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Abstract. In the present article, we have attempted to reveal some relationships
between a bounded linear operator T acting on a Hilbert space and its generalized
Aluthge transformation T (s, t) in terms of their numerical ranges and norms. In fact,
we have shown the following relations:

(i) W (f(T (t,1 − t))) ⊆ W (T ) for t ∈ [0, 1] and any rational function f .

(ii) For an n×n matrix T , T is convexoid iff W (T ) = W (T (t,1− t, )) for all t ∈ [0, 1].

(ii) is an extension of Ando’s result in [2].

1 Introduction Let T be a bounded linear operator acting on a complex Hilbert space
H, and let B(H) denote the Banach algebra of bounded linear operators on H. By the
polar decomposition of T ∈ B(H), we mean the expression T = U |T |, where U is a par-
tial isometry and |T | is the positive square root of T ∗T such that kerU = ker |T |. In [1],
Aluthge introduced the class of p-hyponormal operators that generalizes the widely studied
class of hyponormal operators. In order to reveal some important features of p-hyponormal
operators, he exploited the operator T̃ which is now popularly known as the Aluthge Trans-
formation and which is defined as

T̃ = |T | 12 U |T | 12 .

Motivated by this article [1], several authors explored and studied new classes of operators
closely connected to p-hyponormal operators with the help of the Aluthge transformation
and its generalization, known as the generalized Aluthge transformation. By the generalized
Aluthge transformation of T ∈ B(H), we mean the bounded operator T (s, t) on H for which

T (s, t) = |T |sU |T |t, where s ≥ 0 and t ≥ 0.

Especially, T (1, 0) = |T |1U |T |0 = |T |UU∗U = |T |U and T (0, 1) = |T |0U |T |1 = U∗UU |T |.
In recent years, one can find number of articles in which various relations among T , T̃
and T (s, t) are obtained. It is obvious that ‖T̃‖ ≤ ‖T ‖. Okubo [13] gave a non-obvious
extension of this inequality by deriving ‖f (T̃ )‖ ≤ ‖f (T )‖ for any polynomial f(t) by proving

more general result. As a corollary to this inequality, he showed that W (f(T̃ )) ⊆ W (f(T )),
extending some results known to be true [10] or in case either f(t) = t [15, 18]. According
to [11, 19], the iterated Aluthge transformation, called the n th Aluthge transformation and
written as T̃n is defined by

T̃1 = T̃ and T̃n = (̃T̃n−1) for n > 1.
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In [17], the second author proved that the norm of the iterated Aluthge transformations
converges to the spectral radius r(T ) of T . Ando [2] proved that for a square matrix T of
order n, the sequence of the closure of the numerical ranges of iterated Aluthge transforma-
tions of T converges to the convex hull of the spectrum σ(T ) of T . In [3], it was shown that
every iterated Aluthge transformation of a matrix of order 2 converges to a normal matrix.
Our main object of the present paper is to compare the numerical range of T with that of
T (s, t) for some restricted values of s and t.

A bounded operator T is said to satisfy the growth condition (G1) or called a (G1)
operator if

‖(T − zI)−1‖ =
1

dist(z, σ(T ))
for all z �∈ σ(T ).

It is well known that the hyponormal operators satisfy the growth condition (G1), a re-
sult still not known for p-hyponormal operators. Moreover, (G1) operators are convexoid
operators. The corresponding fact for p-hyponormal operators remains as an open problem.

Let Cρ (ρ > 0) be the class of all bounded operators with unitary ρ-dilations in the sense
of B.Sz. Nagy and C. Foiaş [12]. According to Holbrook [9], an operator radius wρ(T ) of T
is defined as wρ(T ) = inf{a > 0 and a−1T ∈ Cρ}. For further properties of operator radii,
we refer to [9].

In section 2, some results are given that will be of use in the succeeding sections. Section
3 is devoted to establishing inclusion relations among the numerical ranges of rational
functions of operators T (0, 1), T (1, 0) and T . The inequality that says ‖f (T̃ )‖ ≤ ‖f (T )‖
for every polynomial f is extended further in section 4 by proving ‖f (T (s, t))‖ ≤ ‖f (T )‖
with s + t = 1 for every rational function f for which f(T ) exists. Finally, in section 5,
we introduce a numerical range value function on [0, 1] and obtain an improvement over a
characterization of convexoid matrices due to Ando [2].

