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ON SUBTRACTION SEMIGROUPS
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ABSTRACT. In this paper, we define an ideal of a subtraction semigroup and a strong
subtraction semigroup and characterizations of ideals is given. We introduce the notion
of a relation on subtraction semigroup, called a SS-relation, which is a generalization
of a subtraction semigroup homomorphism, and then we discuss the fundamental prop-
erties related to sub-subtraction semigroups.

1 Introduction B. M. Schein [4] considered systems of the form (®;o0,\), where ® is a
set of functions closed under the composition “o” of functions (and hence (®;o0) is a func-
tion semigroup) and the set theoretic subtraction “\” (and hence (®;)\) is a subtraction
algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to
a difference semigroup of invertible functions. B. Zelinka [5] discussed a problem proposed
by B. M. Schein [4] concerning the structure of multiplication in a subtraction semigroup.
He solved the problem for subtraction algebras of a special type, called the atomic subtrac-
tion algebras. In this paper, we define an ideal of a subtraction semigroup and a strong
subtraction semigroup and characterizations of ideals is given. We introduce the notion
of a relation on subtraction semigroup, called a SS-relation, which is a generalization of
a subtraction semigroup homomorphism, and then we discuss the fundamental properties
related to sub-subtraction semigroups.

2 Preliminaries By a subtraction algebra we mean an algebra (X; —) with a single binary
operation “—” that satisfies the following identities: for any x,y,z € X,

(SAl) 2 —(y—z) =z
(SA2) 2 —(z—y) =y — (y—2);
(SA3) (x—y)—z=(r—2)—y.

The last identity permits us to omit parentheses in expressions of the form (x — y) — z.
The subtraction determines an order relation on X: a < b < a—b =0, where 0 =a —a
is an element that does not depend on the choice of a € X. The ordered set (X;<) is
a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in
which every interval [0,a] is a Boolean algebra with respect to the induced order. Here
aNb=a—(a—b); the complement of an element b € [0, a] is a — b; and if b, ¢ € [0, a], then

bVe = (WA =a—((a—b)A(a—2c))
= a—((a=b)—((a—b)—(a—c))).
A subset I of a subtraction algebra X is called a subalgebra of X if x —y € I for all

z,y €1.
In a subtraction algebra, the following hold:
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Sl) z—0=zand 0—z = 0.
S2) x— (z—y) <w.

S3) x <y if and only if z = y — w for some w € X.

S5) v —(z— (v —y)) =z —y.

S6

(S1)
(52)
(S3)
(S4) <y implies s —2<y—zand z —y <z —x for all z € X.
(S5)
(S6) (x —y)—x=0.

(p7)

(
p7) (r—y)—y=z—y.

Lemma 2.1. [3] Let X be a subtraction algebra. Then (X; <) is a poset, where z <y <
x—y=0for any z,y € X.

By a subtraction semigroup we mean an algebra (X;-,—) with two binary operations
“—” and “”that satisfies the following axioms: for any z,y,z € X,

(SS1) (X;-) is a semigroup;
(SS2) (X;—) is a subtraction algebra;

(SS3) x(y — 2) = xy — zz and (z — y)z = 2z — y=z.

Example 2.2. [3] Let X = {0,1} in which “—” and “” are defined by

— (0 1 <10 1
070 O 010 O
111 0 110 1

It is easy to check that X is a subtraction semigroup.

Lemma 2.3. [3] Let X be a subtraction semigroup. Then the following hold.
(1) z0=0and 0z =0
(2) = <y implies az < ay and za < ya.
(3) x(yNz)=ayAzzand (xAy)z =xz Ayz

3 Ideals of subtraction semigroups In what follows, let X denote a subtraction semi-
group unless otherwise specified.

Definition 3.1. Let (X, —,+,0) be a subtraction semigroup. A non-empty subset S of X
is called a sub-subtraction semigroup of X if x —y € S and zy € S for all z,y € §

Definition 3.2. A nonempty subset A of a subtraction semigroup X is called to be left
(vesp. right) stableif x -a € A (resp. a -z € A) whenever z € X and a € A.

