ON SUBTRACTION SEMIGROUPS

Kyung Ho Kim

Received June 1, 2005

ABSTRACT. In this paper, we define an ideal of a subtraction semigroup and a strong subtraction semigroup and characterizations of ideals is given. We introduce the notion of a relation on subtraction semigroup, called a *SS*-relation, which is a generalization of a subtraction semigroup homomorphism, and then we discuss the fundamental properties related to sub-subtraction semigroups.

1 Introduction B. M. Schein [4] considered systems of the form $(\Phi; \circ, \backslash)$, where Φ is a set of functions closed under the composition " \circ " of functions (and hence $(\Phi; \circ)$ is a function semigroup) and the set theoretic subtraction " \backslash " (and hence $(\Phi; \backslash)$ is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka [5] discussed a problem proposed by B. M. Schein [4] concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. In this paper, we define an ideal of a subtraction semigroup and a strong subtraction semigroup and characterizations of ideals is given. We introduce the notion of a relation on subtraction semigroup, called a *SS-relation*, which is a generalization of a subtraction semigroup homomorphism, and then we discuss the fundamental properties related to sub-subtraction semigroups.

2 Preliminaries By a subtraction algebra we mean an algebra (X; -) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,

 $(SA1) \quad x - (y - x) = x;$

(SA2) x - (x - y) = y - (y - x);

(SA3) (x - y) - z = (x - z) - y.

The last identity permits us to omit parentheses in expressions of the form (x - y) - z. The subtraction determines an order relation on $X: a \leq b \Leftrightarrow a - b = 0$, where 0 = a - a is an element that does not depend on the choice of $a \in X$. The ordered set $(X; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval [0, a] is a Boolean algebra with respect to the induced order. Here $a \wedge b = a - (a - b)$; the complement of an element $b \in [0, a]$ is a - b; and if $b, c \in [0, a]$, then

$$b \lor c = (b' \land c')' = a - ((a - b) \land (a - c)) \\ = a - ((a - b) - ((a - b) - (a - c))).$$

A subset I of a subtraction algebra X is called a *subalgebra* of X if $x - y \in I$ for all $x, y \in I$.

In a subtraction algebra, the following hold:

²⁰⁰⁰ Mathematics Subject Classification. 06F35.

Key words and phrases. Subtraction algebra, subtraction semigroup, strong subtraction semigroup, relation, homomorphism.

- (S1) x 0 = x and 0 x = 0.
- (S2) $x (x y) \le y$.
- (S3) $x \leq y$ if and only if x = y w for some $w \in X$.
- (S4) $x \leq y$ implies $x z \leq y z$ and $z y \leq z x$ for all $z \in X$.
- (S5) x (x (x y)) = x y.
- (S6) (x y) x = 0.
- (p7) (x y) y = x y.

Lemma 2.1. [3] Let X be a subtraction algebra. Then $(X; \leq)$ is a poset, where $x \leq y \Leftrightarrow x - y = 0$ for any $x, y \in X$.

By a subtraction semigroup we mean an algebra $(X; \cdot, -)$ with two binary operations "-" and "." that satisfies the following axioms: for any $x, y, z \in X$,

- (SS1) $(X; \cdot)$ is a semigroup;
- (SS2) (X; -) is a subtraction algebra;
- (SS3) x(y-z) = xy xz and (x-y)z = xz yz.

Example 2.2. [3] Let $X = \{0, 1\}$ in which "-" and "." are defined by

_	0	1	•	0	1
0	0	0	0	0	0
1	1	0	1	0	1

It is easy to check that X is a subtraction semigroup.

Lemma 2.3. [3] Let X be a subtraction semigroup. Then the following hold.

- (1) x0 = 0 and 0x = 0
- (2) $x \leq y$ implies $ax \leq ay$ and $xa \leq ya$.
- (3) $x(y \wedge z) = xy \wedge xz$ and $(x \wedge y)z = xz \wedge yz$

3 Ideals of subtraction semigroups In what follows, let *X* denote a subtraction semigroup unless otherwise specified.

Definition 3.1. Let $(X, -, \cdot, 0)$ be a subtraction semigroup. A non-empty subset S of X is called a *sub-subtraction semigroup* of X if $x - y \in S$ and $xy \in S$ for all $x, y \in S$

Definition 3.2. A nonempty subset A of a subtraction semigroup X is called to be *left* (resp. *right*) *stable* if $x \cdot a \in A$ (resp. $a \cdot x \in A$) whenever $x \in X$ and $a \in A$.

