INTUITIONISTIC Ω-FUZZY IDEALS OF BCK-ALGEBRAS

Ma Xueling \& Zhan Jianming *

Received July 4, 2005

Abstract

Given a set Ω, the notion of intuitionistic Ω-fuzzy ideals of BCK-algebras is introduced, and some related properties are investigated. Relations between intuitionistic Ω-fuzzy subalgebras in BCK-algebras are given. Finally, we study the properties of homomorphism of BCK-algebras.

1.Introduction and Preliminaries After the introduction of the concept of fuzzy sets by Zadeh ([7]), many researches were conducted on the generalization of the notion of fuzzy sets. The idea of "intuitionistic fuzzy sets" was first published by Atanassov (see [1,2]), as a generalization of the notion of fuzzy sets. In this paper, using Atanassov's idea, we establish the intuitionistic fuzzification of the concept of Ω-subalgebras and Ω-ideals in BCK-algebras, and investigate some of their properties.

By a BCK-algebra we mean a nonempty set X with a binary operation $*$ and a constant 0 satisfying the following conditions:
(I) $((x * y) *(x * z)) *(z * y)=0$
(II) $(x *(x * y)) * y=0$
(III) $x * x=0$
(IV) $0 * x=0$
(V) $x * y=0$ and $y * x=0$ imply $x=y$
for all $x, y, z \in X$.
A partial ordering " \leq " on X can be defined by $x \leq y$ if and only if $x * y=0$.
A nonempty subset S of a BCK-algebra X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$. A nonempty subset I of a BCK-algebra X is called an ideal of X if
(i) $0 \in I$
(ii) $x * y \in I$ and $y \in I$ imply that $x \in I$ for all $x, y \in X$.

By a fuzzy set μ in a nonempty set X we mean a function $\mu: X \rightarrow[0,1]$, and the complement of μ, denoted by $\bar{\mu}$, is the fuzzy set in X given by $\bar{\mu}(x)=1-\mu(x)$ for all $x \in X$. We will use the symbol $a \wedge b$ for $\min \{a, b\}$ and $a \vee b$ for $\max \{a, b\}$, where a and b are any real numbers. A fuzzy set μ in a BCK-algebra X is called a fuzzy subalgebra of X if $\mu(x * y) \geq \mu(x) \wedge \mu(y)$ for all $x, y \in X$. A fuzzy set μ in a BCK-algebra X is called a fuzzy ideal of X if (i) $\mu(0) \geq \mu(x)$, (ii) $\mu(x) \geq \mu(x * y) \wedge \mu(y)$ for all $x, y \in X$. In what follows, let Ω denote a set unless otherwise specified. A mapping $H: X \times \Omega \rightarrow[0,1]$ is called an Ω-fuzzy set in X. An intuitionistic Ω-fuzzy set (briefly, $I \Omega F S$) A in a nonempty set X is an object having the form

$$
A=\left\{\left(x, \alpha_{A}(x, q), \beta_{A}(x, q)\right) \mid x \in X, q \in \Omega\right\}
$$

where the functions $\alpha_{A}: X \times \Omega \rightarrow[0,1]$ and $\beta_{A}: X \times \Omega \rightarrow[0,1]$ denote the degree of membership and the degree of nonmembership, respectively, and $0 \leq \alpha_{A}(x, q)+\beta_{A}(x, q) \leq$

[^0]MA XUELING \& ZHAN JIANMING
$1, \forall x \in X, q \in \Omega$. An intuitionistic Ω-fuzzy set $A=\left\{\left(x, \alpha_{A}(x, q), \beta_{A}(x, q)\right) \mid x \in X, q \in \Omega\right\}$ in X can be identified to an ordered pair $\left(\alpha_{A}, \beta_{A}\right)$ in $I^{X \times \Omega} \times I^{X \times \Omega}$. For the sake of simplicity, we shall use the symbol $A=\left(\alpha_{A}, \beta_{A}\right)$ for the $I \Omega F S A=\left\{\left(x, \alpha_{A}(x, q), \beta_{A}(x, q)\right) \mid\right.$ $x \in X, q \in \Omega\}$.