In what follows, we assume, unless it is stated otherwise, that f will be a rational
function with poles off σ(T ).

2 Fundamental properties

Lemma 2.2.1 Let T = U |T | be the polar decomposition of T . Then dimkerT ≤ dim kerT ∗

if and only if there exists an isometry V such that V |T | = U |T |.
Although our first lemma is well known [6, p. 75], [16, p. 4], we would like to present it

with a proof.

Proof. Let H = R(|T |) ⊕ R(|T |)⊥ = R(T ) ⊕ R(T )⊥. Then U is an isometry from R(|T |)
to R(T ). On the other hand, there exists an isometry U1 : R(|T |)⊥ −→ R(T )⊥ if and
only if dim(R(|T |)⊥) ≤ dim(R(T )⊥). By R(|T |)⊥ = ker |T | = kerT and R(T )⊥ = kerT ∗,
it is equivalent to dimkerT ≤ dimkerT ∗. So the underlying kernel condition ensures the
existence of an isometry U1 : R(|T |)⊥ −→ R(T )⊥. Let

V = UU∗U + U1(I − U∗U) = U + U1(I − U∗U).

The facts that I − U∗U is the projection onto kerU = kerT = ker |T | = R(|T |)⊥ =
(kerU1)⊥, U∗

1 U1x = x on R(|T |)⊥ and R(U1) ⊆ R(T )⊥ = kerT ∗ = kerU∗ will give

V ∗V = {U + U1(I − U∗U)}∗{U + U1(I − U∗U)}
= U∗U + (I − U∗U)U∗

1 U + U∗U1(I − U∗U) + (I − U∗U)U∗
1 U1(I − U∗U)

= U∗U + {U∗U1(I − U∗U)}∗ + U∗U1(I − U∗U) + I − U∗U
= U∗U + I − U∗U
= I.
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Thus V is an isometry. Moreover,

V |T | = {U + U1(I − U∗U)}|T | = U |T |.
Lemma 2.2.2 Let A ∈ B(H). Then the following assertions hold:

(i) If P is a projection with PAP = AP , then

f(AP ) = Pf(A)P + f(0)(I − P ).

(ii) If V is an isometry, then

f(V AV ∗) = V f(A)V ∗ + f(0)(I − V V ∗).

Proof. (i). Let H = (kerP )⊥ ⊕ kerP . Then by the assumption PAP = AP , A can be
expressed as follows:

A =
(

X Y
0 Z

)
on H = (kerP )⊥ ⊕ kerP .

Hence

f(AP ) = f(
(

X 0
0 0

)
) =

(
f(X) 0

0 f(0)I

)
.

On the other hand,

f(A) = f(
(

X Y
0 Z

)
) =

(
f(X) Y ′

0 f(Z)

)
.

Hence we have

Pf(A)P + f(0)(I − P ) =
(

f(X) 0
0 0

)
+

(
0 0
0 f(0)I

)
= f(AP ).

(ii). For an isometry V , note that
(

V I − V V ∗

0 V ∗

)
is unitary. Then we have

(
f(V AV ∗) 0

0 f(0)I

)
= f(

(
V AV ∗ 0

0 0

)
)

= f(
(

V I − V V ∗

0 V ∗

) (
A 0
0 0

) (
V ∗ 0

I − V V ∗ V

)
)

=
(

V I − V V ∗

0 V ∗

)
f(

(
A 0
0 0

)
)
(

V ∗ 0
I − V V ∗ V

)

=
(

V I − V V ∗

0 V ∗

) (
f(A) 0

0 f(0)I

) (
V ∗ 0

I − V V ∗ V

)

=
(

V f(A)V ∗ + f(0)(I − V V ∗) 0
0 f(0)I

)
.

Hence
f(V AV ∗) = V f(A)V ∗ + f(0)(I − V V ∗).

The following result is a modification of [10, Proposition 4.5].
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Proposition 2.2.3 Let A,B ∈ B(H). Then the following assertions are mutually equiva-
lent:

(i) W (f(A)) ⊆ W (f(B)) for all f .

(ii) w(f(A)) ≤ w(f(B)) for all f .

(iii) ‖f (A)‖ ≤ ‖f (B)‖ for all f .

