ON SUBTRACTION SEMIGROUPS

Kyung Ho Kim

Received June 1, 2005

Abstract

In this paper, we define an ideal of a subtraction semigroup and a strong subtraction semigroup and characterizations of ideals is given. We introduce the notion of a relation on subtraction semigroup, called a $S S$-relation, which is a generalization of a subtraction semigroup homomorphism, and then we discuss the fundamental properties related to sub-subtraction semigroups.

1 Introduction B. M. Schein [4] considered systems of the form ($\Phi ; \circ, \backslash$), where Φ is a set of functions closed under the composition "०" of functions (and hence ($\Phi ; \circ$) is a function semigroup) and the set theoretic subtraction " \backslash " (and hence $(\Phi ; \backslash)$ is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka [5] discussed a problem proposed by B. M. Schein [4] concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. In this paper, we define an ideal of a subtraction semigroup and a strong subtraction semigroup and characterizations of ideals is given. We introduce the notion of a relation on subtraction semigroup, called a $S S$-relation, which is a generalization of a subtraction semigroup homomorphism, and then we discuss the fundamental properties related to sub-subtraction semigroups.

2 Preliminaries By a subtraction algebra we mean an algebra ($X ;-$) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,
(SA1) $x-(y-x)=x$;
(SA2) $x-(x-y)=y-(y-x)$;
(SA3) $(x-y)-z=(x-z)-y$.
The last identity permits us to omit parentheses in expressions of the form $(x-y)-z$. The subtraction determines an order relation on $X: a \leq b \Leftrightarrow a-b=0$, where $0=a-a$ is an element that does not depend on the choice of $a \in X$. The ordered set $(X ; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval $[0, a]$ is a Boolean algebra with respect to the induced order. Here $a \wedge b=a-(a-b)$; the complement of an element $b \in[0, a]$ is $a-b$; and if $b, c \in[0, a]$, then

$$
\begin{aligned}
b \vee c & =\left(b^{\prime} \wedge c^{\prime}\right)^{\prime}=a-((a-b) \wedge(a-c)) \\
& =a-((a-b)-((a-b)-(a-c)))
\end{aligned}
$$

A subset I of a subtraction algebra X is called a subalgebra of X if $x-y \in I$ for all $x, y \in I$.

In a subtraction algebra, the following hold:
2000 Mathematics Subject Classification. 06F35.
Key words and phrases. Subtraction algebra, subtraction semigroup, strong subtraction semigroup, relation, homomorphism.
(S1) $x-0=x$ and $0-x=0$.
(S2) $x-(x-y) \leq y$.
(S3) $x \leq y$ if and only if $x=y-w$ for some $w \in X$.
(S4) $x \leq y$ implies $x-z \leq y-z$ and $z-y \leq z-x$ for all $z \in X$.
(S5) $x-(x-(x-y))=x-y$.
(S6) $(x-y)-x=0$.
(p7) $(x-y)-y=x-y$.
Lemma 2.1. [3] Let X be a subtraction algebra. Then $(X ; \leq)$ is a poset, where $x \leq y \Leftrightarrow$ $x-y=0$ for any $x, y \in X$.

By a subtraction semigroup we mean an algebra ($X ; \cdot,-$) with two binary operations "-" and "." that satisfies the following axioms: for any $x, y, z \in X$,
(SS1) $(X ; \cdot)$ is a semigroup;
$(\mathrm{SS} 2)(X ;-)$ is a subtraction algebra;
$(\mathrm{SS} 3) x(y-z)=x y-x z$ and $(x-y) z=x z-y z$.

