INTUITIONISTIC Ω -FUZZY IDEALS OF BCK-ALGEBRAS

MA XUELING & ZHAN JIANMING *

Received July 4, 2005

ABSTRACT. Given a set Ω , the notion of intuitionistic Ω -fuzzy ideals of BCK-algebras is introduced, and some related properties are investigated. Relations between intuitionistic Ω -fuzzy subalgebras in BCK-algebras are given. Finally, we study the properties of homomorphism of BCK-algebras.

1.Introduction and Preliminaries After the introduction of the concept of fuzzy sets by Zadeh ([7]), many researches were conducted on the generalization of the notion of fuzzy sets. The idea of "intuitionistic fuzzy sets" was first published by Atanassov (see [1,2]), as a generalization of the notion of fuzzy sets. In this paper, using Atanassov's idea, we establish the intuitionistic fuzzification of the concept of Ω -subalgebras and Ω -ideals in BCK-algebras, and investigate some of their properties.

By a BCK-algebra we mean a nonempty set X with a binary operation * and a constant 0 satisfying the following conditions:

(I) ((x * y) * (x * z)) * (z * y) = 0

(II) (x * (x * y)) * y = 0

(III) x * x = 0

(IV) 0 * x = 0

(V) x * y = 0 and y * x = 0 imply x = y

for all $x, y, z \in X$.

A partial ordering " \leq " on X can be defined by $x \leq y$ if and only if x * y = 0.

A nonempty subset S of a BCK-algebra X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$. A nonempty subset I of a BCK-algebra X is called an ideal of X if

(i) $0 \in I$

(ii) $x * y \in I$ and $y \in I$ imply that $x \in I$ for all $x, y \in X$.

By a fuzzy set μ in a nonempty set X we mean a function $\mu : X \to [0,1]$, and the complement of μ , denoted by $\overline{\mu}$, is the fuzzy set in X given by $\overline{\mu}(x) = 1 - \mu(x)$ for all $x \in X$. We will use the symbol $a \wedge b$ for min $\{a, b\}$ and $a \vee b$ for max $\{a, b\}$, where a and bare any real numbers. A fuzzy set μ in a BCK-algebra X is called a fuzzy subalgebra of Xif $\mu(x * y) \ge \mu(x) \wedge \mu(y)$ for all $x, y \in X$. A fuzzy set μ in a BCK-algebra X is called a fuzzy ideal of X if (i) $\mu(0) \ge \mu(x)$, (ii) $\mu(x) \ge \mu(x * y) \wedge \mu(y)$ for all $x, y \in X$. In what follows, let Ω denote a set unless otherwise specified. A mapping $H : X \times \Omega \to [0, 1]$ is called an Ω -fuzzy set in X. An intuitionistic Ω -fuzzy set (briefly, $I\Omega FS$) A in a nonempty set X is an object having the form

$$A = \{ (x, \alpha_A(x, q), \beta_A(x, q)) \mid x \in X, q \in \Omega \}$$

where the functions $\alpha_A : X \times \Omega \to [0,1]$ and $\beta_A : X \times \Omega \to [0,1]$ denote the degree of membership and the degree of nonmembership, respectively, and $0 \le \alpha_A(x,q) + \beta_A(x,q) \le$

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. Ω -fuzzy set, Ω -fuzzy ideal, intuitionistic Ω -fuzzy subalgebra, intuitionistic Ω -fuzzy ideal.

1, $\forall x \in X, q \in \Omega$. An intuitionistic Ω -fuzzy set $A = \{(x, \alpha_A(x, q), \beta_A(x, q)) \mid x \in X, q \in \Omega\}$ in X can be identified to an ordered pair (α_A, β_A) in $I^{X \times \Omega} \times I^{X \times \Omega}$. For the sake of simplicity, we shall use the symbol $A = (\alpha_A, \beta_A)$ for the $I\Omega FSA = \{(x, \alpha_A(x, q), \beta_A(x, q)) \mid x \in X, q \in \Omega\}$.

2. Intuitionistic Ω -fuzzy Ideals

Definition 2.1. An $I\Omega FSA = (\alpha_A, \beta_A)$ in X is called an intuitionistic fuzzy subalgebra of X over Ω (briefly, Intuitionistic Ω -fuzzy subalgebra of X) if it satisfies

(i) $\alpha_A(x * y, q) \ge \alpha_A(x, q) \land \alpha_A(y, q)$ (ii) $\beta_A(x * y, q) \le \beta_A(x, q) \lor \beta_A(y, q)$

for all $x, y \in X$ and $q \in \Omega$.