The proof is almost identical to the one given for Proposition 4.5 of [10].

3 Numerical ranges of T (0, 1) and T (1, 0) The primary object of the present section
is to establish the connection among the numerical ranges of T , T (0, 1) and T (1, 0).

Theorem 3.3.1 Let T ∈ B(H). Then the following assertions hold:

(i) W (f(T (0, 1))) ⊆ W (f(T )).

(ii) W (f(T (1, 0))) ⊆ W (f(T )).

Proof. (i). Let T = U |T | be the polar decomposition of T , and H = (kerT )⊥ ⊕ kerT .
Then

T (0, 1) = U∗UU |T | = U∗UT = U∗UTU∗U.

Since U∗U is a projection, (i) of Lemma 2.2.2 yields

f(T (0, 1)) = U∗Uf(T )U∗U + f(0)(I − U∗U).(3.1)

In case ker T = {0}. In this case U must be isometry. Then by (3.1), f(T (0, 1)) = f(T ),
and hence

W (f(T (0, 1))) = W (f(T )).

In case ker T �= {0}. By (3.1), we obtain

W (f(T (0, 1))) ⊆ conv {W (f(T ))∪ {f (0)}}.
Here by kerT �= {0}, we have f(0) ∈ W (f(T )), and

W (f(T (0, 1))) ⊆ conv {W (f(T )) ∪ {f (0)}} = W (f(T )).

(ii). Step 1. We shall show the following equality:

f(T (1, 0)) = U∗f(T )U + f(0)(I − U∗U).(3.2)

We shall establish this equality separately for each of the cases when dimkerT ≤ dim kerT ∗

and dim kerT ≥ dimkerT ∗.
(a) The case dimker T ≤ dimkerT ∗. By the Lemma 2.2.1, there is an isometry V

satisfying U |T | = V |T |. Note that in the proof of Lemma 2.2.1,

V = U + U1(I − U∗U), where U1 is isometry with R(U1) ⊆ kerT ∗.(3.3)

Then by (3.3), we have

UU∗TUU∗ = TUU∗ = U |T |UU∗ = V |T |UV ∗.
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Hence by (ii) Lemma 2.2.2, we obtain

f(TUU∗) = f(V |T |UV ∗) = V f(|T |U)V ∗ + f(0)(I − V V ∗).

Moreover since V is isometry, we have

f(|T |U) = V ∗f(TUU∗)V.

Therefore

f(|T |U) = V ∗f(TUU∗)V
= V ∗{UU∗f(T )UU∗ + f(0)(I − UU∗)}V by (i) of Lemma 2.2.2
= U∗f(T )U + f(0)(I − U∗U) by (3.3).

On the other hand, by (3.3),

U |T ∗| = UU∗UU |T |U∗ = V U∗UTV ∗.

Then by Lemma 2.2.2, we obtain

f(U |T ∗|) = f(V U∗UTV ∗)
= V f(U∗UT )V ∗ + f(0)(I − V V ∗) by (ii) of Lemma 2.2.2
= V {U∗Uf(T )U∗U + f(0)(I − U∗U)}V ∗ + f(0)(I − V V ∗)

by (i) of Lemma 2.2.2
= Uf(T )U∗ + f(0)(I − UU∗) by (3.3).

(3.4)

(b) The case dimker T ≥ dimkerT ∗. Replacing T by T ∗ in (3.4), we have

f(U∗|T |) = U∗f(T ∗)U + f(0)(I − U∗U)
⇐⇒ f(|T |U) = U∗f(T )U + f(0)(I − U∗U).

Step 2. In case ker T = {0}. In this case U must be isometry. Then by (3.2), f(T (1, 0)) =
f(|T |U) = U∗f(T )U , and hence

W (f(T (1, 0))) ⊆ W (f(T )).

In case kerT �= {0}. By (3.2), we obtain

W (f(T (1, 0))) = W (f(|T |U)) ⊆ conv {W (f(T )) ∪ {f (0)}}.
Here by kerT �= {0}, we have f(0) ∈ W (f(T )), and

W (f(T (1, 0))) ⊆ conv {W (f(T ))∪ {f (0)}} = W (f(T )).

Hence the proof is complete.

Corollary 3.3.2 Let T = U |T |. Then

(i) W (T (1, 0)) = W (T ) if kerT ∗ ⊆ kerT .