Example 2.2. [3] Let $X=\{0,1\}$ in which "-" and "." are defined by

-	0	1
0	0	0
1	1	0

.	0	1
0	0	0
1	0	1

It is easy to check that X is a subtraction semigroup.
Lemma 2.3. [3] Let X be a subtraction semigroup. Then the following hold.
(1) $x 0=0$ and $0 x=0$
(2) $x \leq y$ implies $a x \leq a y$ and $x a \leq y a$.
(3) $x(y \wedge z)=x y \wedge x z$ and $(x \wedge y) z=x z \wedge y z$

3 Ideals of subtraction semigroups In what follows, let X denote a subtraction semigroup unless otherwise specified.

Definition 3.1. Let $(X,-, \cdot, 0)$ be a subtraction semigroup. A non-empty subset S of X is called a sub-subtraction semigroup of X if $x-y \in S$ and $x y \in S$ for all $x, y \in S$

Definition 3.2. A nonempty subset A of a subtraction semigroup X is called to be left (resp. right) stable if $x \cdot a \in A$ (resp. $a \cdot x \in A$) whenever $x \in X$ and $a \in A$.

Definition 3.3. A non-empty subset I of a subtraction semigroup X is called a left (resp. right) ideal of X if
(1) I is a stable subset of X.
(2) $y \in I$ and $x-y \in I$ imply $x \in I$ for all $x, y \in X$.

If I is a both left and right ideal, it is called a two-sided ideal of X. Note that $\{0\}$ and X are ideals. If A is a left (resp. right) ideal of a subtraction semigroup X, then $0 \in A$.

Example 3.4. Let $X=\{0,1,2,3,4,5\}$ in which "-" and "." are defined by

-	0	1	2	3	4	5
0	0	0	0	0	0	0
1	1	0	3	4	3	1
2	2	5	0	2	5	4
3	3	0	3	0	3	3
4	4	0	0	4	0	4
5	5	5	0	5	5	0

\cdot	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	4	3	4	0
2	0	4	2	0	4	5
3	0	3	0	3	0	0
4	0	4	4	0	4	0
5	0	0	5	0	0	5

It is easy to check that $(X ;-, \cdot)$ is a subtraction semigroup. Let $I=\{0,1,3,4\}$. Then I is an ideal of X.

Theorem 3.5. Suppose I is an ideal of subtraction semigroup X and $x \in I$. If $y \leq x$, then $y \in I$.

Proof. $y \leq x$ implies $y-x=0 \in I$. Combining $x \in I$ and using Definition 3.3, (2), we obtain $y \in I$, proving the theorem.

Theorem 3.6. Every ideal of a subtraction semigroup X is a sub-subtraction semigroup of X, but the converse is not true.

Proof. Suppose I is an ideal of X and $x, y \in I$. Since $(x-y) \leq x$ by $\mathrm{S}(6)$, it follows from Theorem 3.5, that $x-y \in I$. Hence I is a subalgebra of X. In the following Example 3.10, $\{0, a, b\}$ is a sub-subtraction semigroup of X but not an ideal of X because $1-b=a \in$ $\{0, a, b\}$ but $1 \notin\{0, a, b\}$. The proof is complete.

Theorem 3.7. Let $\left\{A_{i}\right\}$ be an arbitrary collection of ideals of the subtraction semigroup X, where i ranges over some index set. Then $\cap A_{i}$ is also an ideal of X.

Proof. Note that each ideal of X contains the zero element of X. Let $x-y, y \in \cap A_{i}$. Then $x-y, y \in A_{i}$ for every i. Since each A_{i} is a ideal of X, it follows that $x \in A_{i}$ for all i. Hence $x \in \cap A_{i}$. Next let $x \in \cap A_{i}$ and $a \in X$. Then $x \in A_{i}$ for every i, and so $a x, x a \in \cap A_{i}$ for all i. Thus $a x, x a \in \cap A_{i}$. Therefore $\cap A_{i}$ is an ideal of X.

Let us define the center of a subtraction semigroup X, denoted by $\operatorname{cent}(X)$, to be the set

$$
\operatorname{cent}(X)=\{x \in X \mid a x=x a \text { for all } a \in X\}
$$

Let $x, y \in \operatorname{cent}(X)$. Then $x a=a x$ and $y b=b y$ for all $a, b \in X$. Thus $(x-y) a=x a-y a=$ $a x-a y=a(x-y)$ for all $a \in X$. This implies that $x-y \in$ cent (X). showing that cent (X) is a subalgebra of a subtraction algebra X. Next since $x, y \in \operatorname{cent}(X)$, we have $x a=a x$ and $y a=a y$. Thus $(x y) a=x(y a)=x(a y)=(x a) y=(a x) y=a(x y)$ for all $a \in X$. The following theorems are obvious.