Example 2.2. Consider a BCK-algebra $X = \{0, a, b, c\}$ with the following Cayley table:

*	0	a	b	с
0	0	0	0	0
a	a	0	0	a
b	b	a	0	b
c	c	c	c	0

Let $A = (\alpha_A, \beta_A)$ be an $I\Omega FS$ in X defined by $\alpha_A(0,q) = \alpha_A(a,q) = \alpha_A(c,q) = 0.7 > 0.3 = \alpha_A(b,q), \beta_A(0,q) = \beta_A(a,q) = \beta_A(c,q) = 0.2 < 0.5 = \beta_A(b,q)$ for all $q \in \Omega$. Then $A = (\alpha_A, \beta_A)$ is an intuitionistic Ω -fuzzy subalgebra of X.

Proposition 2.3. Every intuitionistic Ω -fuzzy subalgebra $A = (\alpha_A, \beta_A)$ of X satisfies the inequalities $\alpha_A(0,q) \ge \alpha_A(x,q)$ and $\beta_A(0,q) \le \beta_A(x,q)$ for all $x \in X$ and $q \in \Omega$.

Proof. For any $x \in X$ and $q \in \Omega$, we have $\alpha_A(0,q) = \alpha_A(x * x,q) \ge \alpha_A(x,q) \land \alpha_A(x,q) = \alpha_A(x,q), \beta_A(0,q) = \beta_A(x * x,q) \le \beta_A(x,q) \lor \beta_A(x,q) = \beta_A(x,q)$. This completes the proof.

Definition 2.4. An $I\Omega FSA = (\alpha_A, \beta_A)$ in X is called an intuitionistic fuzzy ideal of X over Ω (briefly, intuitionistic Ω -fuzzy ideal of X) if

(i) $\alpha_A(0,q) \ge \alpha_A(x,q)$ and $\beta_A(0,q) \le \beta_A(x,q)$ (ii) $\alpha_A(x,q) \ge \alpha_A(x*y,q) \land \alpha_A(y,q)$ (iii) $\beta_A(x,q) \le \beta_A(x*y,q) \lor \beta_A(y,q)$ for all $x, y \in X$ and $q \in \Omega$.

Example 2.5. Let $X = \{0, 1, 2, 3, 4\}$ be a BCK-algebra with

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	0	0	0
4	4	3	4	1	0

Define an $I\Omega FSA = (\alpha_A, \beta_A)$ in X as follows: for every $q \in \Omega, \alpha_A(0,q) = \alpha_A(2,q) = 1, \alpha_A(1,q) = \alpha_A(3,q) = \alpha_A(4,q) = t, \beta_A(0,q) = \beta_A(2,q) = 0, \beta_A(1,q) = \beta_A(3,q) = \beta_A(4,q) = s$, where $t, s \in [0,1]$ and $s + t \leq 1$. By routine calculation we know that $A = (\alpha_A, \beta_A)$ is an intuitionistic Ω -fuzzy ideal of X.

Lemma 2.6. Let an $I\Omega FSA = (\alpha_A, \beta_A)$ in X be an intuitionistic Ω -fuzzy ideal of X. If the inequality $x * y \leq z$ holds in X, then for any $q \in \Omega, \alpha_A(x,q) \geq \alpha_A(y,q) \wedge \alpha_A(z,q), \beta_A(x,q) \leq \beta_A(y,q) \vee \beta_A(z,q)$.

Proof. Let $x, y, z \in X$ by such that $x * y \leq z$. Then (x * y) * z = 0, and thus for any $q \in \Omega, \alpha_A(x,q) \geq \alpha_A(x * y,q) \land \alpha_A(y,q) \geq (\alpha_A((x * y) * z,q) \land \alpha_A(z,q)) \land \alpha_A(y,q) = (\alpha_A(0,q)) \land \alpha_A(z,q)) \land \alpha_A(y,q) = \alpha_A(z,q) \land \alpha_A(y,q), \beta_A(x,q) \leq \beta_A(x * y,q) \lor \beta_A(y,q) \leq (\beta_A((x * y) * z,q) \lor \beta_A(z,q)) \lor \beta_A(y,q) = (\beta_A(0,q) \lor \beta_A(z,q)) \lor \beta_A(y,q) = \beta_A(z,q) \lor \beta_A(y,q).$ This completes the proof.