Definition 3.3. A non-empty subset I of a subtraction semigroup X is called a left (resp.
right) ideal of X if

(1) I is a stable subset of X.

(2) yelandz —y €I imply z € I for all z,y € X.
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If I is a both left and right ideal, it is called a two-sided ideal of X. Note that {0} and
X are ideals. If A is a left (resp. right) ideal of a subtraction semigroup X, then 0 € A.

Example 3.4. Let X ={0,1,2,3,4,5} in which “~” and “” are defined by

TR W N~ O |
CUs W~ Oolo
TNOo O Lo o=
OO wo wo|l
DU O N O|w
O WUt w Ok
OB WA~ O|lwt
TR W~ O -
co oo o oo
OB Wk = Ol
U O O
o wo wo|lw
OO O
o O wulo ofw

It is easy to check that (X;—,-) is a subtraction semigroup. Let I = {0,1,3,4}. Then I is
an ideal of X.

Theorem 3.5. Suppose [ is an ideal of subtraction semigroup X and z € I. If y < x, then
yel

Proof. y < x implies y — x = 0 € I. Combining z € I and using Definition 3.3, (2), we
obtain y € I, proving the theorem. O

Theorem 3.6. Every ideal of a subtraction semigroup X is a sub-subtraction semigroup
of X, but the converse is not true.

Proof. Suppose I is an ideal of X and z,y € I. Since (x — y) < z by S(6), it follows from
Theorem 3.5, that x — y € I. Hence I is a subalgebra of X. In the following Example 3.10,
{0, a,b} is a sub-subtraction semigroup of X but not an ideal of X because 1 —b = a €
{0,a,b} but 1 ¢ {0, a,b}. The proof is complete. O

Theorem 3.7. Let {4;} be an arbitrary collection of ideals of the subtraction semigroup
X, where ¢ ranges over some index set. Then NA; is also an ideal of X.

Proof. Note that each ideal of X contains the zero element of X. Let  — y,y € NA;. Then
x—1y,y € A; for every 4. Since each A; is a ideal of X, it follows that x € A; for all . Hence
x € NA;. Next let x € NA; and a € X. Then x € A; for every ¢, and so ax,xza € NA; for all
1. Thus azx, za € NA;. Therefore NA; is an ideal of X. O

Let us define the center of a subtraction semigroup X, denoted by cent(X), to be the set
cent (X)={x € X |ar =zaforalla e X}.

Let 2,y € cent (X). Then za = ax and yb = by for all a,b € X. Thus (z —y)a = za—ya =
ax—ay = a(r—y) for all a € X. This implies that x —y € cent (X). showing that cent (X)
is a subalgebra of a subtraction algebra X. Next since z,y € cent(X), we have za = ax
and ya = ay. Thus (zy)a = z(ya) = x(ay) = (xa)y = (ax)y = a(zy) for all @ € X. The
following theorems are obvious.

Theorem 3.8. For any subtraction semigroup X, cent (X) is a sub-subtraction semigroup
of X.

Theorem 3.9. Let X be a subtraction semigroup X and a € X. Then the set C(a) = {z €

X | ax = za} is a sub-subtraction semigroup, and cent (X) = [\ C(a).
acX
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The element 1 is called a wnity in a subtraction semigroup X if 1z = x1 = z for all
x € X. A strong subtraction semigroup is a subtraction semigroup X that satisfies the
following condition : for each x,y € X,

T—Yy=x—2zTY.

If X ia a strong subtraction semigroup with a unity 1, then 1 is the greatest element in X
sincex—l=x—zxl=z—x=0forall x € X.

Example 3.10. Let X ={0,a,b,1} in which “~” and “” are defined by

- 10 a b 1 0 a b 1
0j]0 0 0 O 0({0 0 0 O
ala 0 a O a|l0 a 0 a
b|b b 0 0 b0 0 b b
111 b a O 110 a b 1
It is easy to check that (X;—,-) is a strong subtraction semigroup with unity 1.