Theorem 3.8. For any subtraction semigroup X, cent (X) is a sub-subtraction semigroup of X.

Theorem 3.9. Let X be a subtraction semigroup X and $a \in X$. Then the set $C(a)=\{x \in$ $X \mid a x=x a\}$ is a sub-subtraction semigroup, and $\operatorname{cent}(X)=\bigcap_{a \in X} C(a)$.

The element 1 is called a unity in a subtraction semigroup X if $1 x=x 1=x$ for all $x \in X$. A strong subtraction semigroup is a subtraction semigroup X that satisfies the following condition : for each $x, y \in X$,

$$
x-y=x-x y
$$

If X ia a strong subtraction semigroup with a unity 1 , then 1 is the greatest element in X since $x-1=x-x 1=x-x=0$ for all $x \in X$.

Example 3.10. Let $X=\{0, a, b, 1\}$ in which "-" and "." are defined by

-	0	a	b	1
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
1	1	b	a	0

\cdot	0	a	b	1
0	0	0	0	0
a	0	a	0	a
b	0	0	b	b
1	0	a	b	1

It is easy to check that $(X ;-, \cdot)$ is a strong subtraction semigroup with unity 1 .
Lemma 3.11. [3] Let X be a strong subtraction semigroup. Then
(1) $x y \leq y$ for all $x, y \in X$,
(2) $x \leq y, x, y \in X$ if and only if $x \leq x y$.

Theorem 3.12. Let $(X,-, \cdot)$ be a strong subtraction semigroup and I a subalgebra of ($X,-$). If I ia an ideal of X, then $y \in I$ and $x \leq y$ imply $x \in I$.

Proof. Suppose that I is an ideal in X, and let $y \in I$ and $x \leq y$. Then $x=y-w$ for some $w \in X$ from (S3), and so $x=y-w=y-y w \in I$.

Theorem 3.13. Let X be a strong subtraction semigroup and A a subset of X. If $y \in A$ and $x \leq y$ imply $x \in A$, then A is a stable subset of X.

Proof. Suppose that $y \in A$ and $x \leq y$ imply $x \in A$. If $s \in X$ and $a \in A$, then by the Lemma 3.11, $s a \leq a \in A$, hence $s a \in A$. Since $s \leq s$ and $s \leq s a$ from Lemma 3.11, we have

$$
a s-a=a s-(a s) a=a s-a(s a)=a(s-s a)=a 0=0
$$

and $a s \leq a \in A$, and hence $a s \in A$. This completes the proof.
Lemma 3.14. Let X be a subtraction semigroup. Then we have

$$
(x-z)-(y-z)=(x-y)-z
$$

for all x, y and $z \in X$.
Proof. Let x, y and z in X . Then we have

$$
\begin{aligned}
& ((x-z)-(y-z))-((x-y)-z) \\
& =(((x-z)-z)-(y-z))-((x-y)-z) \quad(\mathrm{p} 1) \\
& \leq((x-z)-y)-((x-y)-z) \quad(\mathrm{p} 1, \mathrm{p} 9) \\
& =\left(\begin{array}{ll}
(x-y)-z)-((x-y)-z) \quad \text { (S3 }) \\
=0
\end{array}\right.
\end{aligned}
$$

Thus

$$
(x-z)-(y-z) \leq(x-y)-z
$$

The converse inequality is clear. This completes the proof.

Definition 3.15. Let X be a subtraction semigroup and $a \in X$. Set $A(a)=\{x \in X \mid x \leq$ $a\}$. Then we call $A(a)$ the initial section of the element a.

