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ON SUBTRACTION SEMIGROUPS
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Abstract. In this paper, we define an ideal of a subtraction semigroup and a strong
subtraction semigroup and characterizations of ideals is given. We introduce the notion
of a relation on subtraction semigroup, called a SS-relation, which is a generalization
of a subtraction semigroup homomorphism, and then we discuss the fundamental prop-
erties related to sub-subtraction semigroups.

1 Introduction B. M. Schein [4] considered systems of the form (Φ; ◦, \), where Φ is a
set of functions closed under the composition “◦” of functions (and hence (Φ; ◦) is a func-
tion semigroup) and the set theoretic subtraction “\” (and hence (Φ; \) is a subtraction
algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to
a difference semigroup of invertible functions. B. Zelinka [5] discussed a problem proposed
by B. M. Schein [4] concerning the structure of multiplication in a subtraction semigroup.
He solved the problem for subtraction algebras of a special type, called the atomic subtrac-
tion algebras. In this paper, we define an ideal of a subtraction semigroup and a strong
subtraction semigroup and characterizations of ideals is given. We introduce the notion
of a relation on subtraction semigroup, called a SS-relation, which is a generalization of
a subtraction semigroup homomorphism, and then we discuss the fundamental properties
related to sub-subtraction semigroups.

2 Preliminaries By a subtraction algebra we mean an algebra (X ;−) with a single binary
operation “−” that satisfies the following identities: for any x, y, z ∈ X ,

(SA1) x − (y − x) = x;

(SA2) x − (x − y) = y − (y − x);

(SA3) (x − y) − z = (x − z) − y.

The last identity permits us to omit parentheses in expressions of the form (x − y) − z.
The subtraction determines an order relation on X : a ≤ b ⇔ a − b = 0, where 0 = a − a
is an element that does not depend on the choice of a ∈ X . The ordered set (X ;≤) is
a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in
which every interval [0, a] is a Boolean algebra with respect to the induced order. Here
a∧ b = a− (a− b); the complement of an element b ∈ [0, a] is a− b; and if b, c ∈ [0, a], then

b ∨ c = (b′ ∧ c′)′ = a − ((a − b) ∧ (a − c))
= a − ((a − b) − ((a − b) − (a − c))).

A subset I of a subtraction algebra X is called a subalgebra of X if x − y ∈ I for all
x, y ∈ I.

In a subtraction algebra, the following hold:
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(S1) x − 0 = x and 0 − x = 0.

(S2) x − (x − y) ≤ y.

(S3) x ≤ y if and only if x = y − w for some w ∈ X.

(S4) x ≤ y implies x − z ≤ y − z and z − y ≤ z − x for all z ∈ X.

(S5) x − (x − (x − y)) = x − y.

(S6) (x − y) − x = 0.

(p7) (x − y) − y = x − y.

Lemma 2.1. [3] Let X be a subtraction algebra. Then (X ;≤) is a poset, where x ≤ y ⇔
x − y = 0 for any x, y ∈ X .

By a subtraction semigroup we mean an algebra (X ; ·,−) with two binary operations
“−” and “·”that satisfies the following axioms: for any x, y, z ∈ X ,

(SS1) (X ; ·) is a semigroup;

(SS2) (X ;−) is a subtraction algebra;

(SS3) x(y − z) = xy − xz and (x − y)z = xz − yz.

Example 2.2. [3] Let X = {0, 1} in which “−” and “·” are defined by

− 0 1
0 0 0
1 1 0

· 0 1
0 0 0
1 0 1

It is easy to check that X is a subtraction semigroup.

Lemma 2.3. [3] Let X be a subtraction semigroup. Then the following hold.

(1) x0 = 0 and 0x = 0

(2) x ≤ y implies ax ≤ ay and xa ≤ ya.

(3) x(y ∧ z) = xy ∧ xz and (x ∧ y)z = xz ∧ yz

3 Ideals of subtraction semigroups In what follows, let X denote a subtraction semi-
group unless otherwise specified.

Definition 3.1. Let (X,−, ·, 0) be a subtraction semigroup. A non-empty subset S of X
is called a sub-subtraction semigroup of X if x − y ∈ S and xy ∈ S for all x, y ∈ S

Definition 3.2. A nonempty subset A of a subtraction semigroup X is called to be left
(resp. right) stable if x · a ∈ A (resp. a · x ∈ A) whenever x ∈ X and a ∈ A.