Lemma 3.11. [3] Let X be a strong subtraction semigroup. Then
(1) zy <y forall z,y € X,
(2) <y, z,y € X if and only if z < xy.

Theorem 3.12. Let (X, —,-) be a strong subtraction semigroup and I a subalgebra of
(X,—). If I ia an ideal of X, then y € I and = <y imply z € I.

Proof. Suppose that I is an ideal in X, and let y € I and x <y. Then x = y — w for some
w € X from (S3),and soz =y —w=y —yw € I. O

Theorem 3.13. Let X be a strong subtraction semigroup and A a subset of X. If y € A
and z <y imply = € A, then A is a stable subset of X.

Proof. Suppose that y € A and z < y imply x € A. If s € X and a € A, then by the
Lemma 3.11, sa < a € A, hence sa € A. Since s < s and s < sa from Lemma 3.11, we have

as —a =as — (as)a = as — a(sa) = a(s — sa) = a0 =0,
and as < a € A, and hence as € A. This completes the proof. O
Lemma 3.14. Let X be a subtraction semigroup. Then we have
(2—2)—(y—2) = (w—y)—=
for all z,y and z € X.
Proof. Let x,y and z in X. Then we have

(r=2)=(y—2) = ((x—y) —2)
=(((r=2)—2)—(y—2) - (x—y)—2) (pl)
(z—2)—y)—(x—y)—=2) (pl,p9)
é(x—y)—Z)( y)—z) (S3)

A |

—((z—
—((w—

)— =z
)— =z

Thus
(—2)-(y—2)<(2—y)—=

The converse inequality is clear. This completes the proof. O
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Definition 3.15. Let X be a subtraction semigroup and a € X. Set A(a) ={z € X |z <
a}. Then we call A(a) the initial section of the element a.

Lemma 3.16. Let X be a subtraction semigroup, <y and y € A(a). Then x € A(a).

Proof. Since y € A(a), we have y < a. Hence z < y < a, that is, x < a. This implies
x € Ala). O

Proposition 3.17. Let X be a strong subtraction semigroup and a € X. Then A(a) is an
left ideal of X.

Proof. Let y € A(a) and z —y € A(a). Then we have y < a and x — y < a. So, by(p4)
r—a<z—y Hencex—a<z—y<a x—a<aimplies (x—a)—a=x—a=0Dby (S7),
and so x —a = 0, that is, © < a. This implies z € A(a). Next let b € A(a) and = € X. Then
we have zb < b by Lemma 3.11 and b < a. Thus zb < a, and so 2b € A(a). This completes
the proof. O

Theorem 3.18. Let X be a subtraction semigroup, I an ideal and « € I. Then A(z) C I.

Proof. If y € A(x), then we have y < x. Hence y — z = 0 € I. Since [ is an ideal of X and
x € X, we obtain y € I. Therefore A(z) C I. O

Definition 3.19. An element x in a subtraction semigroup X with unity 1 is said to be
left (resp. right) invertible if there exists y € X (resp. z € X) such that yx = 1x (resp.
xz = 1x). The element y (resp. z) is called a left (resp. right) inverse of x. An element
x € X that is both left and right invertible is said to be invertible or to be an unit.

Theorem 3.20. Let X be a strong subtraction semigroup with unity 1. If y in X is a right
invertible element of z € X, then =z < y.

Proof. Let y € X be a right invertible element of . Then we have x —y =z —zy=ax—1=
z—xz=0,and so z < y. O

Let X and X’ be subtraction semigroups. A mapping f : X — X' is called a subtraction
semigroup homomorphism (briefly, homomorphism) if f(x—y) = f(z)— f(y) and f(z-y) =
f(z)- f(y) for all z,y € X. Let f : X — Y be a homomorphism of subtraction semigroup.
Then the set {x € X | f(x) = 0} is called the kernel of f, and denote by kerf. Moreover,
the set {f(z) € Y | z € X} is called the image of f, and denote by im f.