(ii) W (T (0, 1)) = W (T ) if kerT ⊆ kerT ∗.
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(iii) W (T (0, 1)) ⊆ W (T (1, 0)) if kerT ∗ ⊆ kerT .

(iv) W (T (1, 0)) ⊆ W (T (0, 1)) if kerT ⊆ kerT ∗.

Proof. (i). In view of Theorem 3.3.1, only we have to prove W (T ) ⊆ W (T (1, 0)).
If kerT ∗ ⊆ kerT , then T = U |T | = U |T |UU∗ = UT (1, 0)U∗, and we have

W (T ) ⊆ conv{W (T (1, 0)) ∪ {0}}.

If kerT �= {0}, then 0 ∈ W (T (1, 0)) and we have

W (T ) ⊆ conv{W (T (1, 0)) ∪ {0}} = W (T (1, 0)).

If kerT = {0}, then {0} = kerT ⊃ kerT ∗, and U∗ must be an isometry. Hence we have
W (T ) ⊆ W (T (1, 0)).

(ii). If kerT ⊆ kerT ∗, then U∗UU = U holds. Hence T (0, 1) = U∗UU |T | = U |T | = T ,
and W (T (0, 1)) = W (T ).

(iii). If kerT ∗ ⊆ kerT , then by (i) and Theorem 3.3.1, we have

W (T (0, 1)) ⊆ W (T ) = W (T (1, 0)).

(iv). If kerT ⊆ kerT ∗, then by (ii) and Theorem 3.3.1, we have

W (T (1, 0)) ⊆ W (T ) = W (T (0, 1)).

Remark 3.3.3 If we drop the kernel condition from the statements of Corollary 3.3.2, then
we may not get the same conclusions as following indicate.

Example 3.3.4 Let T =
(

0 1
0 0

)
. Then |T | =

(
0 0
0 1

)
and U = T . Clearly W (T (1, 0)) =

{0} �= W (T ).

Example 3.3.5 For α > 0, let

T =

⎛
⎜⎜⎝

0 α 0 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Then

T (0, 1) =

⎛
⎜⎜⎝

0 α 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ and T (1, 0) =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Also W (T (0, 1)) = {z ∈ C : |z| ≤ α
2 } and W (T (1, 0)) = {z ∈ C : |z| ≤ 1

2}. Then

(i) for α ∈ (0, 1), W (T (0, 1)) � W (T (1, 0)),

(ii) for α > 1, W (T (1, 0)) � W (T (0, 1)).
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4 Norm inequality involving a rational function of T and T (s, t).

Theorem 4.4.1 Let T ∈ B(H). Then

‖f(T (s, t))‖ ≤ ‖f(T )‖

holds for s, t ≥ 0 with s + t = 1.

Proof. Let T = U |T | be the polar decomposition of T . Let |Tε| = |T |+ εI > 0. Note that

lim
ε→+0

|Tε|−1|T | = lim
ε→+0

(|T | + εI)−1|T | = U∗U.

We prepare the important inequality due to [7]. For X ∈ B(H) and positive operators A
and B,

‖AsXBs‖ ≤ ‖AXB‖s‖X‖1−s(4.1)

holds for s ∈ [0, 1]. Then we have

‖f (T (s, t))‖ = ‖f (|T |sU |T |t)‖
= ‖f (|Tε|s|Tε|−s|T |sU |T |t|Tε|s|Tε|−s)‖
= ‖|Tε|sf(|Tε|−s|T |sU |T |t|Tε|s)|Tε|−s‖
≤ ‖|Tε|f(|Tε|−s|T |sU |T |t|Tε|s)|Tε|−1‖s‖f (|Tε|−s|T |sU |T |t|Tε|s)‖t by (4.1)

= ‖f (|Tε|1−s|T |sU |T |t|Tε|s−1)‖s‖f (|Tε|−s|T |sU |T |t|Tε|s)‖t

−→ ‖f (|T |UU∗U)‖s‖f (U∗UU |T |)‖t as ε → +0

= ‖f (T (1, 0))‖s‖f (T (0, 1))‖t

≤ ‖f (T )‖ by Theorem 3.3.1 and Proposition 2.2.3.

Hence the proof is complete.