Definition 3.3. A non-empty subset I of a subtraction semigroup X is called a *left* (resp. *right*) *ideal* of X if

- (1) I is a stable subset of X.
- (2) $y \in I$ and $x y \in I$ imply $x \in I$ for all $x, y \in X$.

If I is a both left and right ideal, it is called a *two-sided ideal* of X. Note that $\{0\}$ and X are ideals. If A is a left (resp. right) ideal of a subtraction semigroup X, then $0 \in A$.

Example 3.4. Let $X = \{0, 1, 2, 3, 4, 5\}$ in which "-" and "." are defined by

_	0	1	2	3	4	5	•	0	1	2	3	4	5
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	3	4	3	1	1	0	1	4	3	4	0
2	2	5	0	2	5	4	2	0	4	2	0	4	5
3	3	0	3	0	3	3	3	0	3	0	3	0	0
4	4	0	0	4	0	4	4	0	4	4	0	4	0
5	5	5	0	5	5	0	5	0	0	5	0	0	5

It is easy to check that $(X; -, \cdot)$ is a subtraction semigroup. Let $I = \{0, 1, 3, 4\}$. Then I is an ideal of X.

Theorem 3.5. Suppose *I* is an ideal of subtraction semigroup *X* and $x \in I$. If $y \leq x$, then $y \in I$.

Proof. $y \leq x$ implies $y - x = 0 \in I$. Combining $x \in I$ and using Definition 3.3, (2), we obtain $y \in I$, proving the theorem.

Theorem 3.6. Every ideal of a subtraction semigroup X is a sub-subtraction semigroup of X, but the converse is not true.

Proof. Suppose I is an ideal of X and $x, y \in I$. Since $(x - y) \leq x$ by S(6), it follows from Theorem 3.5, that $x - y \in I$. Hence I is a subalgebra of X. In the following Example 3.10, $\{0, a, b\}$ is a sub-subtraction semigroup of X but not an ideal of X because $1 - b = a \in \{0, a, b\}$ but $1 \notin \{0, a, b\}$. The proof is complete.

Theorem 3.7. Let $\{A_i\}$ be an arbitrary collection of ideals of the subtraction semigroup X, where *i* ranges over some index set. Then $\cap A_i$ is also an ideal of X.

Proof. Note that each ideal of X contains the zero element of X. Let $x - y, y \in \cap A_i$. Then $x - y, y \in A_i$ for every *i*. Since each A_i is a ideal of X, it follows that $x \in A_i$ for all *i*. Hence $x \in \cap A_i$. Next let $x \in \cap A_i$ and $a \in X$. Then $x \in A_i$ for every *i*, and so $ax, xa \in \cap A_i$ for all *i*. Thus $ax, xa \in \cap A_i$. Therefore $\cap A_i$ is an ideal of X. \Box

Let us define the center of a subtraction semigroup X, denoted by cent(X), to be the set

$$cent(X) = \{x \in X \mid ax = xa \text{ for all } a \in X\}.$$

Let $x, y \in cent(X)$. Then xa = ax and yb = by for all $a, b \in X$. Thus (x - y)a = xa - ya = ax - ay = a(x - y) for all $a \in X$. This implies that $x - y \in cent(X)$. showing that cent(X) is a subalgebra of a subtraction algebra X. Next since $x, y \in cent(X)$, we have xa = ax and ya = ay. Thus (xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy) for all $a \in X$. The following theorems are obvious.

Theorem 3.8. For any subtraction semigroup X, *cent* (X) is a sub-subtraction semigroup of X.

Theorem 3.9. Let X be a subtraction semigroup X and $a \in X$. Then the set $C(a) = \{x \in X \mid ax = xa\}$ is a sub-subtraction semigroup, and cent $(X) = \bigcap_{a \in X} C(a)$.

The element 1 is called a *unity* in a subtraction semigroup X if 1x = x1 = x for all $x \in X$. A strong subtraction semigroup is a subtraction semigroup X that satisfies the following condition : for each $x, y \in X$,

$$x - y = x - xy.$$

If X is a strong subtraction semigroup with a unity 1, then 1 is the greatest element in X since x - 1 = x - x = 0 for all $x \in X$.