Lemma 3.16. Let X be a subtraction semigroup, $x \leq y$ and $y \in A(a)$. Then $x \in A(a)$.
Proof. Since $y \in A(a)$, we have $y \leq a$. Hence $x \leq y \leq a$, that is, $x \leq a$. This implies $x \in A(a)$.

Proposition 3.17. Let X be a strong subtraction semigroup and $a \in X$. Then $A(a)$ is an left ideal of X.

Proof. Let $y \in A(a)$ and $x-y \in A(a)$. Then we have $y \leq a$ and $x-y \leq a$. So, by $(\mathrm{p} 4)$ $x-a \leq x-y$. Hence $x-a \leq x-y \leq a . x-a \leq a$ implies $(x-a)-a=x-a=0$ by (S7), and so $x-a=0$, that is, $x \leq a$. This implies $x \in A(a)$. Next let $b \in A(a)$ and $x \in X$. Then we have $x b \leq b$ by Lemma 3.11 and $b \leq a$. Thus $x b \leq a$, and so $x b \in A(a)$. This completes the proof.

Theorem 3.18. Let X be a subtraction semigroup, I an ideal and $x \in I$. Then $A(x) \subset I$.
Proof. If $y \in A(x)$, then we have $y \leq x$. Hence $y-x=0 \in I$. Since I is an ideal of X and $x \in X$, we obtain $y \in I$. Therefore $A(x) \subset I$.

Definition 3.19. An element x in a subtraction semigroup X with unity 1 is said to be left (resp. right) invertible if there exists $y \in X$ (resp. $z \in X$) such that $y x=1_{X}$ (resp. $x z=1_{X}$). The element y (resp. z) is called a left (resp. right) inverse of x. An element $x \in X$ that is both left and right invertible is said to be invertible or to be an unit.

Theorem 3.20. Let X be a strong subtraction semigroup with unity 1 . If y in X is a right invertible element of $x \in X$, then $x \leq y$.

Proof. Let $y \in X$ be a right invertible element of x. Then we have $x-y=x-x y=x-1=$ $x-x=0$, and so $x \leq y$.

Let X and X^{\prime} be subtraction semigroups. A mapping $f: X \rightarrow X^{\prime}$ is called a subtraction semigroup homomorphism (briefly, homomorphism) if $f(x-y)=f(x)-f(y)$ and $f(x \cdot y)=$ $f(x) \cdot f(y)$ for all $x, y \in X$. Let $f: X \rightarrow Y$ be a homomorphism of subtraction semigroup. Then the set $\{x \in X \mid f(x)=0\}$ is called the kernel of f, and denote by ker f. Moreover, the set $\{f(x) \in Y \mid x \in X\}$ is called the image of f, and denote by $\operatorname{im} f$.

Lemma 3.21. [3] Let $f: X \rightarrow X^{\prime}$ be a subtraction semigroup homomorphism. Then
(1) $f(0)=0$,
(2) $x \leq y$ imply $f(x) \leq f(y)$.
(3) $f(x \wedge y)=f(x) \wedge f(y)$.

Proposition 3.22. [3] Let $f: X \rightarrow X^{\prime}$ be a subtraction semigroup homomorphism and $J=f^{-1}(0)=\{0\}$. Then $f(x) \leq f(y)$ imply $x \leq y$.

Proposition 3.23. Let $f: X \rightarrow X^{\prime}$ be a subtraction homomorphism. Then Kerf is a sub-subtraction semigroup of X and $\operatorname{Im} f$ a sub-subtraction semigroup of X^{\prime}.

Proof. The proof is routine and easy, and so omitted.

4 subtraction semigroup relation We introduce the notion of a relation on subtraction semigroups, called $S S$-relation, which is a generalization of a subtraction semigroup homomorphism.
Definition 4.1. Let X and Y be subtraction semigroups. A nonempty relation $\mathcal{H} \subseteq X \times Y$ is called a $S S$-relation if
(R1) for every $x \in X$ there exists $y \in Y$ such that $x \mathcal{H} y$,
(R2) $x \mathcal{H} a$ and $y \mathcal{H} b$ imply $(x-y) \mathcal{H}(a-b)$,
(R3) $x \mathcal{H} a$ and $y \mathcal{H} b$ imply $(x \cdot y) \mathcal{H}(a \cdot b)$.
We usually denote such relation by $\mathcal{H}: X \rightarrow Y$. It is clear from (R1) and (R2) that $0_{X} \mathcal{H} 0_{Y}$.