Definition 3.3. A non-empty subset I of a subtraction semigroup X is called a left (resp.
right) ideal of X if

(1) I is a stable subset of X.

(2) y ∈ I and x − y ∈ I imply x ∈ I for all x, y ∈ X.
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If I is a both left and right ideal, it is called a two-sided ideal of X. Note that {0} and
X are ideals. If A is a left (resp. right) ideal of a subtraction semigroup X, then 0 ∈ A.

Example 3.4. Let X = {0, 1, 2, 3, 4, 5} in which “−” and “·” are defined by

− 0 1 2 3 4 5
0 0 0 0 0 0 0
1 1 0 3 4 3 1
2 2 5 0 2 5 4
3 3 0 3 0 3 3
4 4 0 0 4 0 4
5 5 5 0 5 5 0

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 4 3 4 0
2 0 4 2 0 4 5
3 0 3 0 3 0 0
4 0 4 4 0 4 0
5 0 0 5 0 0 5

It is easy to check that (X ;−, ·) is a subtraction semigroup. Let I = {0, 1, 3, 4}. Then I is
an ideal of X.

Theorem 3.5. Suppose I is an ideal of subtraction semigroup X and x ∈ I. If y ≤ x, then
y ∈ I.

Proof. y ≤ x implies y − x = 0 ∈ I. Combining x ∈ I and using Definition 3.3, (2), we
obtain y ∈ I, proving the theorem.

Theorem 3.6. Every ideal of a subtraction semigroup X is a sub-subtraction semigroup
of X, but the converse is not true.

Proof. Suppose I is an ideal of X and x, y ∈ I. Since (x − y) ≤ x by S(6), it follows from
Theorem 3.5, that x − y ∈ I. Hence I is a subalgebra of X. In the following Example 3.10,
{0, a, b} is a sub-subtraction semigroup of X but not an ideal of X because 1 − b = a ∈
{0, a, b} but 1 /∈ {0, a, b}. The proof is complete.

Theorem 3.7. Let {Ai} be an arbitrary collection of ideals of the subtraction semigroup
X, where i ranges over some index set. Then ∩Ai is also an ideal of X.

Proof. Note that each ideal of X contains the zero element of X. Let x− y, y ∈ ∩Ai. Then
x− y, y ∈ Ai for every i. Since each Ai is a ideal of X, it follows that x ∈ Ai for all i. Hence
x ∈ ∩Ai. Next let x ∈ ∩Ai and a ∈ X. Then x ∈ Ai for every i, and so ax, xa ∈ ∩Ai for all
i. Thus ax, xa ∈ ∩Ai. Therefore ∩Ai is an ideal of X.

Let us define the center of a subtraction semigroup X, denoted by cent(X), to be the set

cent (X) = {x ∈ X | ax = xa for all a ∈ X}.

Let x, y ∈ cent (X). Then xa = ax and yb = by for all a, b ∈ X. Thus (x− y)a = xa− ya =
ax−ay = a(x−y) for all a ∈ X. This implies that x−y ∈ cent (X). showing that cent (X)
is a subalgebra of a subtraction algebra X. Next since x, y ∈ cent(X), we have xa = ax
and ya = ay. Thus (xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy) for all a ∈ X. The
following theorems are obvious.

Theorem 3.8. For any subtraction semigroup X, cent (X) is a sub-subtraction semigroup
of X.

Theorem 3.9. Let X be a subtraction semigroup X and a ∈ X. Then the set C(a) = {x ∈
X | ax = xa} is a sub-subtraction semigroup, and cent (X) =

⋂

a∈X

C(a).
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The element 1 is called a unity in a subtraction semigroup X if 1x = x1 = x for all
x ∈ X . A strong subtraction semigroup is a subtraction semigroup X that satisfies the
following condition : for each x, y ∈ X ,

x − y = x − xy.