Remark 4.4.2

(i) Above theorem is not true if s + t �= 1 as can be illustrated with the following Example
4.4.3.

(ii) Notice that a simple consequence of Theorem 4.4.1 shows that the sequence {‖f (T̃n)‖}
is a non-increasing sequence in positive numbers and therefore is convergent to a
positive number. In particular, when f(t) = t, the second author [17] proved that the
limit of the sequence is r(T ), the spectral radius of T . However, in general situation,
whether the sequence {‖f (T̃n)‖} converges to r(f(T )) remains as an open problem to
us.

Example 4.4.3 Let T =
(

0 0
1 1

)
on H = C2. Then U =

1√
2

(
0 0
1 1

)
and |T | =

1√
2

(
1 1
1 1

)
.

Also T (2, 1) =
(

1 1
1 1

)
. It easy to find that W (T (2, 1)) = [0, 2]. Moreover W (T ) is a closed

elliptic disc with foci at 0 and 1, and the major axis
√

2 and the minor axis 1. This fact
shows that W (T ) excludes 2 and therefore W (T (2, 1)) is not a subset of W (T ). If the the-
orem were true for s + t �= 1, then we would have in particular, ‖T (s, t) − zI‖ ≤ ‖T − zI‖
for all z. Then W (T (s, t)) ⊆ W (T ), which is not correct.
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As simple consequence of Proposition 2.2.3 and Theorem 4.4.1, we obtain the following
corollary.

Corollary 4.4.4 Let T ∈ B(H). Then

W (f(T (s, t))) ⊆ W (f(T ))

holds for s, t ≥ 0 with s + t = 1.

The following corollary is an extension of [13, Corollary 3].

Corollary 4.4.5 Let T ∈ B(H). Then

wρ (f(T (s, t))) ≤ wρ (f(T ))

holds for each s, t ≥ 0 with s + t = 1 and ρ > 0.

Proof. First, we note that

(i) for 0 < ρ < 2 and ρ �= 1, wρ ≤ 1 if and only if

‖T − zI‖ ≤ |z|
|ρ − 1| with

∣∣∣∣ρ − 1
ρ − 2

∣∣∣∣ ≤ |z| < ∞

in [12],

(ii) for ρ = 2, w(T ) = w2(T ) ≤ 1 if and only if

‖T − zI‖ ≤ 1 + (1 + |z|2) 1
2

for each complex number z in [4],

(iii) for ρ > 2, wρ(T ) ≤ 1 if and only if r(T ) ≤ 1 and

‖(T − zI)−1‖ ≤ 1
|z| − 1

for 1 < |z| <
ρ − 1
ρ − 2

in [12].

Now it is not difficult to prove the corollary by applying Theorem 4.4.1.

Corollary 4.4.6 If T satisfies the growth condition (G1), then so does T (s, t) for s, t ≥ 0
with s + t = 1.

Proof. Since σ(T ) = σ(T (s, t)), the result follows from Theorem 4.4.1.
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5 The convexity of F (x) = W (f(T (x, 1 − x))).

Theorem 5.5.1 For an operator T , let

F (x) = W (f(T (x, 1 − x))) for x ∈ [0, 1].

Then

F (αx + (1 − α)y) ⊆ αF (x) + (1 − α)F (y)(5.1)

holds for all x, y ∈ [0, 1] and α ∈ [0, 1].

As a consequence of Theorem 5.5.1, the function Φ(x) = w(T (x, 1− x)) turns out to be
a convex function on [0, 1].

Proof. Let T = U |T | be the polar decomposition. Firstly, we shall prove

F

(
x + y

2

)
⊆ 1

2
{F (x) + F (y)}.(5.2)

Note that for a positive invertible operator S and A ∈ B(H),

‖A‖ ≤ 1
2
‖SAS−1 + S−1AS‖.

in [5]. Let ε > 0 and |Tε| = (|T | + εI) > 0. By the above inequality, we obtain

‖f (T
(

x + y

2
, 1 − x + y

2

)
)‖

= ‖f (|T | x+y
2 U |T |1−x+y

2 )‖
≤ 1

2
‖|Tε|

x−y
2 f(|T | x+y

2 U |T |1−x+y
2 )|Tε|

y−x
2 + |Tε|

y−x
2 f(|T | x+y

2 U |T |1−x+y
2 )|Tε|

x−y
2 ‖

=
1
2
‖f (|Tε|

x−y
2 |T | x+y

2 U |T |1−x+y
2 |Tε|

y−x
2 ) + f(|Tε|

y−x
2 |T | x+y

2 U |T |1−x+y
2 |Tε|

x−y
2 )‖

−→ 1
2
‖f (|T |xU |T |1−x) + f(|T |yU |T |1−y)‖ as ε → +0

=
1
2
‖f (T (x, 1 − x)) + f(T (y, 1 − y))‖.

