$$\overline{W(f(T(s,t)))} \subseteq \overline{W(f(T))}$$

holds for $s, t \ge 0$ with s + t = 1.

The following corollary is an extension of [13, Corollary 3].

Corollary 4.4.5 Let $T \in B(\mathcal{H})$. Then

$$w_{\rho}\left(f(T(s,t))\right) \le w_{\rho}\left(f(T)\right)$$

holds for each $s, t \ge 0$ with s + t = 1 and $\rho > 0$.

Proof. First, we note that

(i) for $0 < \rho < 2$ and $\rho \neq 1$, $w_{\rho} \leq 1$ if and only if

$$||T - zI|| \le \frac{|z|}{|\rho - 1|}$$
 with $\left|\frac{\rho - 1}{\rho - 2}\right| \le |z| < \infty$

in [12],

(ii) for $\rho = 2$, $w(T) = w_2(T) \le 1$ if and only if

$$||T - zI|| \le 1 + (1 + |z|^2)^{\frac{1}{2}}$$

for each complex number z in [4],

(iii) for $\rho > 2$, $w_{\rho}(T) \le 1$ if and only if $r(T) \le 1$ and

$$||(T - zI)^{-1}|| \le \frac{1}{|z| - 1}$$

for
$$1 < |z| < \frac{\rho - 1}{\rho - 2}$$
 in [12].

Now it is not difficult to prove the corollary by applying Theorem 4.4.1.

Corollary 4.4.6 If T satisfies the growth condition (G_1) , then so does T(s,t) for $s,t \ge 0$ with s + t = 1.

Proof. Since $\sigma(T) = \sigma(T(s, t))$, the result follows from Theorem 4.4.1.

5 The convexity of $F(x) = \overline{W(f(T(x, 1-x)))}$.

Theorem 5.5.1 For an operator T, let

$$F(x) = \overline{W(f(T(x, 1-x)))} \quad \text{for } x \in [0, 1].$$

Then

(5.1)
$$F(\alpha x + (1 - \alpha)y) \subseteq \alpha F(x) + (1 - \alpha)F(y)$$

holds for all $x, y \in [0, 1]$ and $\alpha \in [0, 1]$.

As a consequence of Theorem 5.5.1, the function $\Phi(x) = w(T(x, 1 - x))$ turns out to be a convex function on [0, 1].

Proof. Let T = U|T| be the polar decomposition. Firstly, we shall prove

(5.2)
$$F\left(\frac{x+y}{2}\right) \subseteq \frac{1}{2}\{F(x) + F(y)\}.$$

Note that for a positive invertible operator S and $A \in B(\mathcal{H})$,

$$||A|| \le \frac{1}{2} ||SAS^{-1} + S^{-1}AS||.$$

in [5]. Let $\varepsilon > 0$ and $|T_{\varepsilon}| = (|T| + \varepsilon I) > 0$. By the above inequality, we obtain

$$\begin{split} \|f(T\left(\frac{x+y}{2},1-\frac{x+y}{2}\right))\| \\ &= \|f(|T|^{\frac{x+y}{2}}U|T|^{1-\frac{x+y}{2}})\| \\ &\leq \frac{1}{2}\||T_{\varepsilon}|^{\frac{x-y}{2}}f(|T|^{\frac{x+y}{2}}U|T|^{1-\frac{x+y}{2}})|T_{\varepsilon}|^{\frac{y-x}{2}} + |T_{\varepsilon}|^{\frac{y-x}{2}}f(|T|^{\frac{x+y}{2}}U|T|^{1-\frac{x+y}{2}})|T_{\varepsilon}|^{\frac{x-y}{2}}\| \\ &= \frac{1}{2}\|f(|T_{\varepsilon}|^{\frac{x-y}{2}}|T|^{\frac{x+y}{2}}U|T|^{1-\frac{x+y}{2}}|T_{\varepsilon}|^{\frac{y-x}{2}}) + f(|T_{\varepsilon}|^{\frac{y-x}{2}}|T|^{\frac{x+y}{2}}U|T|^{1-\frac{x+y}{2}}|T_{\varepsilon}|^{\frac{x-y}{2}})\| \\ &\longrightarrow \frac{1}{2}\|f(|T|^{x}U|T|^{1-x}) + f(|T|^{y}U|T|^{1-y})\| \quad \text{as } \varepsilon \to +0 \\ &= \frac{1}{2}\|f(T(x,1-x)) + f(T(y,1-y))\|. \end{split}$$