If X ia a strong subtraction semigroup with a unity 1, then 1 is the greatest element in X
since x − 1 = x − x1 = x − x = 0 for all x ∈ X .

Example 3.10. Let X = {0, a, b, 1} in which “−” and “·” are defined by

− 0 a b 1
0 0 0 0 0
a a 0 a 0
b b b 0 0
1 1 b a 0

· 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

It is easy to check that (X ;−, ·) is a strong subtraction semigroup with unity 1.

Lemma 3.11. [3] Let X be a strong subtraction semigroup. Then

(1) xy ≤ y for all x, y ∈ X ,

(2) x ≤ y, x, y ∈ X if and only if x ≤ xy.

Theorem 3.12. Let (X,−, ·) be a strong subtraction semigroup and I a subalgebra of
(X,−). If I ia an ideal of X, then y ∈ I and x ≤ y imply x ∈ I.

Proof. Suppose that I is an ideal in X , and let y ∈ I and x ≤ y. Then x = y − w for some
w ∈ X from (S3), and so x = y − w = y − yw ∈ I.

Theorem 3.13. Let X be a strong subtraction semigroup and A a subset of X. If y ∈ A
and x ≤ y imply x ∈ A, then A is a stable subset of X.

Proof. Suppose that y ∈ A and x ≤ y imply x ∈ A. If s ∈ X and a ∈ A, then by the
Lemma 3.11, sa ≤ a ∈ A, hence sa ∈ A. Since s ≤ s and s ≤ sa from Lemma 3.11, we have

as − a = as − (as)a = as − a(sa) = a(s − sa) = a0 = 0,

and as ≤ a ∈ A, and hence as ∈ A. This completes the proof.

Lemma 3.14. Let X be a subtraction semigroup. Then we have

(x − z) − (y − z) = (x − y) − z

for all x, y and z ∈ X.

Proof. Let x, y and z in X. Then we have

((x − z) − (y − z)) − ((x − y) − z)
= (((x − z) − z) − (y − z)) − ((x − y) − z) (p1)
≤ ((x − z) − y) − ((x − y) − z) (p1, p9)
= ((x − y) − z) − ((x − y) − z) (S3)
= 0.

Thus
(x − z) − (y − z) ≤ (x − y) − z.

The converse inequality is clear. This completes the proof.
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Definition 3.15. Let X be a subtraction semigroup and a ∈ X. Set A(a) = {x ∈ X | x ≤
a}. Then we call A(a) the initial section of the element a.

Lemma 3.16. Let X be a subtraction semigroup, x ≤ y and y ∈ A(a). Then x ∈ A(a).

Proof. Since y ∈ A(a), we have y ≤ a. Hence x ≤ y ≤ a, that is, x ≤ a. This implies
x ∈ A(a).

Proposition 3.17. Let X be a strong subtraction semigroup and a ∈ X. Then A(a) is an
left ideal of X.

Proof. Let y ∈ A(a) and x − y ∈ A(a). Then we have y ≤ a and x − y ≤ a. So, by(p4)
x− a ≤ x− y. Hence x− a ≤ x− y ≤ a. x− a ≤ a implies (x− a)− a = x− a = 0 by (S7),
and so x− a = 0, that is, x ≤ a. This implies x ∈ A(a). Next let b ∈ A(a) and x ∈ X. Then
we have xb ≤ b by Lemma 3.11 and b ≤ a. Thus xb ≤ a, and so xb ∈ A(a). This completes
the proof.

Theorem 3.18. Let X be a subtraction semigroup, I an ideal and x ∈ I. Then A(x) ⊂ I.

Proof. If y ∈ A(x), then we have y ≤ x. Hence y − x = 0 ∈ I. Since I is an ideal of X and
x ∈ X, we obtain y ∈ I. Therefore A(x) ⊂ I.

Definition 3.19. An element x in a subtraction semigroup X with unity 1 is said to be
left (resp. right) invertible if there exists y ∈ X (resp. z ∈ X) such that yx = 1X (resp.
xz = 1X). The element y (resp. z) is called a left (resp. right) inverse of x. An element
x ∈ X that is both left and right invertible is said to be invertible or to be an unit.

Theorem 3.20. Let X be a strong subtraction semigroup with unity 1. If y in X is a right
invertible element of x ∈ X, then x ≤ y.