2. Intuitionistic Ω-fuzzy Ideals

Definition 2.1. An $\operatorname{I} \Omega F S A=\left(\alpha_{A}, \beta_{A}\right)$ in X is called an intuitionistic fuzzy subalgebra of X over Ω (briefly, Intuitionistic Ω-fuzzy subalgebra of X) if it satisfies
(i) $\alpha_{A}(x * y, q) \geq \alpha_{A}(x, q) \wedge \alpha_{A}(y, q)$
(ii) $\beta_{A}(x * y, q) \leq \beta_{A}(x, q) \vee \beta_{A}(y, q)$
for all $x, y \in X$ and $q \in \Omega$.
Example 2.2. Consider a BCK-algebra $X=\{0, a, b, c\}$ with the following Cayley table:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	a	0	b
c	c	c	c	0

Let $A=\left(\alpha_{A}, \beta_{A}\right)$ be an $I \Omega F S$ in X defined by $\alpha_{A}(0, q)=\alpha_{A}(a, q)=\alpha_{A}(c, q)=0.7>$ $0.3=\alpha_{A}(b, q), \beta_{A}(0, q)=\beta_{A}(a, q)=\beta_{A}(c, q)=0.2<0.5=\beta_{A}(b, q)$ for all $q \in \Omega$. Then $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic Ω-fuzzy subalgebra of X.

Proposition 2.3. Every intuitionistic Ω-fuzzy subalgebra $A=\left(\alpha_{A}, \beta_{A}\right)$ of X satisfies the inequalities $\alpha_{A}(0, q) \geq \alpha_{A}(x, q)$ and $\beta_{A}(0, q) \leq \beta_{A}(x, q)$ for all $x \in X$ and $q \in \Omega$.

Proof. For any $x \in X$ and $q \in \Omega$, we have $\alpha_{A}(0, q)=\alpha_{A}(x * x, q) \geq \alpha_{A}(x, q) \wedge \alpha_{A}(x, q)=$ $\alpha_{A}(x, q), \beta_{A}(0, q)=\beta_{A}(x * x, q) \leq \beta_{A}(x, q) \vee \beta_{A}(x, q)=\beta_{A}(x, q)$. This completes the proof.

Definition 2.4. An $I \Omega F S A=\left(\alpha_{A}, \beta_{A}\right)$ in X is called an intuitionistic fuzzy ideal of X over Ω (briefly, intuitionistic Ω-fuzzy ideal of X) if
(i) $\alpha_{A}(0, q) \geq \alpha_{A}(x, q)$ and $\beta_{A}(0, q) \leq \beta_{A}(x, q)$
(ii) $\alpha_{A}(x, q) \geq \alpha_{A}(x * y, q) \wedge \alpha_{A}(y, q)$
(iii) $\beta_{A}(x, q) \leq \beta_{A}(x * y, q) \vee \beta_{A}(y, q)$
for all $x, y \in X$ and $q \in \Omega$.
Example 2.5. Let $X=\{0,1,2,3,4\}$ be a BCK-algebra with

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	0	0	0
4	4	3	4	1	0

Define an $I \Omega F S A=\left(\alpha_{A}, \beta_{A}\right)$ in X as follows: for every $q \in \Omega, \alpha_{A}(0, q)=\alpha_{A}(2, q)=$ $1, \alpha_{A}(1, q)=\alpha_{A}(3, q)=\alpha_{A}(4, q)=t, \beta_{A}(0, q)=\beta_{A}(2, q)=0, \beta_{A}(1, q)=\beta_{A}(3, q)=$ $\beta_{A}(4, q)=s$, where $t, s \in[0,1]$ and $s+t \leq 1$. By routine calculation we know that $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic Ω-fuzzy ideal of X.

Lemma 2.6. Let an $I \Omega F S A=\left(\alpha_{A}, \beta_{A}\right)$ in X be an intuitionistic Ω-fuzzy ideal of X. If the inequality $x * y \leq z$ holds in X, then for any $q \in \Omega, \alpha_{A}(x, q) \geq \alpha_{A}(y, q) \wedge \alpha_{A}(z, q), \beta_{A}(x, q) \leq$ $\beta_{A}(y, q) \vee \beta_{A}(z, q)$.