Example 3.10. Let $X = \{0, a, b, 1\}$ in which "-" and "." are defined by

—	0	a	b	1			0	a	b	1
0	0	0	0	0	_	0	0	0	0	0
a	a	0	a	0		a	0	a	0	a
b	b	b	0	0		b	0	0	b	b
1	1	b	a	0		1	0	a	b	1

It is easy to check that $(X; -, \cdot)$ is a strong subtraction semigroup with unity 1.

Lemma 3.11. [3] Let X be a strong subtraction semigroup. Then

- (1) $xy \leq y$ for all $x, y \in X$,
- (2) $x \leq y, x, y \in X$ if and only if $x \leq xy$.

Theorem 3.12. Let $(X, -, \cdot)$ be a strong subtraction semigroup and I a subalgebra of (X, -). If I is an ideal of X, then $y \in I$ and $x \leq y$ imply $x \in I$.

Proof. Suppose that I is an ideal in X, and let $y \in I$ and $x \leq y$. Then x = y - w for some $w \in X$ from (S3), and so $x = y - w = y - yw \in I$.

Theorem 3.13. Let X be a strong subtraction semigroup and A a subset of X. If $y \in A$ and $x \leq y$ imply $x \in A$, then A is a stable subset of X.

Proof. Suppose that $y \in A$ and $x \leq y$ imply $x \in A$. If $s \in X$ and $a \in A$, then by the Lemma 3.11, $sa \leq a \in A$, hence $sa \in A$. Since $s \leq s$ and $s \leq sa$ from Lemma 3.11, we have

$$as - a = as - (as)a = as - a(sa) = a(s - sa) = a0 = 0$$

and $as \leq a \in A$, and hence $as \in A$. This completes the proof.

Lemma 3.14. Let X be a subtraction semigroup. Then we have

$$(x-z) - (y-z) = (x-y) - z$$

for all x, y and $z \in X$.

Proof. Let x, y and z in X. Then we have

$$\begin{aligned} &((x-z) - (y-z)) - ((x-y) - z) \\ &= (((x-z) - z) - (y-z)) - ((x-y) - z) \quad \text{(p1)} \\ &\leq ((x-z) - y) - ((x-y) - z) \quad \text{(p1, p9)} \\ &= ((x-y) - z) - ((x-y) - z) \quad \text{(S3)} \\ &= 0. \end{aligned}$$

Thus

$$(x-z) - (y-z) \le (x-y) - z.$$

The converse inequality is clear. This completes the proof.

Definition 3.15. Let X be a subtraction semigroup and $a \in X$. Set $A(a) = \{x \in X \mid x \le a\}$. Then we call A(a) the *initial section* of the element a.

Lemma 3.16. Let X be a subtraction semigroup, $x \leq y$ and $y \in A(a)$. Then $x \in A(a)$.

Proof. Since $y \in A(a)$, we have $y \leq a$. Hence $x \leq y \leq a$, that is, $x \leq a$. This implies $x \in A(a)$.

Proposition 3.17. Let X be a strong subtraction semigroup and $a \in X$. Then A(a) is an left ideal of X.

Proof. Let $y \in A(a)$ and $x - y \in A(a)$. Then we have $y \leq a$ and $x - y \leq a$. So, by(p4) $x - a \leq x - y$. Hence $x - a \leq x - y \leq a$. $x - a \leq a$ implies (x - a) - a = x - a = 0 by (S7), and so x - a = 0, that is, $x \leq a$. This implies $x \in A(a)$. Next let $b \in A(a)$ and $x \in X$. Then we have $xb \leq b$ by Lemma 3.11 and $b \leq a$. Thus $xb \leq a$, and so $xb \in A(a)$. This completes the proof.

Theorem 3.18. Let X be a subtraction semigroup, I an ideal and $x \in I$. Then $A(x) \subset I$.

Proof. If $y \in A(x)$, then we have $y \le x$. Hence $y - x = 0 \in I$. Since I is an ideal of X and $x \in X$, we obtain $y \in I$. Therefore $A(x) \subset I$.

Definition 3.19. An element x in a subtraction semigroup X with unity 1 is said to be *left* (resp. *right*) *invertible* if there exists $y \in X$ (resp. $z \in X$) such that $yx = 1_X$ (resp. $xz = 1_X$). The element y (resp. z) is called a *left* (resp. *right*) *inverse* of x. An element $x \in X$ that is both left and right invertible is said to be *invertible* or to be an *unit*.