Proof. Let y ∈ X be a right invertible element of x. Then we have x− y = x−xy = x−1 =
x − x = 0, and so x ≤ y.

Let X and X ′ be subtraction semigroups. A mapping f : X → X ′ is called a subtraction
semigroup homomorphism (briefly, homomorphism) if f(x−y) = f(x)−f(y) and f(x·y) =
f(x) · f(y) for all x, y ∈ X. Let f : X → Y be a homomorphism of subtraction semigroup.
Then the set {x ∈ X | f(x) = 0} is called the kernel of f, and denote by kerf . Moreover,
the set {f (x) ∈ Y | x ∈ X} is called the image of f, and denote by im f .

Lemma 3.21. [3] Let f : X → X ′ be a subtraction semigroup homomorphism. Then

(1) f(0) = 0,

(2) x ≤ y imply f(x) ≤ f(y).

(3) f(x ∧ y) = f(x) ∧ f(y).

Proposition 3.22. [3] Let f : X → X ′ be a subtraction semigroup homomorphism and
J = f−1(0) = {0}. Then f(x) ≤ f(y) imply x ≤ y.

Proposition 3.23. Let f : X → X ′ be a subtraction homomorphism. Then Kerf is a
sub-subtraction semigroup of X and Imf a sub-subtraction semigroup of X ′.

Proof. The proof is routine and easy, and so omitted.
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4 subtraction semigroup relation We introduce the notion of a relation on subtrac-
tion semigroups, called SS-relation, which is a generalization of a subtraction semigroup
homomorphism.

Definition 4.1. Let X and Y be subtraction semigroups. A nonempty relation H ⊆ X×Y
is called a SS-relation if

(R1) for every x ∈ X there exists y ∈ Y such that xHy,

(R2) xHa and yHb imply (x − y)H(a − b),

(R3) xHa and yHb imply (x · y)H(a · b).
We usually denote such relation by H : X → Y. It is clear from (R1) and (R2) that

0XH0Y .

Example 4.2. Consider a proper subtraction semigroup X = {0, a, b, 1} having the follow-
ing Cayley table:

− 0 a b 1
0 0 0 0 0
a a 0 a 0
b b b 0 0
1 1 b a 0

· 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

Define a relation H : X → X by 0H0, aHa, bHb, 1D1. It is easy to verify that H is a
SS-relation. A relation D : X → X given by 0D0, 0Da, aD0, aDa, bD0, bDa, 1D0 is a SS-
relation.

Theorem 4.3. Every subtraction semigroup homomorphism is a SS-relation.

Proof. Let H : X → X be a subtraction semigroup homomorphism. Clearly, H satisfies
conditions (R1), R(2) and R(3).

Note that every diagonal SS-relation on a subtraction semigroup X (i.e., a SS-relation
satisfying xHx for all x ∈ X in which xDy is false whenever x �= y) is a clearly a subtraction
semigroup homomorphism. But in general, the converse of Theorem 4.3 need not be true
as seen in the following example.

Example 4.4. The SS-relation D in Example 4.2 is not a subtraction semigroup homo-
morphism.

Let H : X → Y be a relation. For any x ∈ X and y ∈ Y, let

H[x] := {y ∈ Y | xHy} and H−1[y] := {x ∈ X | xHy}.

Note that H[x] and H−1[y] are not subalgebras of X and Y, respectively, as seen in the
following example.

Example 4.5. Let H be a SS-relation in Example 4.2. Then H−1[b] = {b} (resp. H[a] =
{a}) is not a subtraction semigroup subalgebra of X (resp. Y ).

Theorem 4.6. For any SS-relation H : X → Y, we have

(1) H[0X ], called the zero image of H, is a sub-subtraction semigroup of Y.
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(2) H−1[0Y ], called the kernel of H and denoted by KerH, is a sub-subtraction semigroup
of X.

Proof. (1) Let y1, y2 ∈ H[0X ]. Then 0XHy1 and 0XHy2. It follows from (R2) and R(3) that
0XH(y1 − y2) and 0XH(y1 · y2), that is, y1 − y2 ∈ H[0X ] and y1 · y2 ∈ H[0X ].