Lemma 2.7. Let $A = (\alpha_A, \beta_A)$ be an intuitionistic Ω -fuzzy ideal of X. If $x \leq y$ in X, then for any $q \in \Omega, \alpha_A(x,q) \geq \alpha_A(y,q), \beta_A(x,q) \leq \beta_A(y,q)$, that is, α_A is order-reserving, and β_A is order-preserving.

Proof. Let $x, y \in X$ be such that $x \leq y$. Then x * y = 0, $\alpha_A(x, q) \geq \alpha_A(x * y, q) \land \alpha_A(y, q) = \alpha_A(0, q) \land \alpha_A(y, q) = \alpha_A(y, q)$, $\beta_A(x, q) \leq \beta_A(x * y, q) \lor \beta_A(y, q) = \beta_A(0, q) \lor \beta_A(y, q) = \beta_A(y, q)$. This completes the proof.

Theorem 2.8. If $A = (\alpha_A, \beta_A)$ is an intuitionistic Ω -fuzzy ideal of X, then for any $x, a_1, \dots, a_n \in X$ and $q \in \Omega, (\dots, ((x * a_1) * a_2) * \dots) * a_n = 0$ implies $\alpha_A(x,q) \ge \alpha_A(a_1,q) \land \alpha_A(a_2,q) \land \dots \land \alpha_A(a_n,q), \beta_A(x,q) \le \beta_A(a_1,q) \lor \beta_A(a_2,q) \lor \dots \lor \beta_A(a_n,q).$

Proof. Using induction on n and Lemma 2.6 and lemma 2.7.

Theorem 2.9. Every intuitionistic Ω -fuzzy ideal of X is an intuitionistic Ω -fuzzy subalgebra of X.

Proof. Let $A = (\alpha_A, \beta_A)$ be an intuitionistic Ω -fuzzy ideal of X. Since $x * y \leq x$ for all $x, y \in X$, it follows that $\alpha_A(x * y, q) \geq \alpha_A(x), \beta_A(x * y, q) \leq \beta_A(x, q)$ for all $q \in \Omega$. Hence $\alpha_A(x * y, q) \geq (x * y, q) \geq \alpha_A(y, q) \geq \alpha_A(x, q) \wedge \alpha_A(y, q) \geq \alpha_A(x, q) \wedge \beta_A(x * y, q) \leq \beta_A(x, q) \vee \beta_A(x * y, q) \leq \beta_A(x, q) \vee \beta_A(y, q) \leq \beta_A(x, q) \vee \beta_A(y, q)$. This shows that $A = (\alpha_A, \beta_A)$ is an intaitionistic Ω -fuzzy subalgebra of X.

The converse of Theorem 2.9 may not be true. For example, the intuitionistic Ω -fuzzy subalgebra $A = (\alpha_A, \beta_A)$ in Example 2.2 is not an intuitionistic Ω -fuzzy ideal of X since $\beta_A(b,q) = 0.5 > 0.2 = \beta_A(b*a,q) \wedge \beta_A(a,q)$. We now give a condition for an intuitionistic Ω -fuzzy subalgebra to be an intuitionistic Ω -fuzzy ideal.

Theorem 2.10. Let $A = (\alpha_A, \beta_A)$ be an intuitionistic Ω -fuzzy subalgebra of X such that $\alpha_A(x,q) \ge \alpha_A(y,q) \land \alpha_A(z,q), \beta_A(x,q) \le \beta_A(y,q) \lor \beta_A(z,q)$ for all $x, y, z \in X$ satisfying the inequality $x * y \le z$ and $q \in \Omega$. Then $A = (\alpha_A, \beta_A)$ is an intuitionistic Ω -fuzzy ideal of X.

Proof. Let $A = (\alpha_A, \beta_A)$ be an intuitionistic Ω -fuzzy subalgebra of X. Recall that $\alpha_A(0,q) \ge \alpha_A(x,q)$ and $\beta_A(0,q) \le \beta_A(x,q)$ for all $x \in X$ and $q \in \Omega$. Since $x * (x * y) \le y$, it follows from the hypothesis that $\alpha_A(x,q) \ge \alpha_A(x * y,q) \land \alpha_A(y,q), \beta_A(x,q) \le \beta_A(x * y,q) \lor \beta_A(y,q)$. Hence $A = (\alpha_A, \beta_A)$ is an intuitionistic Ω -fuzzy ideal of X.

Lemma 2.11. An $I\Omega FSA = (\alpha_A, \beta_A)$ is an intuitionistic Ω -fuzzy ideal of X if and only if the Ω -fuzzy sets α_A and $\overline{\beta}_A$ are Ω -fuzzy ideals of X.