Example 4.2. Consider a proper subtraction semigroup $X=\{0, a, b, 1\}$ having the following Cayley table:

-	0	a	b	1
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
1	1	b	a	0

\cdot	0	a	b	1
0	0	0	0	0
a	0	a	0	a
b	0	0	b	b
1	0	a	b	1

Define a relation $\mathcal{H}: X \rightarrow X$ by $0 \mathcal{H} 0, a \mathcal{H} a, b \mathcal{H} b, 1 \mathcal{D} 1$. It is easy to verify that \mathcal{H} is a $S S$-relation. A relation $\mathcal{D}: X \rightarrow X$ given by $0 \mathcal{D} 0,0 \mathcal{D} a, a \mathcal{D} 0, a \mathcal{D} a, b \mathcal{D} 0, b \mathcal{D} a, 1 \mathcal{D} 0$ is a $S S$ relation.

Theorem 4.3. Every subtraction semigroup homomorphism is a $S S$-relation.
Proof. Let $\mathcal{H}: X \rightarrow X$ be a subtraction semigroup homomorphism. Clearly, \mathcal{H} satisfies conditions (R1), R(2) and R(3).

Note that every diagonal $S S$-relation on a subtraction semigroup X (i.e., a $S S$-relation satisfying $x \mathcal{H} x$ for all $x \in X$ in which $x \mathcal{D} y$ is false whenever $x \neq y)$ is a clearly a subtraction semigroup homomorphism. But in general, the converse of Theorem 4.3 need not be true as seen in the following example.

Example 4.4. The $S S$-relation \mathcal{D} in Example 4.2 is not a subtraction semigroup homomorphism.

Let $\mathcal{H}: X \rightarrow Y$ be a relation. For any $x \in X$ and $y \in Y$, let

$$
\mathcal{H}[x]:=\{y \in Y \mid x \mathcal{H} y\} \text { and } \mathcal{H}^{-1}[y]:=\{x \in X \mid x \mathcal{H} y\}
$$

Note that $\mathcal{H}[x]$ and $\mathcal{H}^{-1}[y]$ are not subalgebras of X and Y, respectively, as seen in the following example.

Example 4.5. Let \mathcal{H} be a $S S$-relation in Example 4.2. Then $\mathcal{H}^{-1}[b]=\{b\}$ (resp. $\mathcal{H}[a]=$ $\{a\})$ is not a subtraction semigroup subalgebra of X (resp. Y).

Theorem 4.6. For any $S S$-relation $\mathcal{H}: X \rightarrow Y$, we have
(1) $\mathcal{H}\left[0_{X}\right]$, called the zero image of \mathcal{H}, is a sub-subtraction semigroup of Y.
(2) $\mathcal{H}^{-1}\left[0_{Y}\right]$, called the kernel of \mathcal{H} and denoted by $\operatorname{Ker} \mathcal{H}$, is a sub-subtraction semigroup of X.

Proof. (1) Let $y_{1}, y_{2} \in \mathcal{H}\left[0_{X}\right]$. Then $0_{X} \mathcal{H} y_{1}$ and $0_{X} \mathcal{H} y_{2}$. It follows from (R2) and $\mathrm{R}(3)$ that $0_{X} \mathcal{H}\left(y_{1}-y_{2}\right)$ and $0_{X} \mathcal{H}\left(y_{1} \cdot y_{2}\right)$, that is, $y_{1}-y_{2} \in \mathcal{H}\left[0_{X}\right]$ and $y_{1} \cdot y_{2} \in \mathcal{H}\left[0_{X}\right]$.
(2) Let $x_{1}, X_{2} \in K e r \mathcal{H}$. Then $x_{1} \mathcal{H} 0_{Y}$ and $x_{2} \mathcal{H} 0_{Y}$. By using (R2) and (R3), we get $\left(x_{1}-x_{2}\right) \mathcal{H} 0_{Y}$ and $\left(x_{1} \cdot x_{2}\right) \mathcal{H} 0_{Y}$, and so $x_{1}-x_{2} \in \operatorname{Ker} \mathcal{H}, x_{1} \cdot x_{2} \in \operatorname{Ker} \mathcal{H}$. This completes the proof.