(2) Let x1, X2 ∈ KerH. Then x1H0Y and x2H0Y . By using (R2) and (R3), we get
(x1 − x2)H0Y and (x1 · x2)H0Y , and so x1 − x2 ∈ KerH, x1 · x2 ∈ KerH. This completes
the proof.

Proposition 4.7. Let H : X → Y be a SS-relation.Then we have

(1) If H[a] ∩H[b] �= ∅ where a, b ∈ X, then a − b ∈ KerH.

(2) If H−1[u] ∩H−1[v] �= ∅ where u, v ∈ Y, then u − v ∈ KerH[0X ].

Proof. (1) Let a, b ∈ X be such that H[a] ∩H[b] �= ∅. Taking y ∈ H[a] ∩H[b], we have aHy
and bHy. It follows from (R2) that (a− b)H(y− y) = (a− b)H(y− y) = (a− b)H0Y so that
a − b ∈ KerH.

(2) Let x ∈ H−1[u]∩H−1[v]. Then xHu and xHv. Using (R2), we obtain x−x)H(u−v) =
0XH(u − v), i.e., u − v ∈ H[0X ]. This completes the proof.

Theorem 4.8. Let H : X → Y be a SS-relation and let S be a sub-subtraction semigroup
of X. Then

H[S] := {y | xHy for some x ∈ S}
is a sub-subtraction semigroup of Y.

Proof. Clearly, H[S] �= ∅ since 0XH0Y . Let y1, y2 ∈ H[S]. Then x1Hy1 and x2Hy2 for some
x1, x2 ∈ S. Using (R2) and (R3), we obtain (x1−x2)H(y1−y2) and (x1 ·x2)H(y1 ·y2) which
implies that y1 − y2 ∈ H[S] and y1 · y2 ∈ H[S] since x1 −x2 and x1 ·x2 ∈ S. Therefore H[S]
is a sub-subtraction semigroup of Y. This completes the proof.

Corollary 4.9. Let H : X → Y be a SS-relation. Then we have

(1) H[X ] is a sub-subtraction semigroup of Y,

(2) H[X ] =
⋃

x∈X

H[x],

(3) The zero image of H is a sub-subtraction semigroup of H[X ].

Proof. (1) and (2) are straightforward. (3) Let a, b ∈ H[0X ]. Then 0XHa and 0XHb, and so
0XH(a−b) and 0XH(a ·b), i.e., a−b and a ·b ∈ H[0X ]. Therefore H[0X ] is a sub-subtraction
semigroup of H[X ].

Theorem 4.10. Let H : X → Y be a SS-relation and let T be a sub-subtraction semigroup
of Y. Then

H−1[T ] := {x ∈ X | xHy for some y ∈ T }
is a sub-subtraction semigroup of X.

Proof. Obviously, H−1[T ] �= ∅ since 0XH0Y . Let x1, x2 ∈ H−1[T ]. Then there exist y1, y2 ∈
T such that x1Hy1 and x2Hy2. Note that y1 − y2 ∈ T and y1 · y2 ∈ T since T is a sub-
subtraction semigroup of Y. It follows from (R2) and (R3) that (x1 − x2)H(y1 − y2) and
(x1 · x2)H(y1 · y2) so that x1 − x2 ∈ H−1[T ] and x1 · x2 ∈ H−1[T ]. Hence H−1[T ] is a
sub-subtraction semigroup of X.
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Corollary 4.11. Let H : X → Y be a SS-relation. Then

(1) H−1[Y ] is a sub-subtraction semigroup of X,

(2) H−1[Y ] =
⋃

y∈Y

H[y],

(3) The kernel of H is a sub-subtraction semigroup of H−1[Y ].

Proof. (1) and (2) are straightforward. (3) Let x, y ∈ KerH. Then xH0Y and yH0Y . It
follows from (R2) and (R3) that

(x − y)H(0Y − 0Y ) = (x − y)H0Y and (x · y)H(0Y · 0Y ) = (x · y)H0Y

so that x−y ∈ KerH. Hence KerH is a sub-subtraction semigroup of H[Y ]. This completes
the proof.
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