Hence for any complex number λ ,

$$\|f(T\left(\frac{x+y}{2}, 1-\frac{x+y}{2}\right)) - \lambda I\| \le \|\frac{f(T(x,1-x)) + f(T(y,1-y))}{2} - \lambda I\|.$$

Since

$$\overline{W(T)} = \bigcap_{\lambda \in \mathbb{C}} \{ z \in \mathbb{C} : |z - \lambda| \le \|T - \lambda I\| \}$$

in [8, 14], we have

$$F\left(\frac{x+y}{2}\right) = \overline{W\left(f\left(T\left(\frac{x+y}{2}, 1-\frac{x+y}{2}\right)\right)\right)}$$
$$\subseteq \overline{W\left(\frac{f(T(x,1-x))+f(T(y,1-y))}{2}\right)}$$
$$\subseteq \frac{1}{2}\{\overline{W(f(T(x,1-x)))}+\overline{W(f(T(y,1-y)))}\}$$
$$= \frac{1}{2}\{F(x)+F(y)\}.$$

Next, we will extend (5.2) to (5.1) ¿From (5.2), one can easily derive

$$F\left(\frac{x_1 + x_2 + \dots + x_{2^n}}{2^n}\right) \subseteq \frac{1}{2^n} \{F(x_1) + F(x_2) + \dots + F(x_{2^n})\}$$

for all $x_i \in [0,1]$ $(i = 1, 2, \dots)$. Hence for any rational number $\alpha \in [0,1]$, we have (5.1). Since F is continuous, we have (5.1) for any real number $\alpha \in [0,1]$.

This completes the proof.

Remark 5.5.2 The conclusion of Theorem 5.5.1 cannot be strengthened further to

$$F(\alpha x + (1 - \alpha)y) = \alpha F(x) + (1 - \alpha)F(y)$$

as Example 5.5.3 will show. However, whether the range of F is convex remains as an open problem.

Example 5.5.3 For $\alpha > 0$, let

$$T = \begin{pmatrix} 0 & 16 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Then

Then $F(x) = W(T(x, 1 - x)) = \{z : |z| \le \frac{16^{1-x}}{2}\}$. Let $x = \frac{1}{4}$, $y = \frac{3}{4}$ and $\alpha = \frac{1}{2}$. Then (i) $F(\frac{1}{2}) = F(\alpha x + (1 - \alpha)y) = \{z : |z| \le 2\}$. (ii) $F(x) = \{z : |z| \le 4\}$. (iii) $F(y) = \{z : |z| \le 1\}$.

Hence

$$F\left(\frac{1}{2}\right) = F\left(\alpha x + (1-\alpha)y\right) = \{z : |z| \le 2\}$$
$$\subsetneqq \{z : |z| \le \frac{5}{2}\} = \alpha F(x) + (1-\alpha)F(y).$$

Corollary 5.5.4 Let T be an operator. Then

$$\overline{W(f(\widetilde{T}))} = F\left(\frac{1}{2}\right) \subseteq \frac{1}{2} \left\{F(s) + F(1-s)\right\}$$
$$\subseteq \frac{1}{2} \left\{F(t) + F(1-t)\right\} \subseteq \overline{W(f(T))}$$

holds for all $\frac{1}{2} \leq s \leq t \leq 1$.

Proof. Since $\frac{1}{2} = \frac{s+1-s}{2}$ and $F(x) = \overline{W(f(T(x,1-x)))} \subseteq \overline{W(f(T))}$ for $x \in [0,1]$, we have

$$\overline{W(f(\widetilde{T}))} = F\left(\frac{1}{2}\right) \subseteq \frac{1}{2} \{F(s) + F(1-s)\} \text{ by Theorem 5.5.1}$$
$$\subseteq \overline{W(f(T))} \text{ by Corollary 4.4.4.}$$

Next, let $\frac{1}{2} \leq s \leq t \leq 1$. Then we have $[1-s, s] \subseteq [1-t, t]$. Then there exist $\alpha_1, \alpha_2 \in [0, 1]$ such that

$$s = \alpha_1 t + (1 - \alpha_1)(1 - t)$$
 and $1 - s = \alpha_2 t + (1 - \alpha_2)(1 - t)$.