Proof. Let $A = (\alpha_A, \beta_A)$ be an intuitionistic Ω -fuzzy ideal of X. Clearly α_A is an Ω -fuzzy ideal of X. For every $x, y \in X$ and $q \in \Omega$, we have $\overline{\beta}_A(0,q) = 1 - \beta_A(0,q) \leq 1 - \beta_A(x,q) = \overline{\beta}_A(x,q), \overline{\beta}_A(x,q) = 1 - \beta_A(x,q) \geq 1 - \beta_A(x*y,q) = 1 - \beta_A(x*y,q) \vee \beta_A(x,q) = (1 - \beta_A(x*y,q)) \wedge (1 - \beta_A(y,q)) = \overline{\beta}_A(x*y,q) \wedge \beta_A(y,q)$. Hence β_A is an Ω -fuzzy ideal of X.

Conversely, assume that α_A and $\overline{\beta}_A$ are Ω -fuzzy ideals of X. For every $x, y \in X$ and $q \in \Omega$, we get $\alpha_A(0,q) \ge \alpha_A(x,q)1 - \beta_A(0,q) = \overline{\beta}_A(0,q) \ge \overline{\beta}_A(x,q) = 1 - \beta_A(x,q)$, that is, $\beta_A(0,q) \le \beta_A(x,q), \alpha_A(x,q) \ge \alpha_A(x * y,q) \land \alpha_A(y,q)$ and $1 - \beta_A(x,q) = \overline{\beta}_A(x,q) \le \overline{\beta}_A(x * y,q) \land \overline{\beta}_A(y,q) = (1 - \beta_A(x * y,q) \land (1 - \beta_A(y,q))) = 1 - \beta_A(x * y,q) \lor 1 - \beta_A(y,q)$, that is, $\beta_A(x,q) \le \beta_A(x * y,q) \lor \beta_A(y,q)$. Hence $A = (\alpha_A, \beta_A)$ is an intuitionistic Ω -fuzzy ideal of X.

Theorem 2.12. Let $A = (\alpha_A, \beta_A)$ be an $I\Omega FS$ in X. Then $A = (\alpha_A, \beta_A)$ is an intuitionstic Ω -fuzzy ideal of X if and only if $\Box A = (\alpha_A, \overline{\alpha}_A)$ and $\Diamond A = (\overline{\beta}_A, \beta_A)$ are intuitionistic Ω -fuzzy ideals of X.

Proof. If $A = (\alpha_A, \beta_A)$ is an intuitionistic Ω -fuzzy ideal of X, then $\overline{\alpha}_A = \alpha_A$ and $\overline{\beta}_A$ are Ω -fuzzy ideals of X from lemma 2.11, thence $\Box A = (\alpha_A, \overline{\alpha}_A)$ and $\Diamond A = (\overline{\beta}_A, \beta_A)$ are intuitionistic Ω -fuzzy ideals of X.

Conversely, if $\Box A = (\alpha_A, \overline{\alpha}_A)$ and $\Diamond A = (\overline{\beta}_A, \beta_A)$ are intuitionistic Ω -fuzzy ideals of X, then the Ω -fuzzy sets α_A and $\overline{\beta}_A$ are Ω -fuzzy ideals of X, hence $A = (\alpha_A, \beta_A)$ is an intuionistic Ω -fuzzy ideal of X.

A mapping $f: X \to Y$ of BCK-algebras is called a homomorphism if f(x * y) = f(x) * f(y)for all $x, y \in X$. Note that if $f: X \to Y$ is a homomorphism of BCK-algebras, then f(0) = 0. Let $f: X \to Y$ be a homomorphism of BCK-algebras. For any $I\Omega FSA = (\alpha_A, \beta_A)$ in Y, we define a new $I\Omega FSA^f = (\alpha_A^f, \beta_A^f)$ in X by $\alpha_A^f(x, q) = \alpha_A(f(x), q), \beta_A^f(x, q) = \beta_A(f(x), q), \forall x \in X \text{ and } q \in \Omega$.

Theorem 2.13. Let $f: X \to Y$ be a homomorphism of BCK-algebras. If an $I\Omega FSA = (\alpha_A, \beta_A)$ in Y is an intuitionistic Ω -fuzzy ideal of Y, then an $I\Omega FSA^f = (\alpha_A^f, \beta_A^f)$ in X is an intuitionistic Ω -fuzzy ideal of X.