Proof. Let $x, y, z \in X$ by such that $x * y \leq z$. Then $(x * y) * z=0$, and thus for any $q \in \Omega, \alpha_{A}(x, q) \geq \alpha_{A}(x * y, q) \wedge \alpha_{A}(y, q) \geq\left(\alpha_{A}((x * y) * z, q) \wedge \alpha_{A}(z, q)\right) \wedge \alpha_{A}(y, q)=$ $\left.\left(\alpha_{A}(0, q)\right) \wedge \alpha_{A}(z, q)\right) \wedge \alpha_{A}(y, q)=\alpha_{A}(z, q) \wedge \alpha_{A}(y, q), \beta_{A}(x, q) \leq \beta_{A}(x * y, q) \vee \beta_{A}(y, q) \leq$ $\left(\beta_{A}((x * y) * z, q) \vee \beta_{A}(z, q)\right) \vee \beta_{A}(y, q)=\left(\beta_{A}(0, q) \vee \beta_{A}(z, q)\right) \vee \beta_{A}(y, q)=\beta_{A}(z, q) \vee \beta_{A}(y, q)$. This completes the proof.

Lemma 2.7. Let $A=\left(\alpha_{A}, \beta_{A}\right)$ be an intuitionistic Ω-fuzzy ideal of X. If $x \leq y$ in X, then for any $q \in \Omega, \alpha_{A}(x, q) \geq \alpha_{A}(y, q), \beta_{A}(x, q) \leq \beta_{A}(y, q)$, that is, α_{A} is order-reserving, and β_{A} is order-preserving.

Proof. Let $x, y \in X$ be such that $x \leq y$. Then $x * y=0, \alpha_{A}(x, q) \geq \alpha_{A}(x * y, q) \wedge \alpha_{A}(y, q)=$ $\alpha_{A}(0, q) \wedge \alpha_{A}(y, q)=\alpha_{A}(y, q), \beta_{A}(x, q) \leq \beta_{A}(x * y, q) \vee \beta_{A}(y, q)=\beta_{A}(0, q) \vee \beta_{A}(y, q)=$ $\beta_{A}(y, q)$. This completes the proof.

Theorem 2.8. If $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic Ω-fuzzy ideal of X, then for any $x, a_{1}, \cdots, a_{n} \in X$ and $q \in \Omega,\left(\cdots\left(\left(x * a_{1}\right) * a_{2}\right) * \cdots\right) * a_{n}=0$ implies $\alpha_{A}(x, q) \geq$ $\alpha_{A}\left(a_{1}, q\right) \wedge \alpha_{A}\left(a_{2}, q\right) \wedge \cdots \wedge \alpha_{A}\left(a_{n}, q\right), \beta_{A}(x, q) \leq \beta_{A}\left(a_{1}, q\right) \vee \beta_{A}\left(a_{2}, q\right) \vee \cdots \vee \beta_{A}\left(a_{n}, q\right)$.

Proof. Using induction on n and Lemma 2.6 and lemma 2.7.
Theorem 2.9. Every intuitionistic Ω-fuzzy ideal of X is an intuitionistic Ω-fuzzy subalgebra of X.

Proof. Let $A=\left(\alpha_{A}, \beta_{A}\right)$ be an intuitionistic Ω-fuzzy ideal of X. Since $x * y \leq x$ for all $x, y \in X$, it follows that $\alpha_{A}(x * y, q) \geq \alpha_{A}(x), \beta_{A}(x * y, q) \leq \beta_{A}(x, q)$ for all $q \in \Omega$. Hence $\alpha_{A}(x * y, q) \geq(x * y, q) \geq \alpha_{A}(y, q) \geq \alpha_{A}(x, q) \wedge \alpha_{A}(y, q) \geq \alpha_{A}(x, q) \wedge \alpha_{A}(y, q), \beta_{A}(x * y, q) \leq$ $\beta_{A}(x, q) \leq \beta_{A}(x * y, q) \vee \beta_{A}(y, q) \leq \beta_{A}(x, q) \vee \beta_{A}(y, q)$. This shows that $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intaitionistic Ω-fuzzy subalgebra of X.