Lemma 3.21. [3] Let f: X — X’ be a subtraction semigroup homomorphism. Then
(1) f(0)=0,
(2) @ <y imply f(z) < f(y).
B3) flzny) = flx) A [fy).

Proposition 3.22. [3] Let f : X — X’ be a subtraction semigroup homomorphism and
J = f71(0) = {0}. Then f(z) < f(y) imply = <.

Proposition 3.23. Let f : X — X’ be a subtraction homomorphism. Then Kerf is a
sub-subtraction semigroup of X and I'mf a sub-subtraction semigroup of X’.

Proof. The proof is routine and easy, and so omitted. [l
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4 subtraction semigroup relation We introduce the notion of a relation on subtrac-
tion semigroups, called SS-relation, which is a generalization of a subtraction semigroup
homomorphism.

Definition 4.1. Let X and Y be subtraction semigroups. A nonempty relation H C X xY
is called a SS-relation if

(R1) for every x € X there exists y € Y such that zHy,
(R2) zHa and yHb imply (z — y)H(a — b),
(R3) zHa and yHb imply (z - y)H(a - b).

We usually denote such relation by H : X — Y. It is clear from (R1) and (R2) that
0xHOy.

Example 4.2. Consider a proper subtraction semigroup X = {0, a, b, 1} having the follow-
ing Cayley table:

— o ol
— o OO
o O O
QL O Ol
oo ool
_ o O

O O O OO
QO O
o O O
— o O

Define a relation H : X — X by 0HO,aHa,bHb, 1D1. It is easy to verify that H is a
SS-relation. A relation D : X — X given by 0D0,0Da, aD0, aDa, bD0, bDa, 1D0 is a SS-
relation.

Theorem 4.3. Every subtraction semigroup homomorphism is a SS-relation.

Proof. Let H : X — X be a subtraction semigroup homomorphism. Clearly, H satisfies
conditions (R1), R(2) and R(3). O

Note that every diagonal S.S-relation on a subtraction semigroup X (i.e., a SS-relation
satisfying Hz for all € X in which 2Dy is false whenever = # y) is a clearly a subtraction
semigroup homomorphism. But in general, the converse of Theorem 4.3 need not be true
as seen in the following example.

Example 4.4. The SS-relation D in Example 4.2 is not a subtraction semigroup homo-
morphism.

Let H: X — Y be a relation. For any z € X and y € Y, let
H[z] :={y € Y | Hy} and H '[y] := {x € X | v Hy}.

Note that H[z] and H~![y] are not subalgebras of X and Y, respectively, as seen in the
following example.

Example 4.5. Let H be a SS-relation in Example 4.2. Then H~'[b] = {b} (resp. H[a] =
{a}) is not a subtraction semigroup subalgebra of X (resp. Y).

Theorem 4.6. For any SS-relation H : X — Y, we have

(1) H[0x], called the zero image of H, is a sub-subtraction semigroup of Y.
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(2) H~![0y], called the kernel of H and denoted by KerH, is a sub-subtraction semigroup
of X.

Proof. (1) Let y1,y2 € H[0x]. Then 0xHy; and 0xHys. It follows from (R2) and R(3) that
OxH(y1 — y2) and OxH(y1 - y2), that is, y1 — y2 € H[0x] and y1 - y2 € H[0x].

(2) Let z1,X2 € KerH. Then 21 H0y and z2H0y. By using (R2) and (R3), we get
(x1 — x2)HOy and (a1 - 22)HOy, and so 21 — x2 € KerH,z1 - 2 € KerH. This completes
the proof. |

Proposition 4.7. Let H: X — Y be a SS-relation.Then we have
(1) If H[a] NH[b] # O where a,b € X, then a — b € KerH.
(2) If H [u] "' H™[v] # 0 where u,v € Y, then u — v € KerH[0x].