Theorem 3.20. Let X be a strong subtraction semigroup with unity 1. If y in X is a right invertible element of $x \in X$, then $x \leq y$.

Proof. Let $y \in X$ be a right invertible element of x. Then we have x - y = x - xy = x - 1 = x - x = 0, and so $x \le y$.

Let X and X' be subtraction semigroups. A mapping $f: X \to X'$ is called a *subtraction* semigroup homomorphism (briefly, homomorphism) if f(x-y) = f(x) - f(y) and $f(x \cdot y) = f(x) \cdot f(y)$ for all $x, y \in X$. Let $f: X \to Y$ be a homomorphism of subtraction semigroup. Then the set $\{x \in X \mid f(x) = 0\}$ is called the *kernel* of f, and denote by *kerf*. Moreover, the set $\{f(x) \in Y \mid x \in X\}$ is called the *image* of f, and denote by *im* f.

Lemma 3.21. [3] Let $f: X \to X'$ be a subtraction semigroup homomorphism. Then

- (1) f(0) = 0,
- (2) $x \le y$ imply $f(x) \le f(y)$.
- (3) $f(x \wedge y) = f(x) \wedge f(y)$.

Proposition 3.22. [3] Let $f: X \to X'$ be a subtraction semigroup homomorphism and $J = f^{-1}(0) = \{0\}$. Then $f(x) \leq f(y)$ imply $x \leq y$.

Proposition 3.23. Let $f : X \to X'$ be a subtraction homomorphism. Then *Kerf* is a sub-subtraction semigroup of X and *Imf* a sub-subtraction semigroup of X'.

Proof. The proof is routine and easy, and so omitted.

4 subtraction semigroup relation We introduce the notion of a relation on subtraction semigroups, called *SS-relation*, which is a generalization of a subtraction semigroup homomorphism.

Definition 4.1. Let X and Y be subtraction semigroups. A nonempty relation $\mathcal{H} \subseteq X \times Y$ is called a *SS*-relation if

(R1) for every $x \in X$ there exists $y \in Y$ such that $x\mathcal{H}y$,

- (R2) $x\mathcal{H}a$ and $y\mathcal{H}b$ imply $(x-y)\mathcal{H}(a-b)$,
- (R3) $x\mathcal{H}a$ and $y\mathcal{H}b$ imply $(x \cdot y)\mathcal{H}(a \cdot b)$.

We usually denote such relation by $\mathcal{H} : X \to Y$. It is clear from (R1) and (R2) that $0_X \mathcal{H} 0_Y$.

Example 4.2. Consider a proper subtraction semigroup $X = \{0, a, b, 1\}$ having the following Cayley table:

_	0	a	b	1		0	a	b	1
0	0	0	0	0	0	0	0	0	0
a	a	0	a	0	a	0	a	0	a
b	b	b	0	0	b	0	0	b	b
1	1	b	a	0	1	0	a	b	1

Define a relation $\mathcal{H} : X \to X$ by $0\mathcal{H}0, a\mathcal{H}a, b\mathcal{H}b, 1\mathcal{D}1$. It is easy to verify that \mathcal{H} is a *SS*-relation. A relation $\mathcal{D} : X \to X$ given by $0\mathcal{D}0, 0\mathcal{D}a, a\mathcal{D}0, a\mathcal{D}a, b\mathcal{D}0, b\mathcal{D}a, 1\mathcal{D}0$ is a *SS*-relation.

Theorem 4.3. Every subtraction semigroup homomorphism is a SS-relation.

Proof. Let $\mathcal{H} : X \to X$ be a subtraction semigroup homomorphism. Clearly, \mathcal{H} satisfies conditions (R1), R(2) and R(3).

Note that every diagonal SS-relation on a subtraction semigroup X (i.e., a SS-relation satisfying $x\mathcal{H}x$ for all $x \in X$ in which $x\mathcal{D}y$ is false whenever $x \neq y$) is a clearly a subtraction semigroup homomorphism. But in general, the converse of Theorem 4.3 need not be true as seen in the following example.

Example 4.4. The SS-relation \mathcal{D} in Example 4.2 is not a subtraction semigroup homomorphism.

Let $\mathcal{H}: X \to Y$ be a relation. For any $x \in X$ and $y \in Y$, let

 $\mathcal{H}[x] := \{ y \in Y \mid x\mathcal{H}y \} \text{ and } \mathcal{H}^{-1}[y] := \{ x \in X \mid x\mathcal{H}y \}.$

Note that $\mathcal{H}[x]$ and $\mathcal{H}^{-1}[y]$ are not subalgebras of X and Y, respectively, as seen in the following example.