By an easy calculation, we have $\alpha_1 + \alpha_2 = 1$, and by Theorem 5.5.1, we have

$$\frac{1}{2} \{ F(s) + F(1-s) \} \subseteq \frac{1}{2} \{ \alpha_1 F(t) + (1-\alpha_1) F(1-t) + \alpha_2 F(t) + (1-\alpha_2) F(1-t) \}$$

= $\frac{1}{2} \{ F(t) + F(1-t) \}.$

As a simple consequence of Corollary 4.4.4, one can see that if T is covexoid then so is $T(\underline{s}, \underline{t})$ with $\overline{W(T(\underline{s}, \underline{t}))} = \overline{W(T)}$. The converse is obvious. However, if we do not assume $\overline{W(T(\underline{s}, \underline{t}))} = \overline{W(T)}$, then mere convexoidity of $T(\underline{s}, \underline{t})$ does not guarantee that Tis convexoid even if \mathcal{H} is finite dimensional. To see this, we refer to Example 4.4.3. That convexoidity of $\widetilde{T} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ is clear from the fact that it is selfadjoint. On the other hand as conv $\sigma(T) = [0, 1] \neq \overline{W(T)}$, T is not convexoid. However, if \mathcal{H} is finite-dimensional, then our next result will show that the condition $W(T(\underline{s}, \underline{t})) = W(T)$ is just equivalent to the convexoidity of T. In case \mathcal{H} is infinite dimensional, we do not know the validity of this result.

Corollary 5.5.5 For an $n \times n$ matrix T, the following assertions are mutually equivalent:

- (i) T is convexoid.
- (*ii*) $W(\widetilde{T}) = W(T)$.
- (iii) $W(T(s_0, 1 s_0)) = W(T)$ for a fixed $s_0 \in (0, 1)$.
- (iv) W(T(s, 1-s)) = W(T) for all $s \in [0, 1]$.

In order to prove Corollary 5.5.5, we shall need the following theorem, a remarkable result due to Ando [2].

Theorem 5.A ([2]) Let T be an $n \times n$ matrix. Then T is convexoid if and only if $W(\tilde{T}) = W(T)$.

Proof. (i) \iff (ii) has been shown in Theorem A. (iv) \implies (ii), (iii) are obvious. So only we have to show (ii) \implies (iv) and (iii) \implies (ii).

Proof of (ii) \implies (iv). Since $W(T(s, 1-s)) \subseteq W(T)$ and $W(T(1-s, s)) \subseteq W(T)$ for all $s \in [0, 1]$ hold and Corollary 5.5.4, we have

$$W(T) = W(\widetilde{T}) \subseteq \frac{1}{2} \{ W(T(s, 1-s)) + W(T(1-s, s)) \}$$
$$\subseteq \frac{1}{2} \{ W(T(s, 1-s)) + W(T) \} \subseteq W(T).$$

Then we have

(5.3)
$$\frac{1}{2} \{ W(T(s, 1-s)) + W(T) \} = W(T).$$

For any $\theta \in [0, 2\pi)$, let λ be an extreme point of Re $e^{i\theta}W(T)$. Then by (5.3), there exist $\lambda_1 \in \text{Re } e^{i\theta}W(T)$ and $\mu_1 \in \text{Re } e^{i\theta}W(T(s, 1-s))$ such that

$$\lambda = \frac{\lambda_1 + \mu_1}{2}$$

Since Re $e^{i\theta}W(T)$ is a line segment, and λ is a extreme point of Re $e^{i\theta}W(T)$, it must be $\lambda = \lambda_1 = \mu_1 \in \text{Re } e^{i\theta}W(T(s, 1-s))$, i.e., Re $e^{i\theta}W(T) \subseteq \text{Re } e^{i\theta}W(T(s, 1-s))$ for any $\theta \in [0, 2\pi)$. Since W(T) is convex, and $W(T(s, 1-s)) \subseteq W(T)$ always holds, we have W(T) = W(T(s, 1-s)) for all $s \in [0, 1]$.