Proof. We first have that $\alpha_A^f(x,q) = \alpha_A(f(x),q) \ge \alpha_A(0,q) = \alpha_A(f(0),q) = \alpha_A(0,q), \beta_A^f(x,q) = \beta_A(f(x),q) \le \beta_A(0,q) = \beta_A(f(0),q) = \beta_A^f(0,q)$ for all $x \in X$ and $q \in \Omega$. Let $x, y \in X$ and $q \in \Omega$. Then $\alpha_A^f(x,q) = \alpha_A(f(x),q) \ge \alpha_A(f(x) * f(y),q) \land \alpha_A(f(y),q) = \alpha_A(f(x * y),q) \land \alpha_A(f(y),q) = \alpha_A^f(x * y,q) \land \alpha_A^f(y,q), \beta_A^f(x,q) = \beta_A(f(x),q) \le \beta_A(f(x) * f(y),q) \lor \beta_A(f(y),q) = \beta_A(f(x * y),q) \lor \beta_A(f(y),q) = \beta_A^f(x * y,q) \lor \beta_A^f(x * y,q) \lor \beta_A^f(x * y,q) \lor \beta_A^f(x,q) = \beta_A^f(x * y,q) \lor \beta_A^f(x,q) = \beta_A^f(x * y,q) \lor \beta_A^f(y,q) = \beta_A^f(x * y,q) \lor \beta_A^f(y,q)$. Hence $\alpha_A^f = (\alpha_A^f, \beta_A^f)$ is an intuitionistic Ω-fuzzy ideal of X.

If we strengthen the condition of f, then we can construct the converse of Theorem 2.13 as follows.

Theorem 2.14. Let $f: X \to Y$ be an epimorphism of BCK-algebras and let $A = (\alpha_A, \beta_A)$ be an $I\Omega FSA$ in Y. If $A^f = (\alpha_A^f, \beta_A^f)$ is an intuitionistic Ω -fuzzy ideal of X, then $A = (\alpha_A, \beta_A)$ is an intuitionistic Ω -fuzzy ideal of Y.

Proof. For any $x \in Y$, there exists $a \in X$ such that f(a) = x. Then for any $q \in \Omega$, $\alpha_A(x,q) = \alpha_A(f(a),q) = \alpha_A^f(a,q) \ge \alpha_A^f(0,q) = \alpha_A(f(0),q) = \alpha_A(0,q), \beta_A(x,q) = \beta_A(f(a),q) = \beta_A^f(a,q) \le \beta_A^f(0,q) = \beta_A(f(0),q) = \beta_A(0,q)$. Let $x, y \in Y$ and $q \in \Omega$. Then f(a) = x and f(b) = y for some $a, b \in X$. It follows that $\alpha_A(x,q) = \alpha_A(f(a),q) = \alpha_A^f(a,q) \ge \alpha_A^f(a * b,q) \land \alpha_A^f(b,q) = \alpha_A(f(a * b),q) \land \alpha_A(f(b),q) = \alpha_A(f(a) * f(b),q) \land \alpha_A(f(b),q) = \alpha_A(x * y,q) \land \alpha_A(y,q), \beta_A(x,q) = \beta_A(f(a),q) = \beta_A^f(a,q) \le \beta_A^f(a * b,q) \lor \beta_A(f(b),q) = \beta_A(f(a) * f(b),q) \lor \beta_A(f(b),q) = \beta_A(f(a) * f(b),q) \lor \beta_A(x,y,q) \lor \beta_A(y,q)$. This completes the proof.

References

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), 87-96.
- [2] K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61(1994) ,137-142.
- [3] K. Iséki, An algebra related with a propositional calculus, Proc Japan Acad., 42(1996), 351-366.
- [4] K. Iséki, On BCI-algebras, Math Semi Notes, 8(1980), 125-130.
- [5] Y. B. Jun , K. H. Kim and Q. Zhang, On Ω-fuzzy ideals of BCK/BCI-algebras, J Fuzzy Math, 9(2001), 173-180.
- [6] Y. B. Jun, Fuzzy dot ideals of BCI-algebras, J Fuzzy Math, 9(2001), 733-788.
- [7] L. A. Zadeh, Fuzzy sets, Inform and Control, 8(1965), 338-353.
- [8] J. Zhan and Z. Tan, Ω-fuzzy dot subalgebras of BCK/BCI-algebras. Far East J Math Sci (FJMS) 8 (2003), 11-20.
- [9] J. Zhan and Z. Tan, Ω-fuzzy dot ideals of BCK/BCI-algebras. Fuzzy Systems Math, 19(2005),54-57.

* Corresponding author

Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 445000, P.R. China

E-mail: zhanjianming@hotmail.com