The converse of Theorem 2.9 may not be true. For example, the intuitionistic Ω-fuzzy subalgebra $A=\left(\alpha_{A}, \beta_{A}\right)$ in Example 2.2 is not an intuitionistic Ω-fuzzy ideal of X since $\beta_{A}(b, q)=0.5>0.2=\beta_{A}(b * a, q) \wedge \beta_{A}(a, q)$. We now give a condition for an intuitionistic Ω-fuzzy subalgebra to be an intuitionistic Ω-fuzzy ideal.

Theorem 2.10. Let $A=\left(\alpha_{A}, \beta_{A}\right)$ be an intuitionistic Ω-fuzzy subalgebra of X such that $\alpha_{A}(x, q) \geq \alpha_{A}(y, q) \wedge \alpha_{A}(z, q), \beta_{A}(x, q) \leq \beta_{A}(y, q) \vee \beta_{A}(z, q)$ for all $x, y, z \in X$ satisfying the inequality $x * y \leq z$ and $q \in \Omega$. Then $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic Ω-fuzzy ideal of X.

Proof. Let $A=\left(\alpha_{A}, \beta_{A}\right)$ be an intuitionistic Ω-fuzzy subalgebra of X. Recall that $\alpha_{A}(0, q) \geq \alpha_{A}(x, q)$ and $\beta_{A}(0, q) \leq \beta_{A}(x, q)$ for all $x \in X$ and $q \in \Omega$. Since $x *(x * y) \leq y$, it follows from the hypothesis that $\alpha_{A}(x, q) \geq \alpha_{A}(x * y, q) \wedge \alpha_{A}(y, q), \beta_{A}(x, q) \leq \beta_{A}(x * y, q) \vee$ $\beta_{A}(y, q)$. Hence $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic Ω-fuzzy ideal of X.

Lemma 2.11. An $\operatorname{I\Omega FSA}=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic Ω-fuzzy ideal of X if and only if the Ω-fuzzy sets α_{A} and $\bar{\beta}_{A}$ are Ω-fuzzy ideals of X.

Proof. Let $A=\left(\alpha_{A}, \beta_{A}\right)$ be an intuitionistic Ω-fuzzy ideal of X. Clearly α_{A} is an Ω fuzzy ideal of X. For every $x, y \in X$ and $q \in \Omega$, we have $\bar{\beta}_{A}(0, q)=1-\beta_{A}(0, q) \leq$ $1-\beta_{A}(x, q)=\bar{\beta}_{A}(x, q), \bar{\beta}_{A}(x, q)=1-\beta_{A}(x, q) \geq 1-\beta_{A}(x * y, q)=1-\beta_{A}(x * y, q) \vee \beta_{A}(x, q)=$ $\left(1-\beta_{A}(x * y, q)\right) \wedge\left(1-\beta_{A}(y, q)\right)=\bar{\beta}_{A}(x * y, q) \wedge \beta_{A}(y, q)$. Hence β_{A} is an Ω-fuzzy ideal of X.

Conversely, assume that α_{A} and $\bar{\beta}_{A}$ are Ω-fuzzy ideals of X. For every $x, y \in X$ and $q \in \Omega$, we get $\alpha_{A}(0, q) \geq \alpha_{A}(x, q) 1-\beta_{A}(0, q)=\bar{\beta}_{A}(0, q) \geq \bar{\beta}_{A}(x, q)=1-\beta_{A}(x, q)$, that is, $\beta_{A}(0, q) \leq \beta_{A}(x, q), \alpha_{A}(x, q) \geq \alpha_{A}(x * y, q) \wedge \alpha_{A}(y, q)$ and $1-\beta_{A}(x, q)=\bar{\beta}_{A}(x, q) \leq$ $\bar{\beta}_{A}(x * y, q) \wedge \bar{\beta}_{A}(y, q)=\left(1-\beta_{A}(x * y, q) \wedge\left(1-\beta_{A}(y, q)\right)=1-\beta_{A}(x * y, q) \vee 1-\beta_{A}(y, q)\right.$, that is, $\beta_{A}(x, q) \leq \beta_{A}(x * y, q) \vee \beta_{A}(y, q)$. Hence $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic Ω-fuzzy ideal of X.