Hence for any complex number λ,

‖f (T
(

x + y

2
, 1 − x + y

2

)
) − λI‖ ≤ ‖f(T (x, 1 − x)) + f(T (y, 1 − y))

2
− λI‖.

Since
W (T ) =

⋂
λ∈C

{z ∈ C : |z − λ| ≤ ‖T − λI‖}

in [8, 14], we have

F

(
x + y

2

)
= W

(
f

(
T

(
x + y

2
, 1 − x + y

2

)))

⊆ W

(
f(T (x, 1 − x)) + f(T (y, 1 − y))

2

)

⊆ 1
2
{W (f(T (x, 1 − x))) + W (f(T (y, 1 − y)))}

=
1
2
{F (x) + F (y)}.



326 S. M. PATEL AND T. YAMAZAKI

Next, we will extend (5.2) to (5.1) ¿From (5.2), one can easily derive

F

(
x1 + x2 + · · · + x2n

2n

)
⊆ 1

2n

{
F (x1) + F (x2) + · · · + F (x2n)

}
for all xi ∈ [0, 1] (i = 1, 2, · · · ). Hence for any rational number α ∈ [0, 1], we have (5.1).
Since F is continuous, we have (5.1) for any real number α ∈ [0, 1].

This completes the proof.

Remark 5.5.2 The conclusion of Theorem 5.5.1 cannot be strengthened further to

F (αx + (1 − α)y) = αF (x) + (1 − α)F (y)

as Example 5.5.3 will show. However, whether the range of F is convex remains as an open
problem.

Example 5.5.3 For α > 0, let

T =

⎛
⎜⎜⎝

0 16 0 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Then

T (s, t) =

⎛
⎜⎜⎝

0 16t 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Then F (x) = W (T (x, 1 − x)) = {z : |z| ≤ 161−x

2 }. Let x = 1
4 , y = 3

4 and α = 1
2 . Then

(i) F (1
2 ) = F (αx + (1 − α)y) = {z : |z| ≤ 2}.

(ii) F (x) = {z : |z| ≤ 4}.

(iii) F (y) = {z : |z| ≤ 1}.
Hence

F

(
1
2

)
= F (αx + (1 − α) y) = {z : |z| ≤ 2}

� {z : |z| ≤ 5
2
} = αF (x) + (1 − α) F (y).

Corollary 5.5.4 Let T be an operator. Then

W (f(T̃ )) = F

(
1
2

)
⊆ 1

2
{F (s) + F (1 − s)}

⊆ 1
2
{F (t) + F (1 − t)} ⊆ W (f(T ))

holds for all 1
2 ≤ s ≤ t ≤ 1.
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Proof. Since 1
2 = s+1−s

2 and F (x) = W (f(T (x, 1 − x))) ⊆ W (f(T )) for x ∈ [0, 1], we have

W (f(T̃ )) = F

(
1
2

)
⊆ 1

2
{
F (s) + F (1 − s)

}
by Theorem 5.5.1

⊆ W (f(T )) by Corollary 4.4.4.

Next, let 1
2 ≤ s ≤ t ≤ 1. Then we have [1−s, s] ⊆ [1−t, t]. Then there exist α1, α2 ∈ [0, 1]

such that

s = α1t + (1 − α1)(1 − t) and 1 − s = α2t + (1 − α2)(1 − t).

By an easy calculation, we have α1 + α2 = 1, and by Theorem 5.5.1, we have

1
2
{F (s) + F (1 − s)} ⊆ 1

2
{α1F (t) + (1 − α1)F (1 − t) + α2F (t) + (1 − α2)F (1 − t)}

=
1
2
{F (t) + F (1 − t)}.