Example 4.5. Let \mathcal{H} be a *SS*-relation in Example 4.2. Then $\mathcal{H}^{-1}[b] = \{b\}$ (resp. $\mathcal{H}[a] = \{a\}$) is not a subtraction semigroup subalgebra of X (resp. Y).

Theorem 4.6. For any SS-relation $\mathcal{H}: X \to Y$, we have

(1) $\mathcal{H}[0_X]$, called the zero image of \mathcal{H} , is a sub-subtraction semigroup of Y.

(2) $\mathcal{H}^{-1}[0_Y]$, called the kernel of \mathcal{H} and denoted by Ker \mathcal{H} , is a sub-subtraction semigroup of X.

Proof. (1) Let $y_1, y_2 \in \mathcal{H}[0_X]$. Then $0_X \mathcal{H} y_1$ and $0_X \mathcal{H} y_2$. It follows from (R2) and R(3) that $0_X \mathcal{H}(y_1 - y_2)$ and $0_X \mathcal{H}(y_1 \cdot y_2)$, that is, $y_1 - y_2 \in \mathcal{H}[0_X]$ and $y_1 \cdot y_2 \in \mathcal{H}[0_X]$.

(2) Let $x_1, X_2 \in Ker\mathcal{H}$. Then $x_1\mathcal{H}0_Y$ and $x_2\mathcal{H}0_Y$. By using (R2) and (R3), we get $(x_1 - x_2)\mathcal{H}0_Y$ and $(x_1 \cdot x_2)\mathcal{H}0_Y$, and so $x_1 - x_2 \in Ker\mathcal{H}, x_1 \cdot x_2 \in Ker\mathcal{H}$. This completes the proof.

Proposition 4.7. Let $\mathcal{H}: X \to Y$ be a *SS*-relation. Then we have

- (1) If $\mathcal{H}[a] \cap \mathcal{H}[b] \neq \emptyset$ where $a, b \in X$, then $a b \in Ker\mathcal{H}$.
- (2) If $\mathcal{H}^{-1}[u] \cap \mathcal{H}^{-1}[v] \neq \emptyset$ where $u, v \in Y$, then $u v \in Ker\mathcal{H}[0_X]$.

Proof. (1) Let $a, b \in X$ be such that $\mathcal{H}[a] \cap \mathcal{H}[b] \neq \emptyset$. Taking $y \in \mathcal{H}[a] \cap \mathcal{H}[b]$, we have $a\mathcal{H}y$ and $b\mathcal{H}y$. It follows from (R2) that $(a-b)\mathcal{H}(y-y) = (a-b)\mathcal{H}(y-y) = (a-b)\mathcal{H}0_Y$ so that $a-b \in Ker\mathcal{H}$.

(2) Let $x \in \mathcal{H}^{-1}[u] \cap \mathcal{H}^{-1}[v]$. Then $x\mathcal{H}u$ and $x\mathcal{H}v$. Using (R2), we obtain x-x) $\mathcal{H}(u-v) = 0_X \mathcal{H}(u-v)$, i.e., $u-v \in \mathcal{H}[0_X]$. This completes the proof.

Theorem 4.8. Let $\mathcal{H}: X \to Y$ be a *SS*-relation and let *S* be a sub-subtraction semigroup of *X*. Then

$$\mathcal{H}[S] := \{ y \mid x \mathcal{H} y \text{ for some } x \in S \}$$

is a sub-subtraction semigroup of Y.

Proof. Clearly, $\mathcal{H}[S] \neq \emptyset$ since $0_X \mathcal{H} 0_Y$. Let $y_1, y_2 \in \mathcal{H}[S]$. Then $x_1 \mathcal{H} y_1$ and $x_2 \mathcal{H} y_2$ for some $x_1, x_2 \in S$. Using (R2) and (R3), we obtain $(x_1 - x_2)\mathcal{H}(y_1 - y_2)$ and $(x_1 \cdot x_2)\mathcal{H}(y_1 \cdot y_2)$ which implies that $y_1 - y_2 \in \mathcal{H}[S]$ and $y_1 \cdot y_2 \in \mathcal{H}[S]$ since $x_1 - x_2$ and $x_1 \cdot x_2 \in S$. Therefore $\mathcal{H}[S]$ is a sub-subtraction semigroup of Y. This completes the proof.