Theorem 2.12. Let $A=\left(\alpha_{A}, \beta_{A}\right)$ be an $I \Omega F S$ in X. Then $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionstic Ω-fuzzy ideal of X if and only if $\square A=\left(\alpha_{A}, \bar{\alpha}_{A}\right)$ and $\diamond A=\left(\bar{\beta}_{A}, \beta_{A}\right)$ are intuitionistic Ω fuzzy ideals of X.

Proof. If $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic Ω-fuzzy ideal of X, then $\overline{\bar{\alpha}}_{A}=\alpha_{A}$ and $\bar{\beta}_{A}$ are Ω-fuzzy ideals of X from lemma 2.11, thence $\square A=\left(\alpha_{A}, \bar{\alpha}_{A}\right)$ and $\diamond A=\left(\bar{\beta}_{A}, \beta_{A}\right)$ are intuitionistic Ω-fuzzy ideals of X.

Conversely, if $\square A=\left(\alpha_{A}, \bar{\alpha}_{A}\right)$ and $\diamond A=\left(\bar{\beta}_{A}, \beta_{A}\right)$ are intuitionistic Ω-fuzzy ideals of X, then the Ω-fuzzy sets α_{A} and $\bar{\beta}_{A}$ are Ω-fuzzy ideals of X, hence $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuionistic Ω-fuzzy ideal of X.

A mapping $f: X \rightarrow Y$ of BCK-algebras is called a homomorphism if $f(x * y)=f(x) * f(y)$ for all $x, y \in X$. Note that if $f: X \rightarrow Y$ is a homomorphism of BCK-algebras, then $f(0)=0$. Let $f: X \rightarrow Y$ be a homomorphism of BCK-algebras. For any $I \Omega F S A=\left(\alpha_{A}, \beta_{A}\right)$ in Y, we define a new $I \Omega F S A^{f}=\left(\alpha_{A}^{f}, \beta_{A}^{f}\right)$ in X by $\alpha_{A}^{f}(x, q)=\alpha_{A}(f(x), q), \beta_{A}^{f}(x, q)=$ $\beta_{A}(f(x), q), \forall x \in X$ and $q \in \Omega$.

Theorem 2.13. Let $f: X \rightarrow Y$ be a homomorphism of BCK-algebras. If an $I \Omega F S A=$ $\left(\alpha_{A}, \beta_{A}\right)$ in Y is an intuitionistic Ω-fuzzy ideal of Y, then an $I \Omega F S A^{f}=\left(\alpha_{A}^{f}, \beta_{A}^{f}\right)$ in X is an intuitionistic Ω-fuzzy ideal of X.

Proof. We first have that $\alpha_{A}^{f}(x, q)=\alpha_{A}(f(x), q) \geq \alpha_{A}(0, q)=\alpha_{A}(f(0), q)=\alpha_{A}(0, q), \beta_{A}^{f}(x, q)=$ $\beta_{A}(f(x), q) \leq \beta_{A}(0, q)=\beta_{A}(f(0), q)=\beta_{A}^{f}(0, q)$ for all $x \in X$ and $q \in \Omega$. Let $x, y \in X$ and $q \in \Omega$. Then $\alpha_{A}^{f}(x, q)=\alpha_{A}(f(x), q) \geq \alpha_{A}(f(x) * f(y), q) \wedge \alpha_{A}(f(y), q)=\alpha_{A}(f(x *$ $y), q) \wedge \alpha_{A}(f(y), q)=\alpha_{A}^{f}(x * y, q) \wedge \alpha_{A}^{f}(y, q), \beta_{A}^{f}(x, q)=\beta_{A}(f(x), q) \leq \beta_{A}(f(x) * f(y), q) \vee$ $\beta_{A}(f(y), q)=\beta_{A}(f(x * y), q) \vee \beta_{A}(f(y), q)=\beta_{A}^{f}(x * y, q) \vee \beta_{A}^{f}(y, q)$. Hence $\alpha_{A}^{f}=\left(\alpha_{A}^{f}, \beta_{A}^{f}\right)$ is an intuitionistic Ω-fuzzy ideal of X.