As a simple consequence of Corollary 4.4.4, one can see that if T is covexoid then
so is T (s, t) with W (T (s, t)) = W (T ). The converse is obvious. However, if we do not
assume W (T (s, t)) = W (T ), then mere convexoidity of T (s, t) does not guarantee that T
is convexoid even if H is finite dimensional. To see this, we refer to Example 4.4.3. That

convexoidity of T̃ =
1
2

(
1 1
1 1

)
is clear from the fact that it is selfadjoint. On the other

hand as conv σ(T ) = [0, 1] �= W (T ), T is not convexoid. However, if H is finite-dimensional,
then our next result will show that the condition W (T (s, t)) = W (T ) is just equivalent to
the convexoidity of T . In case H is infinite dimensional, we do not know the validity of this
result.

Corollary 5.5.5 For an n× n matrix T , the following assertions are mutually equivalent:

(i) T is convexoid.

(ii) W (T̃ ) = W (T ).

(iii) W (T (s0, 1 − s0)) = W (T ) for a fixed s0 ∈ (0, 1).

(iv) W (T (s, 1 − s)) = W (T ) for all s ∈ [0, 1].

In order to prove Corollary 5.5.5, we shall need the following theorem, a remarkable
result due to Ando [2].

Theorem 5.A ([2]) Let T be an n×n matrix. Then T is convexoid if and only if W (T̃ ) =
W (T ).

Proof. (i) ⇐⇒ (ii) has been shown in Theorem A. (iv) =⇒ (ii), (iii) are obvious. So only
we have to show (ii) =⇒ (iv) and (iii) =⇒ (ii).

Proof of (ii) =⇒ (iv). Since W (T (s, 1− s)) ⊆ W (T ) and W (T (1− s, s)) ⊆ W (T ) for all
s ∈ [0, 1] hold and Corollary 5.5.4, we have

W (T ) = W (T̃ ) ⊆ 1
2
{
W (T (s, 1 − s)) + W (T (1 − s, s))

}
⊆ 1

2
{
W (T (s, 1 − s)) + W (T )

} ⊆ W (T ).
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Then we have

1
2
{
W (T (s, 1 − s)) + W (T )

}
= W (T ).(5.3)

For any θ ∈ [0, 2π), let λ be an extreme point of Re eiθW (T ). Then by (5.3), there exist
λ1 ∈ Re eiθW (T ) and µ1 ∈ Re eiθW (T (s, 1 − s)) such that

λ =
λ1 + µ1

2
.

Since Re eiθW (T ) is a line segment, and λ is a extreme point of Re eiθW (T ), it must be
λ = λ1 = µ1 ∈ Re eiθW (T (s, 1 − s)), i.e., Re eiθW (T ) ⊆ Re eiθW (T (s, 1 − s)) for any
θ ∈ [0, 2π). Since W (T ) is convex, and W (T (s, 1 − s)) ⊆ W (T ) always holds, we have
W (T ) = W (T (s, 1 − s)) for all s ∈ [0, 1].

Proof of (iii) =⇒ (ii). We may assume s0 > 1
2 . For each s0 ∈ (1

2 , 1), there exists
α ∈ (0, 1) such that

s0 = α
1
2

+ (1 − α) · 1.

Then by Theorem 5.5.1,

W (T ) = W (T (s0, 1 − s0)) ⊆ αW (T̃ ) + (1 − α)W (T (1, 0)) ⊆ W (T ).

By the same argument of the above one, we have W (T̃ ) = W (T ).

Remark 5.5.6

(i) In (iii) of Corollary 5.5.5, s0 must not be 0 or 1, because if T is invertible, then U is
unitary and W (T ) = W (T (0, 1)) = W (T (1, 0)). But in general, W (T ) �= W (T̃ ).

(ii) If T is spectraloid (i.e., w(T ) = r(T )), then an applcation of Corollary 5.5.4 shows
that w(T ) = w(T (s, 1 − s)) for all s ∈ [0, 1]. This along with Corollary 5.5.5 raises
the following as conjecture:

Conjecture. For an n × n matrix T , the following assertions are equivalent:

(i) T is spectraloid.

(ii) w(T ) = w(T̃ ).

(iii) w(T ) = w(T (s0, 1 − s0)) for a fixed s0 ∈ (0, 1).

(iv) w(T ) = w(T (s, 1 − s)) for all s ∈ [0, 1].
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