Corollary 4.9. Let $\mathcal{H}: X \to Y$ be a *SS*-relation. Then we have

- (1) $\mathcal{H}[X]$ is a sub-subtraction semigroup of Y,
- (2) $\mathcal{H}[X] = \bigcup_{x \in X} \mathcal{H}[x],$
- (3) The zero image of \mathcal{H} is a sub-subtraction semigroup of $\mathcal{H}[X]$.

Proof. (1) and (2) are straightforward. (3) Let $a, b \in \mathcal{H}[0_X]$. Then $0_X \mathcal{H}a$ and $0_X \mathcal{H}b$, and so $0_X \mathcal{H}(a-b)$ and $0_X \mathcal{H}(a \cdot b)$, i.e., a-b and $a \cdot b \in \mathcal{H}[0_X]$. Therefore $\mathcal{H}[0_X]$ is a sub-subtraction semigroup of $\mathcal{H}[X]$.

Theorem 4.10. Let $\mathcal{H}: X \to Y$ be a *SS*-relation and let *T* be a sub-subtraction semigroup of *Y*. Then

$$\mathcal{H}^{-1}[T] := \{ x \in X \mid x \mathcal{H} y \text{ for some } y \in T \}$$

is a sub-subtraction semigroup of X.

Proof. Obviously, $\mathcal{H}^{-1}[T] \neq \emptyset$ since $0_X \mathcal{H} 0_Y$. Let $x_1, x_2 \in \mathcal{H}^{-1}[T]$. Then there exist $y_1, y_2 \in T$ such that $x_1 \mathcal{H} y_1$ and $x_2 \mathcal{H} y_2$. Note that $y_1 - y_2 \in T$ and $y_1 \cdot y_2 \in T$ since T is a subsubtraction semigroup of Y. It follows from (R2) and (R3) that $(x_1 - x_2)\mathcal{H}(y_1 - y_2)$ and $(x_1 \cdot x_2)\mathcal{H}(y_1 \cdot y_2)$ so that $x_1 - x_2 \in \mathcal{H}^{-1}[T]$ and $x_1 \cdot x_2 \in \mathcal{H}^{-1}[T]$. Hence $\mathcal{H}^{-1}[T]$ is a sub-subtraction semigroup of X.

Corollary 4.11. Let $\mathcal{H}: X \to Y$ be a *SS*-relation. Then

- (1) $\mathcal{H}^{-1}[Y]$ is a sub-subtraction semigroup of X,
- (2) $\mathcal{H}^{-1}[Y] = \bigcup_{y \in Y} \mathcal{H}[y],$
- (3) The kernel of \mathcal{H} is a sub-subtraction semigroup of $\mathcal{H}^{-1}[Y]$.

Proof. (1) and (2) are straightforward. (3) Let $x, y \in Ker\mathcal{H}$. Then $x\mathcal{H}0_Y$ and $y\mathcal{H}0_Y$. It follows from (R2) and (R3) that

$$(x-y)\mathcal{H}(0_Y-0_Y) = (x-y)\mathcal{H}0_Y$$
 and $(x\cdot y)\mathcal{H}(0_Y\cdot 0_Y) = (x\cdot y)\mathcal{H}0_Y$

so that $x - y \in Ker\mathcal{H}$. Hence $Ker\mathcal{H}$ is a sub-subtraction semigroup of $\mathcal{H}^{[Y]}$. This completes the proof.

References

- [1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.
- [2] E. H. Roh, K. H. Kim and J. G. Lee, On prime and subprime ideals in subtraction semigroups, Scientiae Mathematicae Japonicae Online e-2004, 1-1, 411-418.
- [3] K. H. Kim, E. H. Roh and Y. H. Yon, A note on subtraction semigroups, Scientiae Mathematicae Japonicae 60, No.3 (2004), 451-459, :e10, 393-401.
- [4] B. M. Schein, Difference Semigroups, Comm. in Algebra 20 (1992), 2153–2169.
- [5] B. Zelinka, Subtraction Semigroups, Math. Bohemica, 120 (1995), 445-447.

DEPARTMENT OF MATHEMATICS, CHUNGJU NATIONAL UNIVERSITY, CHUNGJU 380-702, KOREA ghkim@chungju.ac.kr