If we strengthen the condition of f, then we can construct the converse of Theorem 2.13 as follows.

Theorem 2.14. Let $f: X \rightarrow Y$ be an epimorphism of BCK-algebras and let $A=\left(\alpha_{A}, \beta_{A}\right)$ be an $I \Omega F S A$ in Y. If $A^{f}=\left(\alpha_{A}^{f}, \beta_{A}^{f}\right)$ is an intuitionistic Ω-fuzzy ideal of X, then $A=$ $\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic Ω-fuzzy ideal of Y.

Proof. For any $x \in Y$, there exists $a \in X$ such that $f(a)=x$. Then for any $q \in$ $\Omega, \alpha_{A}(x, q)=\alpha_{A}(f(a), q)=\alpha_{A}^{f}(a, q) \geq \alpha_{A}^{f}(0, q)=\alpha_{A}(f(0), q)=\alpha_{A}(0, q), \beta_{A}(x, q)=$ $\beta_{A}(f(a), q)=\beta_{A}^{f}(a, q) \leq \beta_{A}^{f}(0, q)=\beta_{A}(f(0), q)=\beta_{A}(0, q)$. Let $x, y \in Y$ and $q \in \Omega$. Then $f(a)=x$ and $f(b)=y$ for some $a, b \in X$. It follows that $\alpha_{A}(x, q)=\alpha_{A}(f(a), q)=$ $\alpha_{A}^{f}(a, q) \geq \alpha_{A}^{f}(a * b, q) \wedge \alpha_{A}^{f}(b, q)=\alpha_{A}(f(a * b), q) \wedge \alpha_{A}(f(b), q)=\alpha_{A}(f(a) * f(b), q) \wedge$ $\alpha_{A}(f(b), q)=\alpha_{A}(x * y, q) \wedge \alpha_{A}(y, q), \beta_{A}(x, q)=\beta_{A}(f(a), q)=\beta_{A}^{f}(a, q) \leq \beta_{A}^{f}(a * b, q) \vee$ $\beta_{A}^{f}(b, q)=\beta_{A}(f(a * b), q) \vee \beta_{A}(f(b), q)=\beta_{A}(f(a) * f(b), q) \vee \beta_{A}(f(b), q)=\beta_{A}(x * y, q) \vee$ $\beta_{A}(y, q)$. This completes the proof.

References

[1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems,20(1986), 87-96.
[2] K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61(1994) ,137-142.
[3] K. Iséki, An algebra related with a propositional calculus, Proc Japan Acad. , 42(1996), 351-366.
[4] K. Iséki, On BCI-algebras, Math Semi Notes, 8(1980), 125-130.
[5] Y. B. Jun , K. H. Kim and Q. Zhang, On Ω-fuzzy ideals of BCK/BCI-algebras, J Fuzzy Math, 9(2001), 173-180.
[6] Y. B. Jun , Fuzzy dot ideals of BCI-algebras, J Fuzzy Math, 9(2001), 733-788.
[7] L. A. Zadeh, Fuzzy sets, Inform and Control, 8(1965), 338-353.
[8] J. Zhan and Z. Tan, Ω-fuzzy dot subalgebras of BCK/BCI-algebras. Far East J Math Sci (FJMS) 8 (2003), 11-20.
[9] J. Zhan and Z. Tan, Ω-fuzzy dot ideals of BCK/BCI-algebras. Fuzzy Systems Math, 19(2005),5457.

* Corresponding author

Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 445000,P.R.China
E-mail: zhanjianming@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 06F35, 03G25.
 Key words and phrases. Ω-fuzzy set, Ω-fuzzy ideal, intuitionistic Ω-fuzzy subalgebra, intuitionistic Ω fuzzy ideal.