Proof. (1) Let a,b € X be such that H[a] N H[b] # 0. Taking y € H[a] N H[b], we have aHy
and bHy. It follows from (R2) that (a —b)H(y —y) = (a —b)H(y —y) = (a — b)HOy so that
a—be KerH.

(2) Let x € H~[u)"H~1[v]. Then xHu and xHv. Using (R2), we obtain z—z)H(u—v) =
OxH(u—v), i.e.,, u — v € H[0x]. This completes the proof. O

Theorem 4.8. Let H : X — Y be a SS-relation and let S be a sub-subtraction semigroup
of X. Then
H[S] :={y | zHy for some z € S}

is a sub-subtraction semigroup of Y.

Proof. Clearly, H[S] # 0 since 0xHOy . Let y1,y2 € H[S]. Then z1Hy;, and zoHy, for some
x1, 22 € S. Using (R2) and (R3), we obtain (x1 —x2)H(y1 —y2) and (x1 - x2)H(y1 - y2) which
implies that y; —y2 € H[S] and y1 - y2 € H[S] since 1 — z2 and x; - 3 € S. Therefore H[S]
is a sub-subtraction semigroup of Y. This completes the proof. O

Corollary 4.9. Let H: X — Y be a SS-relation. Then we have
(1) H[X] is a sub-subtraction semigroup of Y,
(2) HIX]= U Hlz],

zeX

(3) The zero image of H is a sub-subtraction semigroup of H[X].

Proof. (1) and (2) are straightforward. (3) Let a,b € H[0x]. Then OxHa and 0xHb, and so
OxH(a—b) and OxH(a-b), i.c.,a—band a-b € H[0x]. Therefore H[0x] is a sub-subtraction
semigroup of H[X]. O

Theorem 4.10. Let H : X — Y be a SS-relation and let T" be a sub-subtraction semigroup
of Y. Then
H T := {z € X | vHy for some y € T'}

is a sub-subtraction semigroup of X.

Proof. Obviously, H™Y[T] # () since 0xHOy. Let x1, 22 € H~[T]. Then there exist y1,y2 €
T such that z1Hy; and x2Hys. Note that y; —ys € T and y; - y2 € T since T is a sub-
subtraction semigroup of Y. It follows from (R2) and (R3) that (x1 — z2)H(y1 — y2) and
(w1 - 22)H(y1 - y2) so that x1 — xo € HYT] and 1 - x5 € HYT]. Hence H[T] is a
sub-subtraction semigroup of X. [l
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Corollary 4.11. Let H: X — Y be a SS-relation. Then
(1) H71[Y] is a sub-subtraction semigroup of X,
(2) HHYT= U Hlyl,

yey
(3) The kernel of ‘H is a sub-subtraction semigroup of H~![Y].

Proof. (1) and (2) are straightforward. (3) Let =,y € KerH. Then 2H0y and yHOy. It
follows from (R2) and (R3) that

(x —y)H(0y — 0y) = (z — y)HOy and (z - y)H(Oy - Oy) = (z - y)HOy

so that x —y € KerH. Hence KerH is a sub-subtraction semigroup of H[Y]. This completes
the proof. |

REFERENCES

[1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.

[2] E. H. Roh, K. H. Kim and J. G. Lee, On prime and subprime ideals in subtraction semigroups,
Scientiae Mathematicae Japonicae Online e-2004, 1-1, 411-418.

[3] K. H. Kim, E. H. Roh and Y. H. Yon, A note on subtraction semigroups, Scientiae Mathe-
maticae Japonicae 60, No.3 (2004), 451-459, :e10, 393-401.

[4] B. M. Schein, Difference Semigroups, Comm. in Algebra 20 (1992), 2153-2169.
[5] B. Zelinka, Subtraction Semigroups, Math. Bohemica, 120 (1995), 445-447.

DEPARTMENT OF MATHEMATICS, CHUNGJU NATIONAL UNIVERSITY, CHUNGJU 380-702, KOREA
ghkim@chungju.ac.kr