Proposition 4.7. Let $\mathcal{H}: X \rightarrow Y$ be a $S S$-relation. Then we have
(1) If $\mathcal{H}[a] \cap \mathcal{H}[b] \neq \emptyset$ where $a, b \in X$, then $a-b \in \operatorname{KerH}$.
(2) If $\mathcal{H}^{-1}[u] \cap \mathcal{H}^{-1}[v] \neq \emptyset$ where $u, v \in Y$, then $u-v \in \operatorname{Ker} \mathcal{H}\left[0_{X}\right]$.

Proof. (1) Let $a, b \in X$ be such that $\mathcal{H}[a] \cap \mathcal{H}[b] \neq \emptyset$. Taking $y \in \mathcal{H}[a] \cap \mathcal{H}[b]$, we have $a \mathcal{H} y$ and $b \mathcal{H} y$. It follows from (R2) that $(a-b) \mathcal{H}(y-y)=(a-b) \mathcal{H}(y-y)=(a-b) \mathcal{H} 0_{Y}$ so that $a-b \in \operatorname{KerH}$.
(2) Let $x \in \mathcal{H}^{-1}[u] \cap \mathcal{H}^{-1}[v]$. Then $x \mathcal{H} u$ and $x \mathcal{H} v$. Using (R2), we obtain $\left.x-x\right) \mathcal{H}(u-v)=$ $0_{X} \mathcal{H}(u-v)$, i.e., $u-v \in \mathcal{H}\left[0_{X}\right]$. This completes the proof.
Theorem 4.8. Let $\mathcal{H}: X \rightarrow Y$ be a $S S$-relation and let S be a sub-subtraction semigroup of X. Then

$$
\mathcal{H}[S]:=\{y \mid x \mathcal{H} y \text { for some } x \in S\}
$$

is a sub-subtraction semigroup of Y.
Proof. Clearly, $\mathcal{H}[S] \neq \emptyset$ since $0_{X} \mathcal{H} 0_{Y}$. Let $y_{1}, y_{2} \in \mathcal{H}[S]$. Then $x_{1} \mathcal{H} y_{1}$ and $x_{2} \mathcal{H} y_{2}$ for some $x_{1}, x_{2} \in S$. Using (R2) and (R3), we obtain $\left(x_{1}-x_{2}\right) \mathcal{H}\left(y_{1}-y_{2}\right)$ and $\left(x_{1} \cdot x_{2}\right) \mathcal{H}\left(y_{1} \cdot y_{2}\right)$ which implies that $y_{1}-y_{2} \in \mathcal{H}[S]$ and $y_{1} \cdot y_{2} \in \mathcal{H}[S]$ since $x_{1}-x_{2}$ and $x_{1} \cdot x_{2} \in S$. Therefore $\mathcal{H}[S]$ is a sub-subtraction semigroup of Y. This completes the proof.

Corollary 4.9. Let $\mathcal{H}: X \rightarrow Y$ be a $S S$-relation. Then we have
(1) $\mathcal{H}[X]$ is a sub-subtraction semigroup of Y,
(2) $\mathcal{H}[X]=\bigcup_{x \in X} \mathcal{H}[x]$,
(3) The zero image of \mathcal{H} is a sub-subtraction semigroup of $\mathcal{H}[X]$.