Proof of (iii) \implies (ii). We may assume $s_0 > \frac{1}{2}$. For each $s_0 \in (\frac{1}{2}, 1)$, there exists $\alpha \in (0, 1)$ such that

$$s_0 = \alpha \frac{1}{2} + (1 - \alpha) \cdot 1.$$

Then by Theorem 5.5.1,

$$W(T) = W(T(s_0, 1 - s_0)) \subseteq \alpha W(T) + (1 - \alpha) W(T(1, 0)) \subseteq W(T).$$

By the same argument of the above one, we have $W(\tilde{T}) = W(T)$.

Remark 5.5.6

- (i) In (iii) of Corollary 5.5.5, s_0 must not be 0 or 1, because if T is invertible, then U is unitary and W(T) = W(T(0,1)) = W(T(1,0)). But in general, $W(T) \neq W(\tilde{T})$.
- (ii) If T is spectraloid (i.e., w(T) = r(T)), then an applcation of Corollary 5.5.4 shows that w(T) = w(T(s, 1 s)) for all $s \in [0, 1]$. This along with Corollary 5.5.5 raises the following as conjecture:

Conjecture. For an $n \times n$ matrix T, the following assertions are equivalent:

- (i) T is spectraloid.
- (ii) $w(T) = w(\widetilde{T})$.
- (iii) $w(T) = w(T(s_0, 1 s_0))$ for a fixed $s_0 \in (0, 1)$.
- (iv) w(T) = w(T(s, 1-s)) for all $s \in [0, 1]$.

References

- [1] A. Aluthge, On p-hyponormal operators for 0 , Integral Equations Operator Theory,**13**(1990), 307–315.
- [2] T. Ando, Aluthge transforms and convex hull of eigenvalues of a matrix, Linear and Multilinear Algebra, 52 (2004), 281–292.
- [3] T. Ando and T. Yamazaki, The iterated Aluthge transforms of a 2-by-2 matrix converge, Linear Algebra Appl., 375 (2003), 299–309.
- [4] C. S. Berger and J. G. Stampfli, Mapping theorem for numerical range, Amer. J. Math., 89 (1997), 1047–1055.

- [5] G. Corach, H. Porta and L. Recht, An operator inequality, Linear Algebra Appl., 142 (1990), 153–158.
- [6] P. R. Halmos, A Hilbert Space Problem Book 2nd ed., Springer Verlag, New York, 1982.
- [7] E. Heinz, Beiträge zur Störungstheoric der Spektralzerlegung, Math. Ann., 123 (1951), 415– 438.
- [8] S. Hildebrandt, Über den numerischen wertebereich eines operators, Math. Ann., 163 (1966), 230–247.
- [9] J. A. R. Holbrook, On the power bounded operator of Sz-Nagy and C. Foiaş, Acta Sci. Math., 29 (1968), 299–310.
- [10] M. Ito, H. Nakazato, K. Okubo and T. Yamazaki, On generalized numerical range of the Aluthge transformation, Linear Algebra Appl., 370 (2003), 147–161.
- [11] I. B. Jung, E. Ko and C. Pearcy, Aluthge transforms of operators, Integral Equations Operator Theory, 37 (2000), 437–448.
- [12] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland Publishing Company, 1970.
- [13] K. Okubo, On weakly unitarily invariant norm and the Aluthge transformation, Linear Algebra Appl., 371 (2003), 269–375.
- [14] J. P. Willams, Finite operators, Proc. Amer. Math. Soc., 26 (1970), 129–136.
- [15] P. Y. Wu, Numerical range of Aluthge transform of operator, Linear Algebra Appl., 357 (2002), 295–298.
- [16] D. Xia, Spectral theory of hyponormal operators, Birkhäuser Verlag, Basel, 1983.
- [17] T. Yamazaki, An expression of spectral radius via Aluthge transformation, Proc. Amer. Math. Soc., 130 (2002), 1131-1137.
- [18] T. Yamazaki, On numerical range of the Aluthge transformation, Linear Algebra Appl., 341 (2002), 111-117.
- [19] T. Yamazaki, Characterizations of log $A \ge \log B$ and normaloid operators via Heinz inequality, Integral Equations Operator Theory, **43** (2003), 237-247.

DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, 221-8686 YOKOHAMA, JAPAN. E-mail : yamazt26@kanagawa-u.ac.jp