Proof. (1) and (2) are straightforward. (3) Let $a, b \in \mathcal{H}\left[0_{X}\right]$. Then $0_{X} \mathcal{H} a$ and $0_{X} \mathcal{H} b$, and so $0_{X} \mathcal{H}(a-b)$ and $0_{X} \mathcal{H}(a \cdot b)$, i.e., $a-b$ and $a \cdot b \in \mathcal{H}\left[0_{X}\right]$. Therefore $\mathcal{H}\left[0_{X}\right]$ is a sub-subtraction semigroup of $\mathcal{H}[X]$.

Theorem 4.10. Let $\mathcal{H}: X \rightarrow Y$ be a $S S$-relation and let T be a sub-subtraction semigroup of Y. Then

$$
\mathcal{H}^{-1}[T]:=\{x \in X \mid x \mathcal{H} y \text { for some } y \in T\}
$$

is a sub-subtraction semigroup of X.
Proof. Obviously, $\mathcal{H}^{-1}[T] \neq \emptyset$ since $0_{X} \mathcal{H} 0_{Y}$. Let $x_{1}, x_{2} \in \mathcal{H}^{-1}[T]$. Then there exist $y_{1}, y_{2} \in$ T such that $x_{1} \mathcal{H} y_{1}$ and $x_{2} \mathcal{H} y_{2}$. Note that $y_{1}-y_{2} \in T$ and $y_{1} \cdot y_{2} \in T$ since T is a subsubtraction semigroup of Y. It follows from (R2) and (R3) that $\left(x_{1}-x_{2}\right) \mathcal{H}\left(y_{1}-y_{2}\right)$ and $\left(x_{1} \cdot x_{2}\right) \mathcal{H}\left(y_{1} \cdot y_{2}\right)$ so that $x_{1}-x_{2} \in \mathcal{H}^{-1}[T]$ and $x_{1} \cdot x_{2} \in \mathcal{H}^{-1}[T]$. Hence $\mathcal{H}^{-1}[T]$ is a sub-subtraction semigroup of X.

Corollary 4.11. Let $\mathcal{H}: X \rightarrow Y$ be a $S S$-relation. Then
(1) $\mathcal{H}^{-1}[Y]$ is a sub-subtraction semigroup of X,
(2) $\mathcal{H}^{-1}[Y]=\bigcup_{y \in Y} \mathcal{H}[y]$,
(3) The kernel of \mathcal{H} is a sub-subtraction semigroup of $\mathcal{H}^{-1}[Y]$.

Proof. (1) and (2) are straightforward. (3) Let $x, y \in \operatorname{Ker\mathcal {H}}$. Then $x \mathcal{H} 0_{Y}$ and $y \mathcal{H} 0_{Y}$. It follows from (R2) and (R3) that

$$
(x-y) \mathcal{H}\left(0_{Y}-0_{Y}\right)=(x-y) \mathcal{H} 0_{Y} \text { and }(x \cdot y) \mathcal{H}\left(0_{Y} \cdot 0_{Y}\right)=(x \cdot y) \mathcal{H} 0_{Y}
$$

so that $x-y \in \operatorname{Ker} \mathcal{H}$. Hence $\operatorname{Ker} \mathcal{H}$ is a sub-subtraction semigroup of $\mathcal{H}[Y]$. This completes the proof.

References

[1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.
[2] E. H. Roh, K. H. Kim and J. G. Lee, On prime and subprime ideals in subtraction semigroups, Scientiae Mathematicae Japonicae Online e-2004, 1-1, 411-418.
[3] K. H. Kim, E. H. Roh and Y. H. Yon, A note on subtraction semigroups, Scientiae Mathematicae Japonicae 60, No. 3 (2004), 451-459, :e10, 393-401.
[4] B. M. Schein, Difference Semigroups, Comm. in Algebra 20 (1992), 2153-2169.
[5] B. Zelinka, Subtraction Semigroups, Math. Bohemica, 120 (1995), 445-447.
Department of Mathematics, Chunguu National University, Chunguu 380-702, Korea ghkim@chungju.ac.kr

